性的变化。可见地球化学分带及各带内元素的聚散,无疑是反映了一定的气候条件,即冷暖交替变化。上述10个段大体与地层对比剖面的10个组相吻合。

除微量元素外,河北平原第四纪沉积物中各种氧化物和有关比值 (Fe₂O₃、MnO、CaO/MgO、Fe₂O₃/FeO) 的变 化,与沉积时的古气候也有良好的对应关系。第三纪地层中各种氧化物偏高,第四纪以来按其氧化物含量的高低值,从下至上可划分为10段。剖面上氧化物含量的变化,也基本与地层划分的10组相当,与微量元素聚散分布的10段也同步。

河北阳原一蔚县盆地的泥河湾层,是我国下更新统河湖相的标准地层之一。根据微量元素P、Ti、Mn、Sr、Ba、Cr、Zr、Zn、Cu、V、Co、Ni、Pb、Sc、B等的分析,用多元统计方法将泥河湾层划分为5个元素聚集带,与岩石地层、生物地层、磁性地层分析等方法所得的地层界线,基本吻合,或大致接近。

近年来,湖泊沉积地球化学的研究,在 讨论古气候、古环境方而发挥了作用。柴达 木盆地的察尔汉湖,以盐类沉积物为主,形 贵州威宁的草海是云贵高原东部最大的 淡水湖泊。郑洪汉、林树基等用各种方法, 对草海沉积物进行了全面系统研究,其中包 括化学成分。根据微量元素对地层划分的结 果,与孢粉资料所显示的气候状况对比,发 现R(富集系数,单个样品含量/全孔平均 值)平均值大于1的层段多与温湿阶段相对 应,R平均值小于1的层段多与干凉阶段相 对应。

中国盐湖概况

陈克莲

(中国科学院青海盐湖研究所)

我国是世界上盐湖众多的国家之一。据初步统计,约有1000多个,盐类矿物52种,其中碳酸盐矿物14种,硼酸盐矿物14种,硫酸盐矿物19种,氯化物7矿物种。

我国的盐湖主要分布于西藏、青海、新

疆、内蒙,另甘肃、黑龙江及山西等省区也有少量盐湖。它们的分布高程,具有多层次的特征,并多发育在新构造运动很活跃的地区。例如藏北(羌塘高原)的盐湖海拔高度4000—5000m,青海为2700—3200m,内蒙

500—800m;新疆为200—500m,吐鲁 蕃盆 地的艾丁湖低于海面155m。它们分布的界 限大致在冈底斯山、秦岭、吕梁山及兴安岭 以北的广大地区,介于北纬32°—46°。

盐湖常与戈壁、沙漠和黄土孪生,其分布严格地受干旱-半干旱气候带的制约。在这些地区,年降水量均远小于年蒸发量。如敷北年蒸发量/年降水量为10—40,青海为70—120,内蒙15—16,新疆25—450。总的来说,年蒸发量是年降水量的数十至一百余倍。

由于地质地球化学的背景不同, 盐湖水 化学类型也因地而异。大致可分为碳酸盐型

(内蒙及羌塘高原南部为主)、硫酸盐型(新疆及羌塘高原北部为主)及氯化物型(青海柴达木盆地为主)三个带。按各湖区的矿产种类划分,则青藏高原以富硼、锂为特色,柴达木盆地的钾、镁资源也十分富绕;内蒙则以天然碱著称;新疆以芒硝占优势。石盐、石膏等,作为盐湖最常见矿物,很多盐湖都相当丰富。应该指出,湖水及赋存于含盐系中的地下水(晶间卤水),都是重要的盐湖资源,特别是青藏高原盐湖中B、Li、Rb、Cs等的富集程度,是世界盐湖中所罕见的(表1)。

表 1 青藏 高 原 盐 湖 卤 水 化 学 组 分 含 鹭

含量 (mg/l) 地区		Na	K	Ca	Mg	Cı	SO4	нсо	o _s -Co	B B
海 洋 水	平均值	10500	380	400	1350	19000	2967	140	140	4.6
柴达木盆地 盐湖卤水	最大值	108200	14610	51860	94420	365080	37440	470	1480	1325.8
	最小值	270	20	140	2110	124360	20	120	130	6.2
	平均值	65688	4706	6687	28397	195338	15255	336	498	301
为海洋水的倍数		6.3	12.4	16.7	21	10.3	5.1	2.4	3.6	65.4
藏北高原 盐湖 貞 水	最大值	124387	21210	1156 2	20095	188887	90610	4267	6653	1439.2
	最小值	16985	768	0.0	5.1	3219	2332	0.0	0.0	31.7
	平均值	61607	6640	58.7	4658	92290	27950	948	1192	154.8
为海洋水的倍数		5.9	17.5	0.4	3.5	4.9	9.4	6.8	8.5	117.8
含量 (mg/l)	地区	Li	Br	I	R	ь С	s	U !	Th	F
海洋水	平均值	0.17	65	0.06	0.1	2 0.0	0025 0	.0030	.00005	1.3
柴达木盆地 盐湖卤水	最大值	254	132.72	5.48	30	0.	18 0	.147	0.51	
	最小值	2.2	0.75	0.18	0.5	7 0.0) 0	.005	0.0	
	平均	102.9	30.09	1.06	10.8	0.0	34 0	.07	0.23	
为海洋水的倍数		605	0.5	17.7	90	68	23		4600	
おいさに										
小 宣后	最大值	2900	242	0.6	23.1	3 18.	3 1	.5 0	0.072	441.85
藏北高原	最大值 最小值	2900	0.3		$\begin{array}{c c} 23.1 \\ \hline 07, 0.2 \end{array}$				0.072	10.67
藏北高原 盐湖卤水		0.0			07 0.2	0 0.	0 0	.0 (0.0	

盐湖是内陆湖泊演化末期的产物,所以也称它为末期湖。良好的封闭盆地和补给水量小于它的蒸发量,即干旱-半干旱的气候环境,是盐湖形成的必要条件。在盐湖的发展历程中,往往由于所处地质背景的不同和气候波动的影响,形成不同种类的蒸发岩与非蒸发岩(碎屑沉积)互层的克蒸发岩与非蒸发岩(碎屑沉积)互层的短深积物——含盐系。因而,研究含盐系的沉积特征、矿物组合、地球化学、稳定同位素地球化学、年代学及孢粉学等,可重建或恢复盐湖区的古气候变化。

中国现代盐湖出现的时间不尽相同,有

早晚之别。据初步统计,藏北的班戈湖及扎仓茶卡11°C年龄约16000—15000年,柴达木盆地察尔汉盐湖约24000年,内蒙的察干诺尔约16000年,新疆玛纳斯湖约5000年。当然,上述几个年龄数据,不能代表中国盐湖形成的年代,从我们所考察过的盐湖来看,我国绝大多数盐湖主要出现于晚更新世晚期,尤其是距今约16000—15000年的玉木(大理)冰期晚期,是我国一次普遍而重要的成盐期。它与该时期中国最低海面(比现在低155m)相对应,与干冷气候环境有密切关系。

中国北方近一万年来 环境变化的若干地质证据

郑洪汉

(中国科学院地球化学研究所)

距今18000年前的晚冰期,中国北方许多地质剖面都保存有寒冷的地质记录,其主要事实是,一些堆积物出现冻融卷曲,其间含有寒冷属种的生物化石和孢子花粉。寒冷气候条件下出现的卷曲层,在内蒙萨拉乌苏,宁夏灵武水洞沟和甘肃环县楼房子等剖面都可以看到,其影响深度常在1m左右。晚冰期之后,气候转暖,地质历史进入全新世时期。

近1万年来中国北方的 环 境 是 有 变 化 的,这在物侯学、孢粉学和年代学的研究中已获得不少有效的依据。在地层中保存下来的全新世不同阶段的温度、湿度 和 植 被 变 化的地质证据也是丰富的,近年研究取得的

重要证据如下:

1.萨拉乌苏剖面的孢子花粉: 内蒙乌审旗萨拉乌苏剖面已做了许多地层学和古生物学研究。大量事实说明,它是晚更新世以来的一套基本连续的河湖归堆积。剖面顶部有4m厚的全新世堆积。全新世堆积层可分上、下部,下部是含大量软体介壳的灰黑、灰绿色沼泽淤泥,上部是黄土状土堆积。剖面覆有现代沙丘。黎兴国曾测得下部沼泽淤泥上、中、下的¹⁴C年龄分别为 2300±90、5070±70和9510±110 (年)。

从地层结构及孢粉的分析研究结果可以 得出如下认识: (1) 距今10,000—5,000 年,植被度由老及新逐渐增加,至距今5,000