

国家奥林匹克体育中心 综合体育馆和游泳 馆[®]的声学设计

项端析 王 峥 陈金京

(北京市建筑设计研究院研究所) 1990年8月27日收到

国家奥林匹克体育中心包括综合体育馆、游泳馆、两个练习馆和体育场等五项工程。本文着重介 绍体育中心两个主馆的声学设计、竣工后的调试和取得的成果,以及笔者对今后大型体育馆声学设计的 建议、

一、概 述

国家奥林匹克体育中心(以下简称体育中心)综合体育馆和游泳馆是我国、也是亚运会体育馆建筑中规模最大、标准要求最高的两个现代化体育馆、两个馆由于规模和功能的不同,因此,声学设计的指标和为达到预期音质要求的措施就各不相同。综合体育馆在亚运会期间将在这里进行多项球类、体操比赛的决赛;会后供多功能使用,因此,该馆按多功能厅堂作声学设

具有必要的音质效果,在初步设计时,就由设计和声学专家组共同商定了两镇的声学指标,并

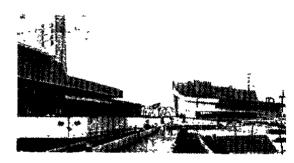
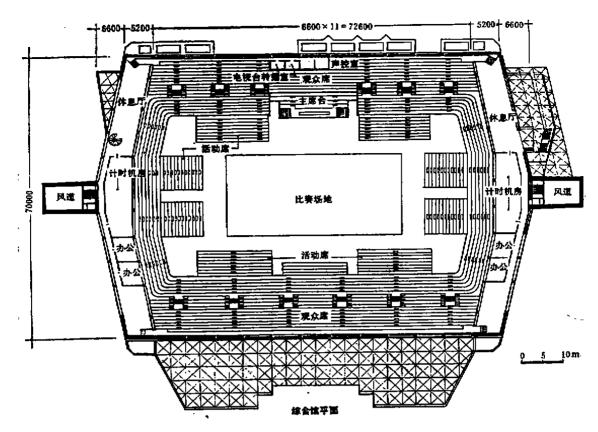
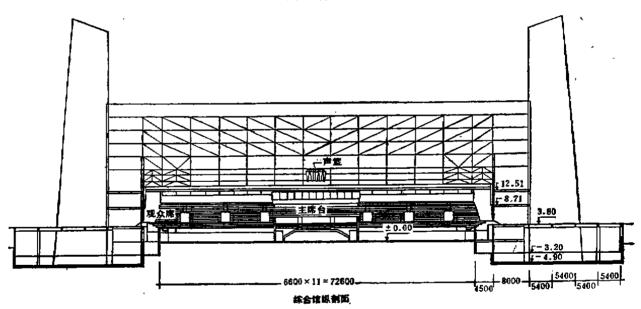


图 1 体育中心综合体育馆(左)和游泳馆(右)的外景


表 1 体育中心综合馆和游泳馆的形式、规模和声学设计指标

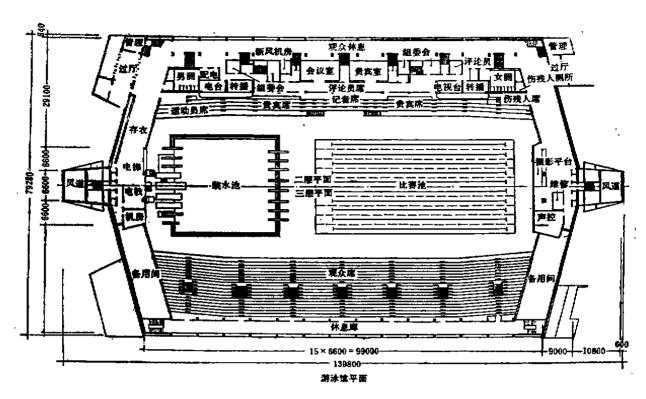
	,						声学设计指标			
馆的名称	用途	平、剖面 形式	馆内尺寸 (四)	容量(坐)		每座容积 (m³/座)	500	Hz	背景噪声	 類率响应
				(= 7	(m ³)	;		声场不均 匀度 (dB)	GBA	125— 4000Hz
综合馆	体育比赛 和多功能 使用	接近矩形 人字网架 不设吊顶	长: L = 99.0 宽: B ⇒ 70.0 顶高: H ≈ 34.5	6400	100000	15.6	1.6	<±3.0	40	<10dB
游泳馆	游泳和跳 水比赛	同上	长: L = 117.0 宽: B = 79.5 顶高: H = 35.0	5500	162000	29.4	2,5	<±3.5	46	<10dB


计;而游泳馆仅供游泳和跳水比赛使用。根据 两馆的不同功能,为确保馆内在比赛和训练时,

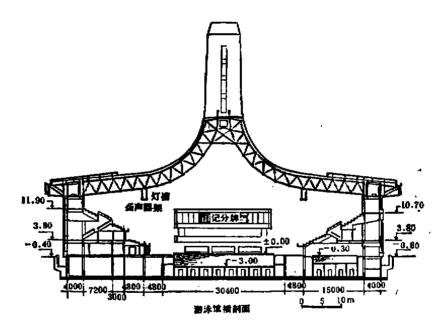
应用声学

① 体育中心综合馆的建筑师为闵华英; 游泳馆的建筑师 为刘振秀。

(4) 综合馆平面



(b) 綜合馆纵剖面 图 2 综合体育馆平 剖面图


经亚运会指挥部认可。两馆的形式、规模和确图 1 为两个馆的外景。图 2(a)、(b),图 定的声学设计指标见表 1 所示。

3(a)、(b)分别为综合馆和游泳馆的平、剖面。

. 2 . 10 卷 1 期

(4) 游泳馆平面

(b) 游泳馆横剖面 图 3 游泳馆平、剖面

施工进程中的声学调试。 两馆于90年7月建 加声学处理,达到了预期的指标,获得了好评。

根据上述要求的指标,进行了声学设计和 成并交付使用。通过声学监测和试用,以及追

应用声学

二、声学设计

① 声学设计的难点。

综合馆、游泳馆在声学设计中的难点可概 括为如下几方面:

(1) 容积大: 为了减轻屋架和 基 础 的 荷 载、节约吊顶的投资,两馆均采用暴露屋架,不 设吊顶的形式,从而使容积剧增。远大于国内 同类体育馆。分别见表 2、表 3、由于容积大, 为控制混响时间所需的吸声量很大,而平均自 由程的提高,容易引起回声和颤动回声;

主っ	围内门往所建综合体育宿息	.体育由心绝合	宿家和的比较。

体育馆名称	容积 (m³)	容量(座)	每座容积 (m³/座)	体育馆名称	容积 (m³)	容量 (座)	每座容积 (m³/座)
体育中心综合体育馆	100000	6400	- 15.6	山东体育馆	58800	8820	6.7
首都体育馆	168000	19200	8.8	五台山体育馆	63240	10000	6.3
上海体育馆	140000	18000 -	7.8	徐州体育馆	21800	3000	7.3
天津体育馆	43000	5200	8.3	天津河西馆	23520	2760	8.5
辽宁体育馆	79000	11000	7.2	上海黄浦馆	31100 .	37 01	8.4
陕西体育馆	70600	8000-	8.8	成都城北馆	39550	.6000	6.6
浙江体育馆	37725	5 3 00	7.0	郑州火车头馆	22200	3460	6.4

表 3 体育中心游泳馆与国内几个大型 游泳馆的容积比较[1]

	容积 (m³)	容量 (座)	每座容积 (四³/座)
体育中心游泳馆	162000	5500	29.4
广州天河体育中心游泳馆	75270	3300	22.8
上海游泳馆	87000	4100	21.0

(2) 吸声处理面积小

在馆内可进行吸声处理的部位仅限于屋架 ,也是在声学设计中,必须解决的问题。 和山墙,而山墙(或称端墙)上扣除大块记分牌 和声、光控制室的窗面积后,能做吸声处理的面 积不多, 因此, 必须在有限的处理面积内选用 强吸声结构; 一

(3) 音质要求高、投资有限、工期短.

目前国内大型体育馆的满场混响时间均在 1.7-2.0s 范围内,体育中心综合馆每座容积比 国内大型体育馆几乎增加一倍,却要求混响时 间为 1.6s; 体育中心游泳馆每座 容积 比上海 馆、天河馆大 35%, 混响时间要求接近 2.5s; 其它几项声学指标也比同类体育馆高, 但用于 声学外理的投资极为有限,且工期很短;

(4) 在短期内确定防潮、价廉的吸声结构 在游泳馆内选择吸声材料的难度最大,由

于馆内相对湿度高达 100%,常用玻璃棉、岩棉 等多孔吸声材料都不适用, 微穿孔板吸声结构 最适用于潮湿和卫生要求较高的房间,但它必 须在钻孔板后设置空腔,当用于屋架时,就须设 置吊顶,上海、广州天河游泳馆都采用吊顶构 造。 而体育中心游泳馆采用暴露屋架的形式, 不设吊顶。因此,必须寻求另一种防潮、价廉的 吸声结构,这在短期内难度也很大。

以上是体育中心两个馆声学设计的难点,

② 混响时间的控制

在体育馆声学设计中,主要是正确选择合 理配置吸声结构,达到控制混响时间、防止音质 缺陷的目的.`

(1) 体育中心综合馆

为了用最小的声学处理面积、获得尽可能 大的吸声量,采用了平板状、锥状和三角形铝板 钻孔空间吸声体,分别悬挂在屋架的周边、场中 央和马道下;两侧山墙除记分牌和声、光控制室 玻璃窗以外的墙面,均配置 1.2 mm 厚钢板钻孔 吸声结构、上述各项构造的面积和吸声性能见 表 4 所示.

表 4 内所列四项吸 声 构 造 的 总 面 积 为 8665m2, 用以控制馆内的混响时间;此外,还有

表 4 体育中心综合馆所用吸声构造的面积和吸声性能

	•	•	•		
記置部位	构造简述	面积	下述频率 (Hz) 的吸声系数 αξ		
	构证间处	(m ¹)	125	500	2000
悬吊在网架周边	① 平板吸声体,厚 100mm, 多种规格。1mm 铝板钻孔,孔率 28%,内衬玻璃布,填超细 玻璃棉、	5506	0.31	1.15	1.10
悬吊在网架中央	② 锥形吸声体、底盘尺寸为: 1200×1200 mm, 高 300mm, 铝板钻孔,內部构造同上.	69	0.38	1,27	1.05
屋架马道下	③ 三角形柱体、宽 1000mm, 高300mm, 铝 板钻孔构造同上。	1150	0.22	0.89	0.97
两侧山墙	④ 1.2mm 厚钢板钻孔,板后衬玻璃布,空腔 100mm,腔内填 100mm 厚玻璃棉毡.	1940	0.29	0.85	0.81

^{*} 注: 空间吸声体,按每个吸声体的吸声量除以展开面积求得.

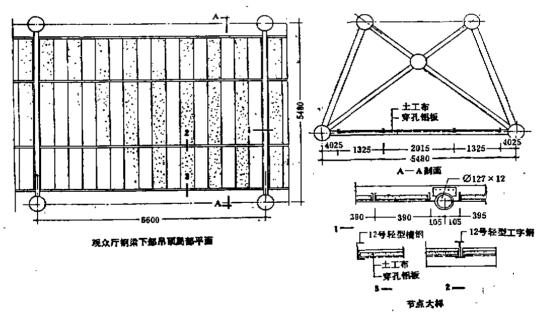
2300m²的木地板和 300m²的玻璃窗, 对馆内低 (2) 体育中心游泳馆。

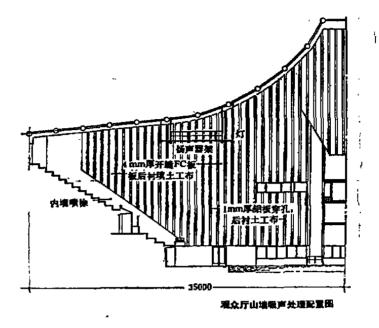
频混响的控制也起到相当大的作用,

游泳馆内的吸声结构要解决防潮、卫生、价廉和

表 5 开缝板后衬垫土工布,在不同相对湿度时的吸声特性

测定方法	构造简述	下述频率 (Hz) 的吸声系数			
	构造简述 - 	125,	500	2000	
驻波法	双层 6mm 厚土工布,实贴,自然状态	0.07	0.12	0.40	
	同上,相对湿度增至 50%	0.09	0.13	0.40	
	同上,相对湿度增至 100%	0.05	0.11	0.40	
混响室法	8mm 厚土工布实贴。相对湿度为 60%	0.05	0.43	0.60	
	同上,离刚性面50mm, 铝开缝板复面,开缝率 28%、湿度为60%	0.18	0.42	0.63	
	同上, 离刚性面 200mm, 开缝 FC 板复面,开 缝率 20%	0.35	0.58	0.55	




图 4 游泳馆网架上弦吊置的吸声构造及配置

应用声学

具有足够吸声性能等多项指标。为此,曾对多种防潮吸声材料,如泡沫玻璃、泡沫陶瓷、穿孔聚苯和无纺织物进行了吸声、造价、施工程序和材料来源等各方面的比较,最后确定用开缝铝板、高强水泥纤维板(简称 FC 板)、后面配置土工布(一种防水的无纺织物)的吸声结构,分别

配置在屋架上弦和墙面上。这一结构的造价仅为微钻孔板结构的 1/3,加工安装简便,且在潮湿条件下,仍能有较高的吸声性能,见表 5 所示。图 4、图 5 分别为设在顶部和墙面的构造和配置,

在馆的网架(屋架)上配置3400m²,墙面

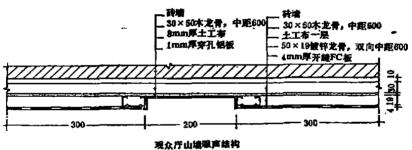


图 5 设置在山墙上的开缝吸声构造及配置

表 6 体育中心综合馆、游泳馆的计算混响时间(满场)

混响时间计算公式	馆的名称	设计值	下述频率 (Hz) 的混响时间(s)		
他們們們们 <i>弄</i> 公人	旧加石砂	计算值	125	500	2000
计算式: $T_{so} = \frac{0.161V}{-S\ln(1-\tilde{\alpha}) + 4\pi V}$	综合馆	设计值计算值	1, 9 2,05	1.6 1.62	1.6
式中: V; 为馆内容积 (m³); S; 为馆内总表面积 (m²); #; 为空气中的衰减系数*	游泳馆	设计值 计算值	3.0	2.5	2.0

^{*} 注: 综合馆的衰减系数,按相对湿度 60% 计算;游泳馆按 80% 计算。

2200m² 吸声构造。 原计划在池边铺设橡胶地 毯 1200m², 马道下衬垫 200m² 土 工 布, 总 计 7000m² 作为控制馆内的混响时间。

上述两个馆经吸声处理后的计算混响时间 达到了设计要求。 见表 6,实测结果将在后面 介绍。

(3) 对足够的声强和均匀声场分布的考虑

在体育馆内,要使观众席和场地获得足够的声强和均匀的声场分布,主要依靠扬声系统选择得当。扬声器组的配置要根据观众席的布置方式而定。在大容积的体育馆内,由于混响时间长,通常均采用分散系统,每组扬声器功率小、投射距离短,就可减少馆内长混响的影响而获得均匀的声场分布、防止长距离声反射而引起的回声。同时对提高语言清晰度也有利。

综合馆在场地周围配置观众席,因此在场中央的网架下悬吊"声篮"(由小功率声柱组成);使各向投射距离短而均匀;

游泳馆因设置眺水池,馆长很大,为确保最佳视距而在比赛池两侧配置观众席。对此,在每侧配置8组高低音组合声柱,吊置在观众席上部的灯架上(见图3),这样声柱的投射距离很短、且主轴针对观众席,保证了足够的声强和均匀的声场分布。为使场地的运动员、裁判员和教练员获得良好的听闻,也设置了8组声柱, 悬吊在屋架上。

(4) 馆内的噪声控制。

馆內噪声源主要是空调、制冷系统.对此,在系统的送、回风机与风管的接口处配置了室式(迷路式)和阻抗复合式消声器,在进人馆内时又追加了 ZK^[2]型阻性消声器.为了控制系统的低频噪声,在系统的立管内(即馆端部的塔楼内)砌置了共振频率 f₀ 为 125—250Hz 的 共振 吸声砖^[3].

为了防止气流噪声的干扰。管内流速控制 在如下标准范围内:

综合馆:

主风道: <7.5m/s;

支风道: <6.0m/s;

馆内出风口: <4.0m/s.

应用声学

游泳馆:

主风道: <9.0m/s;

支风道: <7.0m/s:

馆内出风口: <5.0m/s。

此外,馆内所有空调、制冷设备均作了隔 振基础,以防止固体声的传递。

三、声学监测和评价

体育中心综合馆和游泳馆在竣工后都进行 了声学测定,其结果表明,除游泳馆混响时间偏 长外,其它声学指标都达到了设计要求.

游泳馆混响时间未能达到预期的要求,其原因在于:顶部土工布厚度不符合设计要求; 池边地面透空橡胶地毯没有铺设。对此,采取了如下追加吸声处理:

- * 观众席两侧窗前设 240m² 窗帘, 距玻璃 200mm;
 - * 在主席台、贵宾席铺设 230m² 化纤地毯;
 - * 在马道下增设 180m² 土工布;
- * 人字形网架顶部追加 500m² 开缝铝板吸 声结构. (该项处理在亚运会前未能实施).

经处理后。馆内中频混响时间,达到了设计要求。各项测定结果见表 7 所示。

对两个馆的评价是通过近期的比赛,对观 众和运动员的调查为依据的, 对综合馆的评价 比较一致: 普遍反映、语言清晰度高,即使在空 场情况下,清晰度就很高,馆内噪声低,没有音 质缺陷;对游泳馆的评价反映不一:有少数观 众反映比赛时,背景噪声低、清晰度较高、无音 质缺陷;但多数观众和工作人员反映,馆内清晰 度不如综合馆、且馆内各部位有明显差异:主席 台、记者席和针对扬声器组的观众席清晰度高、 两组声柱间稍差,场地较差。分析其原因是空 场混响时间长、观众席声柱不够密集,以及水池 上面的扬声器组与水面多次声反射所引起的, 满场时, 定能有明显的改善, 实践证明: 亚运 会正式比赛使用时,当场内约 4000 名听众时, 清晰度很高,得到了好评。在如此大容积的体 育馆内,能达到预计的声学指标,并获得观众和

谊的名称	Art days	测定内容	频率 (Hz)			
旧 的名称	馆内状况	例是內谷	125	500	2000	
		空场混响时间 (s)	2.40	2.65	2.80	
	全部完工,满场	满场混响时间(s)	1.85	1.61	1,53	
综台馆	按 6400 名听众折算	声场不均匀度 (dB)	±2.0	±2.3	±2.0	
		频率响应(dB)	8.2<	37<40 3.55 2.42 ±2.0 4<00(125-400)	Hz)	
		背景噪声 (dBA)			•	
	全部完工,少部分坐椅未装	空场混响 (s)■	4.28	3,55	3.90	
	全部座椅装完:增设 240㎡ 天	满场混响(s)	3.20	2.42	2.30	
遊泳馆	鹅绒窗帘: 230m ² 化纤 地 毯; —— 马道下铺 180m ² 土工布; 5500 名听众	声场不均匀度 (dB)	±1.1	3.55 2.42 ±2.0 8<10(125 - 4000	±1.5	
	4171 A	频率响应 (dB)	7.8		00Hz)	
		背景噪声 (dBA)		38<46		

表 7 综合馆、游泳馆内各项声学指标测定结果

运动员的好评是设计、施工和各有关部门通力 协作的结果.

四、对大型综合体育馆、游泳馆 声学设计的几点建议

通过体育中心综合馆、游泳馆的声学设计, 以及对国内体育馆的声学调查,对今后体育馆 的声学设计提出如下几点建议:

- 1. 目前大型综合体育馆的混响时间设计指标偏高,以体育中心综合馆为例,空场中频(500 Hz) 混响时间为 2.65s, 语言清晰度很高,广州天河中心体育馆、深圳体育馆、首都体育馆和上海体育馆也有同样状况,可见设计当初确定为 1.6s 标准偏高。造成投资上的浪费。建议今后大型综合馆的中频混响时间控制在 2.0s 以下,完全可以满足多功能使用要求;
- 2. 大型体育馆满场混响时间测量 困难 很大,原因在于观众满场的情况极少,即使有可能,则测量的组织工作和观众的噪声难以控制。

因此,建议今后以空场实测混响时间,用听众吸 声增量进行折算⁽⁴⁾;

- 3. 提高馆内语言清晰度,主要应立足于扩声系统的设计和合理配置,降低混响时间处于从属地位。因为完全依靠降低混响达到提高清晰度的目的,在大型体育馆内投资太大。体育中心体育馆仅馆内吸声处理耗资 140 万;
- 4. 大型体育馆的声学设计,建声与扩声设计应独家承包,有利于协调工作,节约投资,获得良好的效果,同时也减少扯皮;
- 5. 游泳馆的中频(500Hz)混响时间可控制在 2.5—3.0s 范围内。由于用途单一(游泳和跳水比赛),语言清晰主要是报成绩和人名,完全可以通过分散式扩声系统获得满意的效果。

参考文献

- [1] 中国建筑学研究院主编,建筑声学设计手册,中国建筑工业出版社 1987, 637-641。
- [2] 项端折编著,空调制冷设备的消产与隔振,中国建筑工业出版社1990. 23-24,58-65.
- [3] 项端祈、陈金京,噪声与振动控制 2(1990)、18-20、
- [4] 项端折、王峥;声学技术,7-2(1988)。44-46、