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Research progress of photosynthetic physiological mechanism and approaches
to application in dense planting maize

GUO Yao, CHAI Qiang*, YIN Wen, and FAN Hong

State Key Laboratory of Arid Land Crop Science / Faculty of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu, China

Abstract: To ensure enough crop production of limited land area is important to food security. The key to solve this issue is to
increase yield per unit area. Dense planting is an effective agronomic management practice to increase yield per unit area, photo-
synthetic rate would not be decreased or even improved by increasing planting density moderately, and then enhancing the yield
per unit area. It is a key research focus on revealing the mechanism of photosynthetic physiology for improving yield per unit area
by dense planting condition of maize. Dense planting would lead to change photosynthetic characteristics, so controlling the
physiological factors that restricts photosynthesis is essential for increasing yield. Tap the photosynthetic physiologic potential for
maize condition is physiological basis to ensure yield, which plays an important role in addressing food security issues. Therefore,
this review focuses on the changes of the research methods and ideas in photosynthetic physiology, and the research status of the
photosynthetic physiological response of maize adapted to dense planting and related agronomic regulation pathways at home and
abroad, based on previous research results, so as to provide the theoretical and technical methods basis for photosynthetic physi-
ology research. Based on the development trend of modern technology, it is believed that tapping photosynthetic potential and
narrowing the gap between photosynthetic potential and actual photosynthetic efficiency are still the main goals of maize dense
planting research by traditional research methods combined with molecular biology techniques in the future. In further study, re-
search emphasis should be to investigate the responses of differential expression of photosynthetic physiological function genes to
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cultivation measures, clarifying the relationship and interaction between agronomic management practice and information expres-
sion of photosynthetic-related genes in densely planted maize, enhancing photosynthetic potential for maize via agronomic man-
agement practice and molecular biology technology, in order to provide photosynthetic physiological theory and practice to sup-

port for maize dense planting.
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