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   Abstract—With  the  maturation  of  autonomous  driving  tech-
nology,  the  use  of  autonomous  vehicles  in  a  socially  acceptable
manner has become a growing demand of the public. Human-like
autonomous  driving  is  expected  due  to  the  impact  of  the  differ-
ences between autonomous vehicles and human drivers on safety.
Although  human-like  decision-making  has  become  a  research
hotspot,  a unified theory has not yet been formed, and there are
significant differences in the implementation and performance of
existing methods. This paper provides a comprehensive overview
of human-like decision-making for autonomous vehicles. The fol-
lowing  issues  are  discussed:  1)  The  intelligence  level  of  most
autonomous  driving  decision-making  algorithms;  2)  The  driving
datasets  and  simulation  platforms  for  testing  and  verifying
human-like  decision-making;  3)  The  evaluation  metrics  of
human-likeness; personalized driving; the application of decision-
making  in  real  traffic  scenarios;  and  4)  The  potential  research
direction of human-like driving. These research results are signif-
icant  for  creating  interpretable  human-like  driving  models  and
applying  them  in  dynamic  traffic  scenarios.  In  the  future,  the
combination of intuitive logical reasoning and hierarchical struc-
ture will be an important topic for further research. It is expected
to meet the needs of human-like driving.
    Index Terms—Autonomous vehicles, decision-making, driving beha-
vior, human-like driving.
  

I.  Introduction

W ITH  the  development  of  artificial  intelligence,  auton-
omous  driving  has  a  significant  influence  on  human

lifestyle and travel modes. It brings about a revolution in intel-
ligent transportation [1]. Researchers are no longer limited to
low-level autonomous driving assistance systems (ADAS) and
have begun to explore the realization of Level 4 and Level 5
autonomous  driving  as  defined  by  the  society  of  automotive

engineers  (SAE)  [2].  This  means  that  the  running  process  of
autonomous  vehicles  will  be  completely  independent  of
human drivers.

While there are already mature solutions available for sim-
ple  driving  scenarios,  autonomous  driving  applications  must
inevitably face the challenge of dynamic and complex scenar-
ios.  Unexpected events  such as sudden acceleration or  decel-
eration of other vehicles,  pedestrians crossing the street,  sud-
den  weather  changes,  and  vehicle  malfunctions  leading  to
road congestion, can occur. Given the unpredictability of these
situations,  the  autonomous  driving  system  must  be  able  to
make appropriate judgments and decisions. It is necessary for
autonomous  vehicles  to  approach  or  even  exceed  the  perfor-
mance of human drivers.

Human-like  decision-making  is  a  key  concept  in  auton-
omous driving technology. It enables autonomous driving sys-
tems  to  make  correct  judgments  and  decisions  in  complex
traffic  environments.  Achieving  human-like  decision-making
requires  dealing  with  various  uncertain  factors  in  dynamic
traffic scenes, meeting the needs of passengers and other road
users, and ensuring efficiency and safety.

Autonomous  vehicles  with  human-like  characteristics  have
the  potential  to  outperform human  drivers  due  to  their  faster
reaction times,  highly accurate decision-making abilities,  and
greater  adaptability.  The  high-performance  computing  unit
can  process  vast  amounts  of  data  and  make  real-time  deci-
sions based on it, reducing the impact of human error. What is
more,  autonomous  vehicles  have  the  ability  to  continuously
learn and enhance their performance. As time progresses, they
will surpass human drivers in terms of performance, leading to
improved efficiency and safety on the road.

Although  there  are  differences  in  implementation,  resea-
rchers have reached a consensus on the advantages of human-
like  driving.  The  specific  advantages  of  human-like  driving
strategies can be summarized as follows: 1) to help drivers of
surrounding  vehicles  predict  the  behavior  of  autonomous
vehicles based on existing experience, thus improving overall
driving  safety;  2)  to  improve  the  performance  of  the  human-
machine  cooperative  driving  system,  because  if  autonomous
vehicles  make  decisions  in  a  predictable  way,  other  human
drivers will be easier to manipulate; and 3) to personalize the
driving  style  of  autonomous  vehicles  to  provide  services  for
different types of passengers and vehicles.

Implementing human-like decision-making requires signifi-
cant  algorithmic  and  technical  support.  For  example,  imita-
tion  learning  can  extract  driving  experience,  reinforcement
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learning  algorithms  can  formulate  optimal  driving  strategies,
and Bayesian networks can handle uncertain factors. It is also
necessary  to  consider  multiple  factors,  such  as  road  safety,
passenger needs, and road user expectations, to ensure that the
decisions  made  by  the  autonomous  driving  system  are  safe,
efficient, and reasonable.

In  order  to  explore  how  to  develop  decision-making  algo-
rithms  to  meet  public  needs,  researchers  from  different  aca-
demic  backgrounds  study  human-like  driving  from  different
perspectives  [3]–[5].  However,  these  efforts  have  not  yet
formed a unified theoretical framework. The decision-making
ability  of  some  early  autonomous  driving  systems  can  only
support  the  completion  of  simple  driving  tasks  [6],  [7].  It  is
easy to make mistakes in complex and dynamic traffic scenar-
ios,  which  is  far  from human  capabilities.  With  the  develop-
ment of artificial neural network technology and the improve-
ment  of  computing  power,  the  study  of  learning-based  deci-
sion-making  has  gradually  increased.  Learning-based
approaches  are  outcome-oriented  by  using  large  amounts  of
instructional  data  or  environmental  interactions  to  train  mod-
els, and they can reach the level of human drivers in terms of
results  and  guide  the  vehicle  to  complete  driving  tasks  [8].
However,  current  learning-based  methods  have  some  com-
mon problems,  such  as  poor  interpretation.  When  faced  with
complex  scenarios,  even  the  best  current  system  will  make
mistakes,  such  as  being  unable  to  avoid  obstacles  or  even
cause serious traffic accidents.

Therefore, it is necessary to build a system with both perfor-
mance  and  mechanism  in  one  framework  that  combines  rea-
soning and learning. First of all, the concept of human drivers’
driving behavior should be established, and the driving inten-
tions  of  oneself  and  surrounding  vehicles  should  be  under-
stood.  Then  autonomous  vehicles  should  have  driving  styles
and characteristics that can be adjusted as needed.

To promote research of human-like driving, many other fac-
tors should be considered in addition to the method itself, such
as the design of driving simulators, driving datasets, and eval-
uation metrics. Due to the danger of unmanned testing in real
traffic scenarios, driving simulation and the collection of driv-
ing datasets are essential for high-level decision-making meth-
ods. High-quality driving datasets and driving simulations are
required to ensure the usability of algorithms in real scenarios.
Hence it is necessary to summarize key elements and provide
some help for the research in related fields.

This paper focuses on the above aspects of human-like deci-
sion-making.  Some  key  questions  are  raised  to  help  readers
fully understand the current research. In particular, the follow-
ing  issues  are  discussed  in  detail:  1)  the  intelligence  level  of
decision-making algorithms for autonomous driving and their
imitation of human drivers; 2) the elements required for driv-
ing  datasets,  simulation  platforms,  and  testing  scenarios  to
verify human-like decision-making;  3)  the evaluation metrics
of  human  likeness,  personalized  driving,  and  the  application
of  decision-making  algorithms  in  real  traffic  scenarios;  and
4) the potential research topics of human-like driving systems.
In fact, each type of existing decision-making algorithm has a
certain  degree  of  human-likeness  in  mechanism  or  perfor-

mance, but it cannot completely reproduce the driving style of
human drivers. Although the designs of existing driving simu-
lators,  driving  datasets,  and  evaluation  indicators  are  rela-
tively  complete,  a  unified  specification  has  not  yet  been
formed.  Driving  simulations  should  collect  driving  data  of
autonomous  vehicles  in  a  virtual  traffic  environment  to  train
decision-making  algorithms  and  compare  autonomous  vehi-
cles with humans in a risk-free environment. In the future, the
application  of  artificial  intelligence  will  result  in  break-
throughs in  the  decision-making of  autonomous driving.  It  is
expected  that  the  hierarchical  structure  combined  with  intu-
itive-logical reasoning can meet the needs of human-like driv-
ing.

This paper is organized as follows. The background and the
basic  knowledge  of  human-like  decision-making  are  intro-
duced in Section II,  while existing work on the decisionmak-
ing  of  autonomous  vehicles  is  reviewed  and  the  challenges
faced by current decision-making algorithms are discussed in
Section III.  The development  of  driving datasets  and simula-
tors is  presented in Section IV, and related topics on human-
like  decision-making  are  discussed  in  Section  V.  Finally,
some  potential  future  research  directions  are  considered  in
Section VI.  

II.  Background
  

A.  Driving Behavior and Human-Like Driving
Human  driving  decisions  are  affected  by  many  factors

including  knowledge,  experience,  personality,  cultural  back-
ground, and environmental factors. Some of these factors con-
tribute  to  the  safety  of  autonomous  driving  systems,  while
other  factors  such  as  emotional  disorders  may  lead  to  nega-
tive outcomes. It was pointed out that professional knowledge
and  driving  experience  can  effectively  reduce  driving  viola-
tions  [9],  [10],  which  is  an  important  guide.  The  impact  of
driving risk on driving behavior should also be considered. If
algorithms can simulate the human perception of driving risk
in a real environment, it will be of great significance for build-
ing an intelligent human-like driving system.

The  similarity  between  artificial  intelligence  systems  and
humans  is  a  research  hotspot.  As  artificial  intelligence  beco-
mes increasingly important in areas focused on humans, there
is a growing understanding that  both reasoning and emotions
must  be  considered.  Even  social  responsibility  is  something
that AI systems need to possess [11]. Although there are some
debates  about  whether  autonomous driving strategies  need to
be consistent with that of human beings, the potential  advan-
tages of human-like strategies cannot be ignored, such as com-
fort  and  driving  safety.  Therefore,  researchers  study  human-
like  intelligence,  such as  hybrid  augmented intelligence [12],
which introduces human roles or cognitive models into intelli-
gent  systems.  This  is  a  feasible  and  important  growth  model
of artificial intelligence, which provides further inspiration for
the design of human-like decision-making systems [13].  

B.  Cognitive Architecture Models
Cognitive  science  is  the  theoretical  basis  for  the  develop-

ment  of  human-like  driving  decision-making  systems,  and  it
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has important guiding significance. Since most readers of this
paper are developers of autonomous driving systems and may
not  be  familiar  with  cognitive  science,  some  basic  concepts
and existing research progress are provided herein.

The  cognitive  architecture  model  demonstrates  and  simu-
lates  the  functions  of  human brains,  rather  than  their  physics
and  structure.  For  current  research  on  automatic  driving,
understanding the cognitive architecture model is more impor-
tant  than  understanding  the  physiological  model  of  human
brains.  The  related  research  can  be  divided  into  symbolist,
connectionism  architecture,  and  hybrid  architecture,  among
which the representative examples are Soar [15], adaptive res-
onance theory (ART) [16], and the adaptive characteristics of
thought-rational  (ACT-R)  [4].  In  particular,  ACT-R  specifi-
cally points out that the human cognitive process requires the
participation  of  four  different  modules:  goal,  vision,  action,
and  commonly  used  descriptive  knowledge  modules.  Many
models describing driving behavior are based on ACT-R [17],
[18].

Due  to  the  complexity  of  cognitive  processes,  there  is  no
single  cognitive  framework  that  can  explain  them  all.  How-
ever,  some  researchers  have  suggested  that  a  general  cogni-
tive architecture model should include perception, movement,
working  memory,  descriptive  memory,  and  long-term  mem-
ory [19]. This is an important reference for establishing a gen-
eral  cognitive  architecture  model.  Furthermore,  cognitive
architecture models can be combined with other physiological
models  to  expand  their  applicability  and  coverage  [20].  In
addition to the basic elements of cognitive architecture such as
memory, perception, and execution modules, a complete cog-
nitive  framework  should  include  long-term memory  modules
for  storing prior  knowledge and a  target  module  for  process-
ing goal-oriented driving tasks.

In order to simulate parallel  activities  more effectively,  the
queuing  network-model  human  processor  (QN-MHP)  was
adopted [21], [22]. In fact, the QN-MHP integrates two com-
plementary  methods:  the  queuing  network  method  and  the
symbolic  method  (taking  ACT-R  as  an  example).  Therefore,
the  QN-MHP  provides  a  framework  for  modeling  and  real-
time  generation  of  concurrent  activities.  Such  a  model  can
intuitively  reflect  the  ability  of  the  human  cognitive  system,
but each subunit of the system needs to be carefully designed.  

C.  Dynamic Traffic Scenarios
Dynamic  traffic  environments  contain  various  factors  of

uncertainty that can impact the operation and efficiency of the

entire transportation system. Here are some examples:
1)  Vehicle  speed  and  direction  are  unpredictable.  Some

vehicles  may  be  speeding,  while  others  may  be  traveling
slowly.  This  uncertainty  can  lead  to  traffic  congestion  and
accidents.

2) The position and movement direction of pedestrians and
other  obstacles  are  also  uncertain.  Pedestrians  may  suddenly
run  onto  the  road  or  cross  the  road.  Other  obstacles,  such  as
bicycles  or  motorcycles,  may  also  appear  on  the  road.  This
uncertainty can lead to traffic accidents.

3)  Weather  and  road  conditions  also  influence  traffic.  For
instance,  on  rainy  days,  the  road  surface  becomes  slippery,
making  it  harder  for  vehicles  to  travel.  This  uncertainty  can
cause traffic congestion and accidents.

4) Vehicle breakdowns or stops are also uncertainties. Vehi-
cles  may  suddenly  malfunction  or  stop  on  the  road,  waiting
for repairs. This uncertainty can lead to traffic congestion and
jams.

Therefore,  it  is  crucial  to  understand  and  consider  these
uncertainties  to  ensure  efficient  operation  and  safety  of  the
transportation system. The layered models are widely used to
classify different  information into different  layers to describe
dynamic traffic scenarios in autonomous driving applications.
A  typical  layered  model  includes  the  following  five  layers
[23]:

Layer 1: Road-Level (road structure).
Layer 2: Traffic Infrastructure (traffic lights, etc.).
Layer  3: Temporary  manipulation  of  Layers  1  and  2  (road

maintenance, temporary closure).
Layer 4: Objects (dynamic vehicles and pedestrians).
Layer 5: Environment (weather, etc.).
The  first  two  layers  (i.e.,  Layers  1  and  2)  describe  static

information,  while  the  last  three  layers  (i.e.,  Layers  3–5)
describe  dynamic  information.  As  shown  in Fig. 1,  the  latest
traffic scenario model of the PEGASUS project [14] includes
a  digital  communication  layer  in  addition  to  the  traditional
model.  This  layer  describes  the  information  that  relies  on
communication  technologies  such  as  vehicle  to  everything
(V2X) and high definition (HD) maps. There are a large num-
ber of traffic participants whose behavior will affect the safety
of vehicles in the dynamic traffic scenario. In addition, tempo-
rary operations and complex environmental conditions should
be  considered.  Therefore,  it  is  necessary  to  thoroughly  test
representative  scenario  types  or  instances  and  pay  special
attention to the performance of algorithms in boundary scenar-
ios and hazards [24].  
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Fig. 1.     Multi-layered model of a dynamic traffic scenario proposed by the PEGASUS project [14].
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III.  Human-Likeness of Existing Decision-Making
Methods

Traditional decision-making methods for autonomous vehi-
cles can be classified as either logic-based or statistics-based.
Decisions defined by logical and statistical models are consid-
ered “rational”.  In  recent  years,  the  application  of  artificial
intelligence  technology  has  allowed  autonomous  vehicles  to
break  through  these  categories.  Algorithms  such  as  imitation
learning  and  reinforcement  learning  can  be  used  to  directly
learn  driving  strategies  from  driving  data  or  environmental
interactions.  This  section  provides  a  comprehensive  analysis
of  traditional  and  artificial  intelligence-based  decision-mak-
ing  methods,  including  their  design  and  performance  levels,
which are compared to humans.  

A.  Logic Based Methods
1)  Finite  State  Machine: The  finite  state  machine  (FSM)

comprises  a  set  of  states  and transition relationships  between
each state, where the internal rules between each state are exe-
cuted  through  conditional  judgments.  The  structure  of  the
FSM  is  divided  into  three  types:  series,  parallel,  and  hybrid.
Among them, the hybrid structure is the most widely used in
the decision-making of autonomous driving. As shown in Fig. 2,
the final decision result  is calculated through state estimation
and  target  selection  in  the  hybrid  structure  of  the  FSM.  The
results of different submodules can be arbitrated according to
priority,  which  combines  all  aspects  of  risk  theory  to  model
human-like driving. In most cases, the hybrid structure of the
FSM has satisfactory performance, but it  is  still  not a perfect
solution.  For  the  rule  base,  it  is  a  major  challenge  to  fully
cover  all  potential  situations  that  may occur  in  complex traf-
fic  scenarios.  If  the  status  enters  an  area  not  covered  by  the
rule base,  the vehicle can no longer be guaranteed to operate
safely.
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Fig. 2.     Example of decision-making based on a finite state machine.
 

2) Fuzzy Reasoning: Fuzzy reasoning refers to the imitation
of  human  thinking.  It  can  effectively  express  qualitative  and
empirical  information  that  has  unclear  boundaries.  The  deci-

sion-making system based on fuzzy reasoning has been widely
used in the fields of medicine [25], agriculture [26], and social
services [27]. Fuzzy logic provides a higher level of explana-
tion  for  decision-making  [28].  It  realizes  flexible  rule  design
and can better  adapt  to a fuzzy traffic environment [29].  The
main challenge of fuzzy reasoning is the lack of logical trace-
ability  and  the  inability  to  accurately  determine  the  state  of
vehicles based on their behavior. Combining fuzzy logic with
other  complementary  algorithms  can  improve  the  perfor-
mance of the decision-making system.  

B.  Statistical-Based Methods
1) Bayesian Network: As for data processing, the Bayesian

network  is  good  at  classifying  the  probability  of  events  and
analyzing the reliability of events.  The Bayesian network not
only  uses  the  probability  description  of  the  time-space  rela-
tionship  between  vehicles  but  also  incorporates  the  uncer-
tainty  of  input  data  into  the  threat  assessment  of  vehicles.  It
can  efficiently  represent  uncertain  events,  such  as  estimating
the probability of a vehicle collision [30]–[32].

Bayesian  network-based  methods  offer  advantages  in  deal-
ing with uncertainty, which can improve the performance and
reliability of autonomous driving systems. However, in practi-
cal  applications,  the  computational  cost  of  this  algorithm  is
typically  high,  leading  to  long  computation  times.  Addition-
ally, the complexity of the algorithm also increases due to the
need to balance multiple uncertain factors.

2)  Markov  Decision  Process: Markov  decision  process
(MDP)  provides  a  framework  for  modeling  decisions  with
partially random and partially controlled outcomes. In particu-
lar,  partially  observable  MDP  (POMDP)  introduces  percep-
tion  uncertainty  because  driver  intentions  cannot  be  directly
measured [33]. It has been found that POMDP is suitable for
autonomous  driving  to  make  real-time  decisions  [34],  [35].
However, obtaining a general solution to a specific problem is
difficult with the original POMDP. Therefore, the multipolicy
decision-making  (MPDM)  method  has  received  extensive
attention [36], [37].  

C.  Artificial Intelligence Methods
1) Game Theory Based Methods: Game theory describes the

process of  interaction in information structures.  Compared to
other  methods,  game  theory  emphasizes  the  interaction
between  drivers  and  more  accurately  reflects  their  driving
behavior  [38],  [39].  Some researchers  believe  that  the  poten-
tial of game theory is underestimated [40]. With the develop-
ment of sensor perception and dataset simulation, more accu-
rate traffic participant intentions can be gradually obtained to
achieve a complete game, and it is easy to combine with other
lane-changing models. In fact, the core of game theory is util-
ity.  The  application  of  game  theory  in  lane  changing  was
reviewed  in  [40],  based  on  the  difference  between  the  utility
revenue function and the convergence strategy.

Compared  to  traditional  decision-making  methods,  game
theory  makes  more  reasonable  choices  by  considering  the
interaction between autonomous vehicles and the surrounding
environment. Therefore, decision-making based on game the-
ory has research potential.
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π∗

2)  Reinforcement  Learning: Reinforcement  learning  opti-
mizes  sequential  driving  strategies  through  feedback  evalua-
tion  while  interacting  with  the  environment.  The  basic  rein-
forcement learning is modeled as MDP [41], where the goal is
to find the optimal strategy , which can achieve the highest
discount  reward  expectation  after  the  implementation  of  the
strategy as follows:
 

π∗ = argmax
π
Eπ

H−1∑
k=0

γkrk+1|s0 = s

 . (1)

Model-free methods, such as deep Q-networks (DQN) [42]
and  depth  deterministic  strategy  gradient  (DDPG)  [43],  are
applied to generate advanced driving strategies without learn-
ing the dynamic model  of  the environment  [44],  [45].  Mean-
while,  model-based  methods  make  decisions  by  learning  the
dynamic  model  of  the  environment,  thus  reducing  the  time
and cost required for actual interaction in the learning process
[46]. Additionally, reinforcement learning can integrate recur-
rent  neural  networks  to  consider  the  POMDP  for  decision-
making,  making  it  more  suitable  for  uncertain  driving  envi-
ronments [47]. All of these works have effectively completed
decision-making tasks under specific traffic scenarios.

Indeed,  reinforcement learning is  a  powerful  technology of
artificial  intelligence,  but  some  problems  must  be  discussed
and resolved. First, the maximization of the reward function is
usually  different  in  different  environmental  definitions.  Only
carefully constructed rewards can be used for training human-
like  intelligence  [48].  In  addition,  it  is  quite  difficult  to
improve  the  learning  efficiency  of  reinforcement  learning.
Although  the  learning  efficiency  can  be  improved  to  some
extent  by  adopting  the  exploration  strategy,  it  is  still  neces-
sary  to  develop  more  efficient  reinforcement  learning  algo-
rithms.

In  real-world  applications,  there  is  no  doubt  that  auto-
nomous vehicles must be absolutely accurate, which conflicts
with  the “trial  and  error” approach  used  in  the  training  pro-
cess.  To  deal  with  extreme  scenarios  in  the  real  world  and
ensure  driving  safety,  a  complex  architecture  with  safety
mechanisms should be adopted.

(s,a)
πθ(s)
π∗(s)

3) Imitation Learning: The purpose of imitation learning is
to  learn  expected  behavior  and  perform  tasks  through  expert
data.  By assuming that  the  best  action is  given by the  expert
dataset D consisting of the state-action pair , the strategy

 is trained to be as close as possible to the expert strategy
 by

 

argmin
θ

Es∼P(s|θ)L(π∗(s),πθ(s)) (2)

P(s|θ) πθ
L

where  is the state distribution of the trained strategy ,
and  is the loss function.

Behavior  cloning  treats  the  task  of  imitation  learning  as
supervised learning. Fig. 3 depicts a convolutional neural net-
work  (CNN)-based “end-to-end” decision-making  model
designed by NVIDIA [49]. Research shows that the deep neu-
ral network can learn and obtain intermediate features that are
meaningful for vehicle decision-making while ignoring a large
amount  of  redundant  information.  Based  on  NVIDIA  and
other works [50],  a  full  convolutional  network with long and

short-term  memory  (FCN-LSTM)  was  used  to  create  a  gen-
eral  model.  The  FCN-LSTM  network  extracts  the  temporal
and spatial features of images and considers the semantics of
visual features and their related time series to obtain decisions
similar  to  human  driver  decisions.  Then,  based  on  the  tradi-
tional  imitation  learning  framework,  Intel  proposed  condi-
tional  imitation  learning  to  complete  the  internal “expert
intention” modeling  (including  planning  objectives,  inten-
tions,  and  prior  knowledge)  [51].  In  Intel’s  model,  environ-
ment  images  and  state  observations  during  training  are  used,
and  the “expert  intention” is  introduced  as  a  control  input.
Therefore,  driving  behavior  can  be  separated  from  specific
tasks,  and  the  response  to  driving  commands  can  handle  the
uncertainty of observed behavior.

Inverse reinforcement learning is  an “indirect” method that
first  learns  the “intention” of  human  drivers  through  demon-
stration,  and  then  generates  a  strategy  based  on  the  learned
hidden  goals.  Compared  with  behavior  cloning,  the  middle
layer of inverse reinforcement learning can be designed to sig-
nificantly  improve  the  interpretability  of  the  entire  system.
Several studies have been conducted to extract driving habits
from  human  driving  datasets.  When  designing  the  reward
function, ride comfort  [52],  safety [53],  and traffic efficiency
[54] are emphasized. Furthermore, various attempts have been
made  to  build  decision-making  systems,  such  as  generating
cost  maps  and  combining  model  predictive  controllers  for
decision-making [55].

In  particular,  generative  adversarial  imitation  learning
(GAIL) has achieved remarkable results in imitating complex
behaviors in high-dimensional environments [56]. It has veri-
fied its capabilities on the real vehicle dataset [57]. Compared
with  the  behavior  cloning  method,  GAIL  can  effectively
reduce  the  cumulative  error  and  make  the  behavior  more
robust  to  fluctuations  in  the  trajectory,  bringing  it  closer  to
real  behavior.  On this basis,  the algorithm combines parame-
ter  sharing  trust  region  policy  optimization  and  GAIL  (PS-
GAIL), which is more stable and has fewer collisions in long-
term interaction [58]. Considering the insufficient response of
multi-agent  imitation  learning  to  sudden  emergency  driving,
the  customized  reward  further  improves  the  local  interaction
performance  of  agents  and  teaches  them  emergency  avoid-
ance abilities in complex scenarios [59].

In  the  above,  different  decision-making  methods  are
reviewed.  Now,  their  human-likeness  can  be  summarized
from the following aspects, as shown in Table I:
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Fig. 3.     “End-to-end” decision-making  framework  based  on  convolutional
neural networks designed by NVIDIA [49].
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a)  Combination  of  deterministic  and  fuzzy  logic: This  is
related  to  the  human  being’s  ability  to  handle  complex  driv-
ing decisions with limited computing power.

b) Adaptability to unknown environments: In order to accu-
rately  and  comprehensively  understand  its  surrounding  envi-
ronment, autonomous vehicles should have effective decision-
making algorithms to model and process some of the observed
states.

c) Consideration of random factors: The adaptability of ran-
dom factors is of great significance to the safety, intelligence,
and reliability of autonomous driving.

d)  Learning  ability: In  order  to  improve  decision-making
capabilities,  autonomous  vehicles  should  learn  from  expert
data or self-learning in environmental interactions.

As shown in Table I, different methods focus on these four
aspects  respectively.  Various  decision-making  algorithms
have unique advantages and are applicable to different traffic
situations.  For  instance,  FSMs  are  suitable  for  discrete  state
and action spaces, such as lane changing, emergency braking,
and steering. However, they cannot calculate continuous con-
trol  outputs  directly.  Statistical-based methods  are  more  suit-
able for scenarios with a large number of traffic participants in
the environment, where predicting motion patterns is difficult,
such  as  mixed  traffic  of  motorized  and  non-motorized  vehi-
cles.  Learning-based  methods  are  applicable  to  almost  all
decision scenarios, depending on the specific algorithm selec-
tion and the overall design of the decision-making system. In
conclusion,  the  autonomous  driving  decision-making  system
comprises  multiple  algorithms  that  work  in  combination,
rather than a single type of algorithm. Therefore, the combina-

tion  of  different  types  of  models  is  crucial  for  developing
advanced human-like decision-making methods.  

IV.  Datasets and Simulation Platforms

It is of great significance to quantify and evaluate the deci-
sion-making ability of autonomous vehicles. The current eval-
uation of autonomous driving can be divided into three types:
1)  dataset-based  evaluation,  2)  simulation-based  evaluation,
and  3)  real-world-based  evaluation  [1].  Here,  we  review  the
relevant  research on human driving datasets  and autonomous
driving simulation platforms.  

A.  Human Driving Datasets
As more and more decision-making algorithms learn human

driving habits from vehicle driving data, it is necessary to col-
lect  interactive  vehicle  data  from  the  real  world.  Evaluating
the performance of decision-making algorithms by comparing
them with human driving data is also important. Table II lists
the commonly used datasets  for  autonomous driving,  and the
main characteristics of these databases are as follows.

1)  NGSIM  [66]: The “next  generation  simulation” project
(NGSIM)  includes  a  dataset  of  vehicle-road  collaborations.
The  NGSIM  dataset  was  collected  from  various  regions,
including  structured  road  intersections,  high-speed  entrances
and  exits,  and  other  hotspots  of  vehicle-road  cooperation
research.  The  original  video  information  is  used  to  generate
track  data  for  each  vehicle  in  traffic  flow.  Many  human-like
driving  algorithms  have  been  tested  and  validated  on  the
NGSIM dataset [59], [82].

2) HighD [67]: Compared with the dataset  of  NGSIM, the

 

TABLE I 

Comparison of Adaptability of Decision-Making Methods in Practical Application

Method Reference Combination of deterministic
and fuzzy logic

Adaptability to unknown
environments

Consideration of random
factors Learning ability

Finite state machines [60]–[62] + + + +

Fuzzy reasoning [63]–[65] +++ ++ + +

Bayesian network [30]–[32] + ++ +++ +

Markov decision process [34]–[37] + +++ ++ +

Game theory approach [38], [39] ++ ++ ++ ++

Reinforcement learning [44]–[47] + ++ ++ ++

Imitation learning [49]–[51] + + ++ +++

Note: +++: Good performance; ++: Average performance; +: Poor performance.
 

 

TABLE II 

Comparison of Some Representative Human Driving Datasets and Their Characteristics

Dataset Reference Description

NGSIM [66] One of the most popular driving datasets; raw video information; high precision and wide coverage.

HighD [67] Accurate vehicle motions; dynamic urban scenarios are not included.

Lyft [68] Detailed movements for traffic participants.

INTERACTION [69] High-precision semantic maps, data on crisis situations.

HDD [70] Record driving scenes with a long time span and a large spatial range.

Argoverse [71] Provides relatively rich semantic map information.

Commonroad [72] The first driving dataset for planning.

nuPlan [73] The latest release dataset dedicated to ML-mased planning; including benchmarks and simulated traffic scenarios.
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large-scale  naturalistic  vehicle  trajectory  dataset  from  Ger-
man  highways  (HighD)  attempts  to  the  accuracy  of  vehicle
motion information is improved. However, urban scenes con-
taining  intensive  and  highly  interactive  behaviors,  such  as
roundabouts  and  unsignalized  intersections,  are  not  included
in NGSIM and HighD.

3) Lyft [68]: Lyft includes sensing data and prediction data.
It covers the movement logs of cars, cyclists, pedestrians, and
other traffic agents encountered by their autonomous fleets.

4)  INTERACTION  [69]: The  INTERnational,  Adversarial
and Cooperative moTION (INTERACTION) dataset was pro-
posed  for  semantic  mapping  of  interactive  driving  scenarios
with  different  driving  cultures.  It  not  only  focuses  on  the
integrity  of  high-precision  semantic  map  information  and
interactive  entities,  but  also  contains  crisis  data,  which  can
effectively promote research on extreme scenarios.

5)  HDD  [70]: The  Honda  Research  Institute  Driving
Dataset  (HDD) is  a  public  dataset  based on onboard sensors,
recording  driving  scenes  with  a  longer  time  span  and  larger
space range.

6) Argoverse [71]: Argoverse is also a public dataset based
on  onboard  sensors.  It  provides  relatively  rich  semantic  map
information.  However,  due to the limitations of onboard sen-
sors,  the  motion  track  of  surrounding  objects  is  incomplete.
The  inaccuracy  of  other  vehicles’ positions  around  the  envi-
ronment makes it more difficult to confirm the aerial view.

7) Commonroad [72]: Composable benchmarks for motion
planning  on  roads  (CommonRoad)  are  the  first  planning
benchmarks  with  driving  dataset  for  autonomous  driving.  In
CommonRoad, real-world scenarios in the dataset can be eas-
ily  converted  into  simulation  scenarios  to  test  the  perfor-
mance of decision-making algorithms offline.

8) nuPlan [73]: nuPlan is a closed-loop ML-based planning
benchmark. It includes the latest released dataset dedicated to
machine  learning-based  planning  methods.  The  dataset  of
nuPlan can effectively evaluate the performance of long-term
planning  and  provides  a  closed-loop  simulation  framework
and metrics for specific scenarios.

As  described  above,  the  latest  driving  datasets,  such  as
Commonroad [72] and nuPlan [73], already possess the basic

elements for training and evaluating human-like driving deci-
sion-making  methods.  However,  the  data  in  complex  scenar-
ios should be further supplemented and improved, and data on
extreme cases is still insufficient.  

B.  Simulation Platforms
1)  Classic  Driving  Simulators: Simulation  plays  an  impor-

tant role in data collection and experimental verification [83].
Considering  the  risks  involved  in  recording  driving  data  in
certain scenarios, driving simulators should be used to supple-
ment extreme (even crash) data to reduce the security risks of
testing  in  the  real  world.  Therefore,  researchers  have  higher
requirements  for  driving  simulation,  which  promotes  the
development  of  high-fidelity  simulators. Table III lists  the
driving simulations commonly used in autonomous driving.

The  complete  system  for  evaluating  and  testing  decision-
making capabilities based on driving simulators includes mod-
ules for collecting driving data from human drivers,  identify-
ing  driving  behaviors,  and  evaluating  these  behaviors.  In
recent times, researchers have started testing self-driving algo-
rithms in simulations before putting them into practice in the
real world. Different solutions were compared to obtain more
convincing results [84], [85]. Moreover, simulation testing has
been  combined  with  real-world  testing  to  develop  and  vali-
date decision algorithms.

In  practice,  several  necessary  factors  should  be  considered
when building a simulation platform to evaluate and test deci-
sion-making capabilities. These factors include: 1) a dynamic
vehicle  model  that  accurately  reflects  the  kinematics  and
dynamics characteristics of the actual vehicle; 2) various typi-
cal  traffic scenarios;  and 3) tests  conducted with and without
drivers  under  the  same  test  conditions,  as  well  as  driving
behavior evaluation based on vehicle movement. As shown in
Fig. 4,  the  autonomous driving test  simulation system should
be a unified framework that includes offline simulation, real-
time hardware-in-loop simulation, and driving simulators. The
system  not  only  needs  to  analyze  driving  behavior  through
collected  driving  data,  but  also  needs  to  analyze  the  driving
behavior  of  autonomous  vehicles  controlled  by  algorithms,
evaluating their decision-making abilities under the same cri-
teria.

 

TABLE III 

Comparison of Some Representative Autonomous Driving Simulators and Their Characteristics

Simulator Reference Description

TORCS [74]
The open racing car simulator (TORCS) is an open-source racing simulator which is also widely used in verification for
autonomous driving algorithms. However, the functions of TORCS are limited, and the motion characteristics of the simu-
lated vehicle in TORCS are significantly different from those of a real vehicle.

CARLA [75]
Car learning to act (CARLA) is an open-source simulator that provides virtual scenes required to develop autonomous driv-
ing algorithms, including urban layouts, buildings, and vehicles. CARLA supports the free configuration of simulation sce-
narios and onboard sensors and controls both static and dynamic participants.

CarSim [76]
The CAR-following SIMulation model (CarSim) is specifically designed for vehicle dynamics that simulate the response of
a vehicle to its driver, road surface, and aerodynamic input. Due to CarSim’s high-fidelity vehicle dynamics, it is usually
combined with other simulation software to build autonomous driving simulation systems [77].

Gazebo [78]
Gazebo is a built-in simulation software of the robot operating system (ROS) [79], which offers the ability to accurately and
efficiently simulate robots. Since ROS has been widely applied in the development of autonomous driving [80], Gazebo-
based simulators have become increasingly popular.

ADAPS [81]
Autonomous driving via principled simulations (ADAPS) learns autonomous driving strategies from vehicle accidents,
which includes a high-fidelity simulation platform for testing and a simulation platform for accident analysis. This frame-
work provides a more effective online framework for learning that significantly reduces the number of iterations required to
learn autonomous driving strategies.
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2)  Mixed  Reality  Based  Driving  Simulators: Despite  the
interrelationship of virtual simulation, it is necessary to find a
method to provide a more comprehensive and realistic repre-
sentation  of  traffic  scenarios,  in  order  to  convincingly  verify
the  decision-making  algorithms  related  to  autonomous  driv-
ing.  Mixed  reality  (MR)  is  a  combination  of  real  and  virtual
elements,  in  which  physical  and  digital  objects  coexist  and
interact in real-time. It retains the real-world scene restoration
with  security  and  element  diversity.  In  recent  years,  many
MR-based methods have been proposed for autonomous driv-
ing  [86],  and  some  platforms  have  been  developed  to  verify
the decision-making algorithm. Compared to traditional simu-
lators, the results are more convincing.

In addition, virtual reality (VR) technology is used to simu-
late  the  virtual  scene,  where  pedestrians  interact  with
autonomous vehicles. By wearing VR devices, pedestrians can
explore  their  responses  to  autonomous  vehicles  in  different
scenarios [87].  Ride comfort  can also be investigated by col-
lecting information about users’ immersion in VR-based driv-
ing simulations [88].

The main problems of the current MR-based driving simula-
tor are as follows:

a) Consistent with reality: When drivers or pedestrians use
mixed reality equipment, the simulation system needs to pro-
vide sufficient support to display and interpret the scene. This
ensures that the response of the human tester is consistent with
the real-world situation.

b)  Usability: Compared  to  the  combination  of  a  traditional
driving simulator and a large screen display, MR equipment is
more  difficult  to  use.  Many  users  are  not  familiar  with  MR
equipment  and  may  deviate  from  the  real  world  due  to
unskilled operation.

c) Standardization: Most MR-based simulators lack a com-
mon  framework  and  unified  metrics,  which  is  not  conducive
to comparing different works.  

V.  Discussions

The  latest  research  shows  that  current  technology  effec-
tively  solves  decision-making  tasks  for  different  levels  of
autonomous  vehicles.  However,  many  challenges  remain
unresolved.  In  this  section,  we  will  discuss  some  important
issues.  

A.  Personalized Driving
As  one  of  the  important  purposes  of  human-like  driving,

personalized driving deserves further discussion. Driving style
is  defined  as  the  driver’s  relatively  stable,  long-term,  and
inherent  behavioral  tendencies.  It  integrates  the  driver’s  psy-
chological thinking and behavioral mode. The future research
trend  is  to  consider  personal  characteristics  to  improve  vehi-
cle safety and passenger acceptance [89].

Driving  styles  can  generally  be  divided  into  three  cate-
gories:

1)  Radical  driving  style: This  style  takes  some  risks  to
achieve the driving goal, accelerates and decelerates violently
and frequently, and shows more aggressive driving behavior.

2)  Careful  driving  style: This  style  places  safety  above
achieving driving goals, showing more conservative accelera-
tion and deceleration, or preferring to stay in the current lane
or give way to other vehicles.

3) Moderate driving style: This style is between radical and
cautious.

Obviously,  such  classification  is  rough  and  lacks  unified
standards.  The  driving  styles  of  different  individuals  are  sig-
nificantly different. Thus, designing a reasonable scale to dis-
tinguish  different  driving  styles  is  an  important  prerequisite
for  personalized  driving.  Recently,  some  works  on  driving
styles have been conducted to define and simulate the driving
behavior of humans or autonomous vehicles in specific envi-
ronments  or  traffic  scenarios,  such  as  lane  changing,  car  fol-
lowing,  and  intersections  [90]–[92].  The  features  and  scales
selected in these works are also related to specific driving sce-
narios.  In  addition,  the  designed  passenger  preference  mea-
surement  adopts  parameters  directly  related to  vehicle  move-
ment,  including  the  preferred  horizontal  and  vertical  growth
areas and the maximum allowable acceleration [93].

In fact, the public’s preference for driving style tends to be
personalized,  but  there  are  also  some  rules.  For  example,  it
was found that passengers tend to be cautious when seated in
autonomous vehicles [94]. When people can not control their
driving, they prefer a cautious style.  In addition, autonomous
vehicles can use collaboration to perceive and share informa-
tion  that  human  drivers  cannot  directly  obtain.  Therefore,
autonomous  vehicles  may  be  more  confident  than  humans.
These  behaviors  may  be  seen  as  causing  public  discomfort,
even if they do not pose a danger.  
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Fig. 4.     An example of a simulation platform for autonomous driving.
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B.  Human-Likeness
The similarity between algorithms and human decisions has

been studied from different perspectives. Therefore, a unified
indicator  is  needed  to  evaluate  the  human  similarity  of  the
algorithm,  and  the  principle  and  driving  performance  should
be  considered  to  accurately  evaluate  the  human  similarity  of
the algorithm.

As  described  in  Section  III,  the  existing  decision-making
methods  are  evaluated  for  their  human  likeness  through  the
following  four  aspects:  1)  combination  of  deterministic  and
fuzzy logic, 2) adaptability to unknown environments, 3) con-
sideration of random factors,  and 4) learning ability.  In addi-
tion, interpretability is also an important basis to evaluate the
human  similarity  of  the  algorithm.  It  is  the  degree  to  which
humans  understand  how  to  make  decisions  [95].  The  higher
the interpretability of the decision-making model, the easier it
is for humans to understand why they make certain decisions.
Only when the algorithm can be understood and interpreted by
humans,  can  trust  be  established  between  humans  and  the
model.

Furthermore,  the  driving  performance  of  human  drivers  is
an important reference for evaluating human likeness from the
perspective  of  driving  performance.  In  order  to  demonstrate
the  potential  of  their  models  to  be  similar  to  human  driving
behavior,  some  researchers  have  explained  the “human-like”
nature  of  their  methods  by  directly  comparing  them  with
human driving data [96].  The similarity between them shows
the similarity  between intelligent  decision-making algorithms
and human decision-making processes. In general, the evalua-
tion  of  human-like  driving  performance  includes  the  follow-
ing  indicators:  1)  driving  comfort,  2)  driving  safety,  3)  simi-
larity with human demonstration trajectories, and 4) character-
istics relative to other traffic participants.  

C.  Real World Applications
There  is  no  doubt  that  safety  is  the  most  important  chal-

lenge  and  critical  factor  in  autonomous  driving.  In  the  real
world, traffic participants usually exhibit dynamic and uncer-
tain behavior, so the autonomous vehicle must be able to han-
dle all possible situations. Otherwise, decision-making will no
longer  be  reliable  and  may  even  lead  to  serious  traffic  acci-
dents. The data-driven method can improve the traversal depth
of traffic scenarios, but it requires plenty of data to ensure safe
decision-making.  Therefore,  it  is  necessary  to  design  road
tests  to  collect  data  covering  environmental  uncertainties.  In
addition,  researchers  should  understand  the  interaction
between autonomous  vehicles  and other  elements  in  the  traf-
fic environment through road testing. Potential collision risks
should  be  discovered  in  advance  by  designing  some  typical
extreme scenarios.

Due  to  the  danger  of  real-world  testing,  it  is  important  to
develop  and  utilize  high-fidelity  driving  simulators.  Unfortu-
nately,  current  simulated  traffic  scenarios  are  still  unrealistic
and cannot fully cover all possible situations in the real world.
Although it cannot be guaranteed that the algorithms that meet
safety requirements in the simulation environment will still be
safe  when  transplanted  to  the  real  world,  it  can  be  predicted
that driving simulators will play an increasingly important role

in the development of decision-making algorithms.  

D.   Can  Human-Like  Driving  Strategies  Overcome  the  Limita-
tions of Human Drivers?

Human drivers face limitations that can impact their ability
to  navigate  roads  safely.  These  limitations  include  distrac-
tions,  fatigue,  emotions,  and  subjective  behavior.  These  fac-
tors  impair  their  judgment,  decision-making  abilities,  and
reaction times, leading to slower responses, delayed decisions,
and an increased likelihood of accidents.

The  purpose  of  researchers  developing  human-like  driving
algorithms is to learn the driving style and good driving habits
of human drivers, rather than learning the problems caused by
the  shortcomings  of  human  drivers.  In  contrast,  autonomous
vehicles  process  vast  amounts  of  data  and  make  real-time
decisions.  They  are  not  subject  to  the  same  limitations  as
human drivers, which means they can make more accurate and
efficient  decisions  in  dynamic  traffic  environments,  taking
into  account  various  factors  of  uncertainty  and  ensuring  the
safety of all road users.

It  should  be  noted  that  there  is  currently  no  single  type  of
humanoid  driving  decision  algorithm  that  can  completely
overcome the limitations of human drivers. To achieve a more
accurate,  efficient,  and  reliable  autonomous  driving  system
that surpasses the performance of human drivers in all aspects,
it  is  necessary  to  analyze  the  psychology,  decision-making
models, and decision-making processes of human driving and
use a combination of various advanced algorithms.  

VI.  Future Research
  

A.  Combination of Intuition and Logical Reasoning
The  decision-making  based  solely  on  logical  reasoning  is

insufficient  to  deal  with  complex,  dynamic  traffic  scenarios
[97].  Intuitive  reasoning  enables  human beings  to  effectively
avoid risks. Therefore, it is important to combine intuition and
logical  reasoning in order  to  adapt  to  dynamic traffic  scenar-
ios and make them comparable to human capabilities. One of
the  representative  methods  of  this  combination  is  fuzzy rein-
forcement learning, which is crucial to the realization of gen-
eral decision-making for autonomous vehicles.

Fig. 5 shows  the  process  of  an  adaptive  cruise  controller
implemented  through  fuzzy  reinforcement  learning.  Fuzzy
reinforcement  learning  uses  a  membership  function  to  trans-
form continuous states into fuzzy semantic states;  it  then can
generate  complete  rules  after  training.  According  to  the  rule
base,  the  continuous  output  is  obtained  by  weighted  summa-
tion.  In  traditional  fuzzy  systems,  the  rule  base  is  usually
determined by a large amount of expert knowledge, and rein-
forcement learning can independently learn expert knowledge
through  the  interaction  between  the  agent  and  the  environ-
ment, which plays a key role in the practical application of the
system.

In  order  to  verify  the  effectiveness  of  the  proposed  frame-
work  shown  in Fig. 5,  several  test  scenarios  are  designed  on
the driving simulator [98]. When the front vehicle accelerates
violently,  the  human-like  decision-making  system  will  give
appropriate  acceleration  to  smoothly  control  the  autonomous
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vehicle to catch up with the vehicle ahead. Although the speed
will  have a certain overshoot in this process,  the acceleration
is relatively stable, which ensures the safety of vehicle follow-
ing tasks. On the contrary, when the vehicle ahead decelerates,
the proposed method controls the autonomous vehicle so that
it  decelerates  quickly  without  collision  risk,  so  that  the  dis-
tance between the vehicles will never be less than the safe dis-
tance  to  ensure  the  safety  of  the  autonomous  vehicle.  The
driving  behaviors  learned  from  the  proposed  framework  are
not  predefined  but  are  fully  learned  through  the  process  of
interaction with the environment.  It  shows the good potential
of  combining  logic  and  intuitive  reasoning  to  learn  human
driving behavior.

On the basis of traditional reinforcement learning, the rapid
development of deep reinforcement learning in recent years is
crucial  to  developing  a  decision-making  method  that  com-
bines  intuition  and  logical  reasoning.  For  example,  the  suc-
cess  of  deep  reinforcement  learning  in  AlphaGo  [99]–[101]
and  electronic  games  [102]–[104]  has  proven  its  potential  to
build  intelligent  human-like  decision-making  systems.  It  has
been  pointed  out  that  rewards  are  enough to  drive  intelligent
behaviors  studied  in  nature  and artificial  intelligence,  includ-
ing  knowledge,  learning,  perception,  social  intelligence,  lan-
guage, generalization, and imitation [48]. Therefore, the com-
bination of deep reinforcement learning and traditional model-
based methods is an important direction of current research on
the  human-like  decision-making  technology  of  autonomous
driving.  

B.  Hierarchical Decision-Making Framework
In  the “end-to-end” model,  only  low-dimensional  control

commands or sparse rewards are used for learning. Due to this
limitation, behavioral intelligence may not be well displayed.
One possible way to improve this is through hierarchical deci-
sion-making,  which  can  combine  planning,  decision-making,
and  path-tracking  control  into  a  complete  module.  The  deci-
sion-making framework includes  several  levels,  such as  task,
maneuver,  and  motions,  where  different  levels  refer  to  the
decision-making  process  for  human  beings  to  achieve  differ-

ent  goals.  Furthermore,  the  hierarchical  decision-making
framework  combines  semantic  and  numerical  methods  to
ensure safety and compliance with traffic rules, while provid-
ing  common  functions  to  solve  new  complex  scenarios.  In
addition,  the  effective  combination  of  rules  and  learning
allows the  network to  focus  on problems that  do not  exist  in
the  rule  base.  For  example,  a  hierarchical  decision-making
system was proposed to combine reinforcement learning with
a  sampling-based  motion  planner,  which  is  a  reasonable
method [105].  

VII.  Conclusions

With the development of artificial intelligence, people have
higher expectations for the possibility of autonomous driving.
Exploring  human-like  decision-making  technology  is  an
important  research  direction  for  the  development  of  autono-
mous driving. Thus, it is very important to improve the ability
of  the  decision-making  system  to  build  a  reasonable  driving
model so that the autonomous vehicle can learn human expert
knowledge and driving habits.

In  this  paper,  the  development  of  human-like  driving  tech-
nology  was  reviewed,  where  the  advantages  and  disadvan-
tages of various decision-making methods were analyzed, and
related  problems  were  discussed.  In  addition,  the  relevant
research on driving datasets and simulation platforms was also
reviewed  for  the  development  of  advanced  decision-making
algorithms. Finally, several issues related to human-like driv-
ing were discussed, and potential research directions were pre-
sented as well.

It is an arduous challenge to develop human-like driving so
that  autonomous  vehicles  have  decision-making  ability  simi-
lar  to  human  beings,  but  it  has  great  potential  value  in  aca-
demic  and  industrial  applications.  We firmly  believe  that  the
joint  efforts  of  academia  and  industry  will  help  promote  the
rapid development of automatic driving technology.
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