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Abstract

Fine-tuning pre-trained language models (PLMs) has become a dominant paradigm in applying
PLMs to downstream tasks. However, with limited fine-tuning, PLMs still struggle with the
discrepancies between the representation obtained from the PLMs’ encoder and the optimal input
to the PLMs’ decoder. This paper tackles this challenge by learning to calibrate the representation
of PLMs in the latent space. In the proposed representation calibration method (RepCali), we
integrate a specific calibration block to the latent space after the encoder and use the calibrated
output as the decoder input. The merits of the proposed RepCali include its universality to all
PLMs with encoder-decoder architectures, its plug-and-play nature, and ease of implementation.
Extensive experiments on 25 PLM-based models across 8 tasks (including both English and
Chinese datasets) demonstrate that the proposed RepCali offers desirable enhancements to PLMs
(including LLMs) and significantly improves the performance of downstream tasks. Comparison
experiments across 4 benchmark tasks indicate that RepCali is superior to the representative
fine-tuning baselines.
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1. Introduction

Pre-trained language models (PLMs) exhibit impressive capabilities in capturing both syn-
tactic and semantic information within text data, rendering them highly valuable for a range
of downstream tasks [[L]. In reality, the pre-training data is usually domain-general while the
downstream task data is significantly varied with domains, and the targets of the pre-training
tasks and the downstream tasks are quite different. Due to the domain gaps and objective gaps
between the pre-training tasks and the downstream tasks, when applied to specific downstream
tasks, the PLMs need to be trained with task-specific data to enhance their ability to process the
language features relevant to that task. Therefore, fine-tuning of the PLMs has become a dominant
paradigm in applying PLMs to downstream tasks [2].

As shown in Figure [I] in the latent space characterization analysis, we observe that the
output of the PLMs(T5) encoder before fine-tuning exhibits a disordered distribution, while its
distribution structure is significantly compacted after fine-tuning, but has not yet reached the

Corresponding author: XiangDong Su (Email: cssxd@imu.edu.cn)

Preprint submitted to Data Intelligence September 16, 2025



RepCali: High Efficient Fine-tuning Via Representation Calibration in Latent Space for
Pre-trained Language Models

Before Finetune After 500 steps The best indicators
L]
e
°
° ® o °
o
S &,
b D °
° ()
° L)
e |
o
e o o ©
o
° ° eO
Y ° (1]
°

Figure 1: Visualization of the distribution of the output of TS encoder before and after fine-tuning via the T-SNE algorithm
on the Abductive Commonsense Reasoning (eNLG) task.

optimal state. This suggests that although the fine-tuning can effectively improve downstream task
performance, PLMs are still difficult to be fully adapted to the target domain properties within a
limited number of fine-tuning cycles [2}3]]. In essence, the current performance bottleneck
stems from the fact that there is still a non-negligible inter-domain discrepancy between the
distribution of the model encoder’s representations in the target domain latent space and
the optimal input distribution expected by the decoder.

[4] learns and clusters in the embedding latent space in the PLM to improve the diversity and
quality of model generation. [3]] confirms the importance of learning latent space. Based on this,
we argue that it will be more effective to directly adjust the representation from the PLMs’ encoder
in latent space through a learnable block in the fine-tuning process. Therefore, this paper proposes
RepCali, a simple and effective representation calibration method that integrates a well-designed
calibration block to the latent space after the PLMs’ encoder and uses the calibrated output as the
input of the PLMs’ decoder for PLM fine-tuning. The calibration block only involves shape seed,
learnable embedding and layer normalization.

It is worth noting that our representation calibration method differs from other fine-
tuning methods like prompt tuning, adapter, and LoRA, as shown in Figure 2| Prompt
tuning usually contains learnable parameters and appends the learned prompt embedding to
the input embedding to guide the pre-trained models. Adapter layers are small neural network
modules inserted between the layers of a pre-trained model and their parameters are updated
during fine-tuning. LoRA introduces low-rank matrices to modify the self-attention mechanism of
transformers and updates only these low-rank matrices. Different from these methods, our method
introduces a specialized representation calibration block between the PLM’s encoder and decoder,
which calibrates the encoder output before it is fed into the decoder. Hence, the PLM’s decoder
receives an improved input and generates a better result.

Extensive experiments on 25 PLM-based models across other 8 NLP downstream tasks demon-
strate that RepCali significantly enhances the PLMs (including large language models (LLMs))
yielding substantial improvements for PLMs. Comparison experiments with 4 representative
fine-tuning baselines across 3 benchmark tasks indicate that our proposed fine-tuning method,
RepCali, is superior to these baselines. The merits of the proposed representation calibration
method RepCali include its universal applicability to all PLMs with encoder-decoder architectures,
its plug-and-play nature and its ease of implementation, with only a marginal increase in model
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Figure 2: The detailed architecture of various tuning methods.

parameters. Our experiments include both English and Chinese datasets, and the results both show
that RepCali generalizes effectively to different languages.

2. Related Work

2.1. Fine-tuning Method

In recent years, adapters have gradually become mainstream in PLM fine-tuning. [6] pro-
posed an adapter module that introduces a minimal number of trainable parameters for each
task, enabling the addition of new tasks without affecting previously trained ones. [7]] presented
AdapterDrop, which strategically eliminates adapters from the lower transformer layers during
both training and inference, integrating the principles of these distinct approaches. [8] illustrated
the feasibility of learning adapter parameters across all layers and tasks by employing a shared hy-
pernetwork, conditioned on task-specific and layer-specific details, to generate adapter parameters
within the model, thus optimizing the fine-tuning process across various tasks. [9]] proposed a
reparameterizing the architecture, the general-purpose adaptive module can also be seamlessly
integrated into most giant vision models, resulting in a zero cost in the inference process. LoORA
[LO] was a low-rank adaption that freezes the weights of pre-trained models and injects a trainable
rank decomposition matrix into each layer of the Transformer architecture, thus significantly
reducing the downstream number of trainable parameters for the task.

With the development and application of LLMs and visual models, researchers have realized
that prompt has a large impact on the model’s performance. Prompt tuning [[L1] only prepends
and updates task-specific trainable parameters in the original input embeddings. [12]] proposed a
visual prompt framework based on iterative label mapping, which automatically remaps source
labels to target labels and incrementally improves the target task accuracy of visual prompts. [13]]
proposed BitFit, a sparse fine-tuning method that modifies only the bias term of the model (or a
subset of it). The delta fine-tuning [14] fine-tunes only a small fraction of the model parameters
while keeping the rest of the parameters unchanged, greatly reducing computational and storage
costs. [L5] proposed a new parameter-efficient fine-tuning method, indicating that researchers can
catch up with fully fine-tuned performance by simply scaling and shifting deep features extracted
by the pre-trained model.

(O8]
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2.2. Latent Space

[4] is a universal latent embedding space for sentences that are first pre-trained on a large text
corpus and then fine-tuned for various language generation and understanding tasks. [5] confirms
the importance of learning latent space. DISCODVT [16] learns a latent variable sequence with
each latent code abstracting a local text span to the discourse structures that guide the model to
generate long texts with better long-range coherence. There are also several studies [17, [18]] that
incorporate latent structure learning into language model pre-training.

3. Methodology
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Figure 3: Overview of our representation calibration method.

To enhance the performance of PLMs in downstream tasks, it is essential to minimize the
discrepancies between the representation obtained from the PLMs’ encoder and the optimal input
to the model decoder in the latent space. To this end, we propose calibrating the representation of
PLMs in the latent space, as shown in Figure 3] The output of the representation calibration block
is directly added to the output of the PLM-based encoder to calibrate the input of the decoder. Our
representation calibration block involves shape seed, learnable embedding and layer normalization.
The details are as follows.

To calibrate the encoder’s representation in the latent space, we introduce the concept of
Shape S eed, a matrix designed to conform to the input’s dimensions, facilitating the precise
calibration of the encoder’s representation. The input of our representation calibration block is the
S hape S eed which is a matrix of size batchsize X n. Here, n equals the length of token embedding.
We initialize the S hape S eed to an all-ones matrix. Then, we use a learnable embedding layer
LearnEmb to encode S hape S eed to obtain d;, which serves as the calibrated values. Next, we
add the calibrated values d; to the encoder output 4; in the latent space, yielding the calibrated
output p;. This process realigns the encoder’s output to a more reasonable representation in the
latent space, thus making the PLM more adaptable to downstream tasks.

Given the input X, the above-mentioned calibration process can be formulated as

{hi}l_, = Encoder(X), (D
{di}l_, = LearnEmb(S hape S eed), (2)
iV, = thi + Ax difly ®)

$ =Decodet(y<, {pi}i), )
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Task & Dataset | Additional | sst2 RET MNLI COLA AVERAGE
Methods | Parameters | Accuracy (1) MCC (1)

Prompt tuning [T} |  0.03% | 92.20 |  4s:2 | 35.43 | 0.00 | 4323
Prefiv-uning [20] | 793% | o266 | 7266 | 8221 | 5095 | 74.62
Adapter [6] | 238% | 9335 | 7842 | 83.90 | 44.66 | 75.08
LoRA [I0] | o038% | 92.29 | 7904 | 83.74 | 49.40 | 76.14
BitFit © [13] | 02% | 920 | 7530 | 84.10 \ 53.20 \ 76.45
RepCali | 035% | 94,31 | 8004 | 84.69 | 51.15 | 77.55

Table 1: Overall test performance on SST2, RET and COLA. We evaluate all these fine-tuning methods on the T5-BASE
backbone. The results of the baselines are from [14]]. © represents the results not from the original paper but reproduced
by us.

where A is a hyperparameter that controls the degree of calibration. If our calibration block is not
used, the output of the original PLM-based models is

$ = Decoder(y, {h:} ). ®)

The representation calibration block in our method is very simple and plug-and-play. Only
the learnable embedding layer brings a marginal increase in the number of model parameters,
which is analyzed in Table[TT]in Section[5.6] When we integrate the proposed calibration method
into the existing PLM-based models in the downstream tasks, it is unnecessary to change the loss
function £, used in these models.

4. Experiments on Fine-tuning Methods

4.1. Tasks and Datasets

We compare the proposed method with three fine-tuning methods using the SST-2, RET,
MNLIand CoLA datasets [19] to highlight the advantages and improvements. The results of the
baselines are from [14]. We conduct experiments on 3 different random seeds, and the reported
results are the average of these three experiments.

4.2. Method Performance Comparison

Our representation calibration method is a novel fine-tuning method. We mainly focus on
tuning the latent representation from the PLMs’ encoder; we froze the entire PLM decoder in
NLU tasks to reduce the size of the fine-tuning parameters in RepCali while validating RepCali’s
calibration.

As shown in Table[I] RepCali achieves the best results on all four tasks. Compared to LoRA,
Adapter and Pefix-tuning, our method has over 1% improvement on all four tasks. RepCali
introduces only 0.35% additional parameters to the T5-base model, and the increase is also less
than the baseline mentioned above. This proves the simplicity and efficiency of our method, which
requires only a small number of parameters to bring a huge improvement. The proposed RepCali
is not only applicable to NLG tasks but equally used with NLU tasks. With RepCali, there is no
need to consider where to add to the model, thus increasing the efficiency of fine-tuning.
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4.3. Comparison of Additional Parameters

As demonstrated in Table [2] we quantify the additional parameters introduced by various
fine-tuning approaches. Notably, our method contributes a minimal increase in parameter count,
underscoring its efficiency in enhancing model performance without significantly expanding its
complexity.

Name ‘ Method ‘ #Params
Adapter [6] LayerNorm(X + H(X)) — LayerNorm(X + ADT (H(X))) LXx2xQ2dydy)
ADT(X) = X + 0(XWy, x4, )Wa,xd,, T = activation (L —-n)x2xQ2dydy,)

Prefix-tuning [20] | H; = ATT(XW,", [MLP;”(P;C) : XW,E“] , [MLPS,")(P;) : XWS,“]) nX dy +d>

MLPOX) = 0(XW 1,0, W, +LX 2 X dydy
P = and,,,
LoRA [IOJ ADT(X) = dethdedeh ‘ Lx2x (Zdhdm)
Ours Decoder(Encoder(X)) — Decoder(Encoder(X) + d;)
d; = RepCali(X) 2xdy

RepCali(X) = LayerNorm(LearnableEmbedding(S hapeS eed))

Table 2: Comparison between different fine-tuning methods. [:] is the concatenation operation; dj, means the hidden
dimension of the transformer model; d,, is the intermediate dimension between down projection and up projection, where
dp, is far smaller than dj,. PREFIX-TUNING add the prefix of n past key value.

5. Experiments on Downstream Tasks

5.1. Downstream Tasks and Datasets

We conduct comprehensive experiments on 8 downstream tasks: End-to-end Response
Generation, Abductive Commonsense Reasoning (¢NLG) , Task-Oriented Dialogue System,
KG-to-Text, Abstractive Summarization, Dialogue Summarization, Dialogue Response
Generation, and Order Sentences. We integrate our representation calibration method on a total
of 25 different PLM-based models, and all of them are based on fine-tuning. For a fair comparison,
we follow the other training parameters published in the original papers. We conduct experiments
on 3 different random seeds, and the reported results are the average of the 3 experiments.

5.2. Implementation Details

When applied to the downstream task, we integrate our representation calibration block on a
total of 25 different PLM-based models (including LL.M), all of which are based on fine-tuning.
We conduct experiments on 3 different random seeds, and the reported results are the average of
the 3 experiments. The baseline models used are full-model fine-tuned on the downstream tasks,
and we also full-model fine-tuned after integrating our representation calibration block into the
baseline models. For a fair comparison, we follow the other training parameters published in the
original papers.
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MinTL (T5-3B) experiments are performed on the NVIDIA Ampere A100 GPU, which boasts
80GB of memory. The remaining experiments use NVIDIA Pascal P40 GPUs with 24GB memory
and NVIDIA V100 GPUs with 32GB memory.

5.3. Experiments Datasets

End-to-End Response Generation: We evaluate the models on the MultiWOZ dataset
[21]. It is a large-scale multidomain task-oriented dialogue benchmark collected via the Wizard-
of-Oz setting. The dataset contains 8438/1000/1000 dialogues for training/validation/testing,
respectively.

Diversity Abductive Commonsense Reasoning (¢NLG): We use the ART benchmark dataset
[22] that consists of 50,481 /1,779 / 3,560 examples for training/validation/validation sets. The
average input/output length is 17.4 / 10.8 words. Each example in the AR7 dataset has 1 to 5
references.

Task-Oriented Dialogue System: We use CamRest dataset [23]], a human-to-human dialogues
dataset for restaurant recommendation in Cambridge. 676 dialogues are provided by the CamRest
dataset. It is split into 406, 135, and 135 as training data, validation data, and test data, respectively.
The templates are generated from training data and augment 9,728 new dialogues to the training
data.

Abstractive Summarization: XSum [24] is a highly abstractive dataset of articles from the
British Broadcasting Corporation (BBC). Xsum consists of 203K/11k/11k examples for train-
ing/development/test sets.

KG-to-Text: WebNLG is a crowd-sourced RDF triple-to-text dataset manually crafted by human
annotators. The dataset contains graphs from DBpedia [25]] with up to 7 triples paired with one or
more reference texts. It consists of 34352/4316/4224 examples for training/validation/testing sets.
Dialogue Response Generation: For the Dialogue Response Generation task, we adopt the
PersonaChat dataset [26]]. It is an open-domain multi-turn chit-chat dataset, where two participants
are required to get to know each other by chatting naturally. The PersonaChat dataset contains
8,939 dialogues for training, 1,000 for validation, and 968 for testing. For each turn in the dialogue,
we concatenate the persona of the speaker and the dialogue history as input and train the base
model to generate the current utterance.

Order Sentences: We randomly split ROCStories into train/test/validation in an 80:10:10 ratio.
For the other datasets, we use the same train, test, and validation sets as previous works.
Dialogue Summarization: CSDS is the first role-oriented dialogue summarization Chinese
dataset, which provides separate summaries for users and agents (customer service). The CSDS
dataset contains 9101 dialogues for training, 800 for validation, and 800 for testing.

5.4. Analysis of Experimental Results

End-to-End Response Generation: We conduct a comprehensive evaluation of various
models using the MultiWwOZ dataset [21]]. Within the MinTL framework [27]], we incorporate
our calibration method, encompassing BART-large [28]] and various sizes of TS5 models (small,
base, large, 3B) [29]. Following [27]], we evaluate the models using metrics like Inform, Success,
BLEU-4, and Combined((Inform+Success)x0.5+BLEU-4) [30, [31].

As demonstrated in Table[3] the performance of each of the four baseline models exhibits
significant enhancement following the incorporation of our representation calibration block.
Notably, the MinTL(BART-large) demonstrates enhancements of 4.11% in Inform, 5.37% in
Success, 1.46% in BLEU-4, and 6.21% in Combined score. Our method significantly enhances
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End-to-end Response Generation MultiwOZ

Models Inform(T)  Success (T) Bleu-4(T) Com (T)
MinTL(T5-small) [27] 80.04 72.71 19.11 95.49
MinTL(T5-small)+RepCali 82.08 74.07 19.58 97.66
MinTL(T5-base) [27] 82.15 74.44 18.59 96.88
MinTL(T5-base)+RepCali 83.75 76.08 19.75 99.68
MinTL(BART-large)[27] 84.88 7491 17.89 97.78
MinTL(BART-large)+RepCali 88.99 80.28 19.35 103.9
MinTL(T5-1arge) [27] © 79.68 71.27 19.55 95.03
MinTL(T5-large)+RepCali 81.68 73.57 19.61 97.24
MinTL(T5-3B) [27] © 78.48 66.87 14.65 87.33
MinTL(T5-3B)+RepCali 81.98 70.57 15.87 92.15

Table 3: End-to-end Response Generation results on MultiWOZ2. © represents the results not from the original paper but
reproduced by us. The other baseline results are from the original paper.

large language models (LLMs), underscoring their generality and effectiveness. We observe
that in the MinTL framework, T5-3B’s performance is lower than T5-base, potentially due to
overfitting by the larger models (especially in small datasets) and hyperparameter settings.
Abductive Commonsense Reasoning (¢NLG): We utilize the ART benchmark dataset [22],
following the data split as [32]. We integrate our RepCali block on BART-base [28], MoE-based
methods [33),134], MoKGE [32]. In line with [32]], we employ Self-BLEU3/4 [35]] as metrics of
diversity assessment and BLEU-4 [30] and ROUGE-L[36] as metrics of generation quality.

aNLG ART

Models Self-Bleu3 () Self-Bleu4 (|) BLEU-4 () ROUGE-L (1)
BART-base [28] 56.32 52.44 13.53 38.42
BART-base+RepCali 48.13 49.24 14.42 39.66
MoE_embed [33] 29.02 24.19 14.31 38.91
MoE_embed+RepCali 29.01 23.92 14.90 39.71
MoE_prompt [34] 28.05 23.18 14.26 38.78
MoE_prompt+RepCali 27.93 22.02 15.91 40.75
MOoKGE [32] 27.40 2243 14.17 38.82
MoKGE+RepCali 24.67 19.07 15.25 40.16

Table 4: Diversity and quality evaluation on the ®NLG. The baseline results are from the original paper.

As shown in Table[d] by only employing our method, there are large improvements for all the
baselines. For the previous SOTA model MoKGE, there is an improvement of 2.73% and 3.36%
on the diversity metrics Self-BLEU-3/4 and an improvement of 1.08% and 1.34% on the quality
of generation metrics BLEU-4 and ROUGE-L, respectively. This proves that RepCali effectively
makes the encoder’s output more adaptable to the decoder.

Task-Oriented Dialogue System: We implement our RepCali block on BART-base, T5-base,
KB_BART [37], and KB_T5 [37]. Following [37]], we utilize the CamRest dataset [23]] and
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employ BLEU-4 and F1 scores.

Task-Oriented Dialogue System CamRest

Models BLEU-4 (7) F1 (1)
BART-base [28] 19.050 55.922
BART-base+RepCali 19.560 56.397
T5-base [29] 18.730 56.311
T5-base+RepCali 19.040 57.339
KB_BART [37] 20.240 56.704
KB_BART+RepCali 22.610 60.522
KB_TS5 [37] 21.110 59.668
KB_T5+RepCali 21.780 61.779
KB_T5(large) [37] © 21.120 63.536
KB_T5(large)+RepCali 21.720 64.761

Table 5: Task-Oriented Dialogue Systems results on CamRest. © represents the results not from the original paper but
reproduced by us. The other baseline results are from the original paper.

As indicated in Table[5] employing our representation calibration method led to a significant
improvement in all four baseline models. Particularly for KB_BART, it improved by 2.370% and
3.818% on BLEU-4 and F1 scores, respectively.

KG-to-Text: We implement our RepCali block on BART-base [28]], T5-base [29], JointGT(BART)
[38]], JointGT(T5) [38]], and GAP [39]. Following [38|39], we utilize the WebNLG [40] dataset
and employe BLEU-4, METEOR [41]], and ROUGE-L as evaluation metrics.

KG-to-Text WebNLG

Models BLEU-4 (1) METEOR (1) Rouge-L (1)
BART-base [28] 64.55 46.51 75.13
BART-base+RepCali 64.76 46.72 75.38
T5-base [29] 64.42 46.58 74.77
T5-base+RepCali 64.90 46.83 75.14
JointGT(BART) [38] 65.92 47.15 76.10
JointGT(BART)+RepCali 66.10 47.35 76.18
JointGT(T5) [38] 66.14 47.25 75.90
JointGT(T5)+RepCali 66.72 47.46 76.46
GAP(BART) [39] 66.20 46.77 76.36
GAP(BART)+RepCali 66.20 46.89 76.41

Table 6: KG-to-Text results on WebNLG. The baseline results are from the original paper.

As indicated in Table[6] there is a notable improvement across all five baseline models with
the employment of our method. Compared to JointGT (T5) on the three metrics, there is an

Datalntelligence 9



RepCali: High Efficient Fine-tuning Via Representation Calibration in Latent Space for
Pre-trained Language Models

improvement of 0.58%, 0.21%, and 0.56%, respectively. RepCali significantly enhanced the
model compared to previous work. For example, compared to JointGT, GAP improved by 0.28%
and 0.26% in BLEU-4 and R-L, respectively, but decreased by 0.38% in METEOR. Whereas
JointGT gets 0.18%, 0.20%, and 0.08% improvement in the three metrics after using RepCali.
This demonstrates that RepCali is a reasonable enhancement to the model, with improvements in
all metrics. Compared to previous work, RepCali brings significant improvements by adding only
a small number of parameters.

Abstractive Summarization: We conduct Abstractive Summarization task using the XSum [24]
dataset. We implement our RepCali block on BART-1arge [28]], PEGASUS [42], and BRIO [43]].
In line with [43]], we employ ROUGE-1, ROUGE-2, and ROUGE-L [36] as the evaluation metrics.

Abstractive Summarization XSum

Models Rouge-1 (T) Rouge-2 (T) Rouge-L (T)
BART-large [28] 45.14 22.27 37.25
BART-large+RepCali 45.42 22.60 37.63
PEGASUS [42] 47.46 24.69 39.53
PEGASUS+RepCali 47.78 24.75 39.70
BRIO-Mul [43] 49.07 25.29 49.40
BRIO-Mul+RepCali 49.18 25.50 49.49

Table 7: Abstractive Summarization results on XSum dataset. The baseline results are from the original paper.

As indicated in Table[7] there is a notable enhancement in all three baseline models with the
employment of our representation calibration block. For the Sota model BRIO-Mul, there is an
improvement of 0.11%, 0.21% and 0.09% on the three metrics, respectively. Although some of
the metric improvement is minor, this improvement is significant compared to previous work.
Dialogue Response Generation: We conducte Dialogue Response Generation experiments on
PersonaChat [260] dataset. We employ our representation calibration block on Blenderbot [44],
Keyword-Control [45]] and Focus-Vector [45]]. Following [45]], we utilize ROUGE-1, ROUGE-2,
and ROUGE-L as evaluation metrics.

Dialogue Response Generation Personachat

Models Rouge-1(T) Rouge-2(T) Rouge-L (T)
Blenderbot [44] 17.02 2.73 14.52
Blenderbot+RepCali 18.53 3.21 15.66
Keyword-Control [45] 17.31 3.02 14.81
Keyword-Control+RepCali 17.98 3.07 15.30
Focus-Vector [45] 20.81 3.98 17.58
Focus-Vector+RepCali 21.28 4.19 17.96

Table 8: Dialogue Response Generation results on Personachat. The baseline results are from the original paper.

As shown in Table [8] there is a large improvement in all baseline models. Relative to
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Blenderbot, there is an improvement of 1.51%, 0.48% and 1.14% on the three metrics, respectively.
It further proves the generalization and effectiveness of our representation calibration method.
Order Sentences: We conducte Order Sentences experiments on ROCStories dataset. We employ
our representation calibration block on BART and RE-BART [46]. Following [46], we utilize
Accuracy(ACC), Perfect Match Ratio (PMR), and Kendall’s Tau (7) as evaluation metrics.

Order Sentences ROCStories

Models ACC(T) PMR(T) (D)
BART [28] 80.42 6350 0.85
BART+RepCali 82.36 64.67  0.87
RE-BART [46] 90.78 81.88  0.94

RE-BART+RepCali  91.16 82.68 0.94

Table 9: Order Sentences results on ROCStories. The baseline results are from the original paper.

As shown in Table[9] there is a large improvement in all baseline models. Relative to BART,
there is an improvement of 1.96%, 1.17%, and 0.2 on the three metrics, respectively. For the
previous Sota model RE-BART, there is an improvement of 0.38%, 0.8% on the accuracy (ACC)
and perfect Match Ratio (PMR). This improvement is significant compared to previous work.
Dialogue Summarization: We conducte Dialogue Summarization experiments on the CSDS [47]]
dataset. CSDS is the first role-oriented dialogue summarization Chinese dataset, which provides
separate summaries for users and agents (customer service). We employ our representation
calibration block on BART and GLC [48]]. Following [48]], we utilize ROUGE-1, ROUGE-2,
ROUGE-L, Bleu-4, BERTScore and MoverScore as evaluation metrics.

As indicated in Table there is a notable improvement across all baseline models with
the employment of our method. Regarding user summaries, the six metrics improved by 0.38%,
0.22%, 0.35%, 0.33%, 0.64%, and 0.10%, respectively, compared to the SOTA model, BART-
GLC. Regarding Agent summarization, there is an improvement of 0.11%, 0.04%, 0.03%, 1.22%,
and 0.14% at ROUGE-1, ROUGE-2, ROUGE-L, BERTScore, and MoverScore, respectively,
when compared to the SOTA model BART-GLC. Although some of the metric improvement is
minor, this improvement is significant compared to previous work. The significant improvement
in BERTScore suggests that the text generated after using RepCali is more semantically logical
and coherent.

Experimental results demonstrate that our representation calibration method offers desirable
enhancements to PLMs (including LLMs) and significantly improves the performance of tasks.
Experimental results on English and Chinese datasets show that RepCali can generalize to
different languages effectively. This underscores the effectiveness and broad applicability of our
representation calibration method. By minimizing the discrepancies between the representation
obtained from the PLMs’ encoder and the optimal input to the decoder of the model in the
latent space, our method notably enhances the performance of the PLMs in downstream tasks.
Remarkably, our method is both efficient and lightweight, involving only an additional learnable
embedding layer. Despite its minimal impact on the model’s parameter count, it results in
substantial performance improvements. Overall, RepCali adds only 0-0.8% extra parameters yet
delivers significant performance gains.
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Dialogue Summarization CSDS (Chinese Dataset)

User Summarization ROUGE-1 | ROUGE-2 | ROUGE-L | BLEU-4 | BERTScore | MoverScore
BART-base [28] 58.75 43.59 56.86 34.26 80.67 59.86
BART-base+RepCali 59.17 44.21 57.31 35.22 81.46 59.97
BART-both [49] 58.93 43.69 57.28 34.49 80.64 59.86
BART-both+RepCali 59.19 44.26 57.40 35.17 81.58 60.04
BART-GLC [48] 61.42 45.83 59.25 36.43 81.83 61.03
BART-GLC+RepCali 61.80 46.05 59.60 36.76 82.47 61.13
Agent Summarization

BART-base [28] 53.89 40.24 50.85 31.88 77.31 58.75
BART-base+RepCali 54.05 40.37 50.94 32.11 71.73 58.83
BART-both [49] 54.01 40.32 51.10 32.30 77.30 58.73
BART-both+RepCali 54.12 40.34 51.14 3247 78.03 58.96
BART-GLC [48] 54.59 40.02 52.43 32.58 77.61 59.02
BART-GLC+RepCali 54.70 40.06 52.46 32.45 78.83 59.16

Table 10: Dialogue Summarization evaluation on the CSDS datasets. The baseline results are from the original paper.

5.5. Visual Analysis in the Latent Space

BART TS5 PEGASUS

After Calibrating Ater Calibrating After Calibrating
Before Calibrating Before Calibrating Bef t

Figure 4: We chose three different PLMs, BART, TS, and PEGASUS for visualization and analysis of the latent space.
The blue points are the hidden representations obtained after fine-tuning using our calibration method RepCali, and the
yellow points are the hidden representations obtained after fine-tuning for the PLMs.

We use tSNE [50] to visualize the learned feature on a 2D map. The validation set of Abductive
Commonsense Reasoning (eNLG) is used to extract the latent features. We chose three different
PLMs, BART, T5, and PEGASUS for visualization and analysis of the latent space. As shown in
Figure 4] compared to the PLMs without RepCali for representation calibration, the PLMs with
RepCali learn a smoother space with more organized latent patterns, while the latent representation
is more compact, which is why the better performance of the boosted model can be obtained with
RepCali. This coincides with the argument in works [S]], which suggests that smooth regularization
on the latent space benefits the model’s performance.

5.6. Model Sizes

As detailed in Table[T1] the parameter growth for each model varies based on its hidden state
dimension, e.g., BART-base has a hidden state dimension of 768 and BART-large has a hidden
state dimension of 1024. It reveals that the largest model, MinTL(T5-3B), boasts a formidable 4.5
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Models Size Models  Size

MinTL(T5-small) [27] 102M  +RepCali  102M
BART-base [28] 139M  +RepCali  140M
MoE_embed [33] 139M  +RepCali  140M
MoE_prompt [34] 139M  +RepCali  140M
KB_BART [37] 140M  +RepCali 140M
MoKGE [34] 145M  +RepCali  146M
JointGT(BART) [38] 160M  +RepCali 161M
T5-base [29] 220M  +RepCali 221M
KB_T5 [37] 222M  +RepCali  223M
JointGT(TS) [38] 265M  +RepCali 265M
MinTL(T5-base) [27] 360M  +RepCali 361M
Blenderbot [44] 364M  +RepCali 365M
Keyword-Control [45] 364M  +RepCali 365M
Focus-Vector [45] 364M  +RepCali  365M
BART-large [28] 400M +RepCali 407M
RE-BART [46] 400M  +RepCali 407M
PEGASUS [42] 569M  +RepCali 569M
BRIO-Mul [43] 569M  +RepCali 570M
MinTL(BART-large) [27] 609M +RepCali 610M
T5-large [29] 770M  +RepCali 770M
MinTL(T5-large) [27] 1.17B  +RepCali 1.17B
MinTL(T5-3B) [27] 4.5B  +RepCali 4.5B

Table 11: Size of all baseline models before and after adding our calibration block. M: Millon, B: Billion

billion parameters. This observation highlights the compatibility of our representation calibration
method with large language models, consistently delivering valuable enhancements in LLMs.
We calculate the parametric quantities since they are not mentioned in the corresponding papers.
Overall, our method only adds 0-0.8% additional parameters.

6. Conclusion

In this paper, we propose a generalized representation calibration method (RepCali) to mini-
mize discrepancies between the representation obtained from the PLMs’ encoder and the optimal
input to the decoder of the model. During the fine-tuning phase, we integrate our representation
calibration block to the latent space after the encoder and use the calibrated output as the decoder
input. Our representation calibration method is suitable for all PLMs with encoder-decoder
architectures, as well as the models based on PLMs. Our representation calibration method is both
plug-and-play and easy to implement. Comparison experiments across 4 benchmark tasks indicate
that RepCali is superior to the representative fine-tuning baselines. Extensive experiments on
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25 PLM-based models across 8 downstream tasks (including both English and Chinese datasets)
demonstrate that the proposed RepCali offers desirable enhancements to PLMs (including LLMs)
and significantly improves the performance of downstream tasks.
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