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Abstract

Semantic errors in Chinese text can significantly impact text comprehension and information ac-
curacy. Although semantic error detection is crucial for improving the quality and reliability of
texts, existing models still face major challenges in detection performance due to the diversity
and complexity of semantic error types. To address this issue, we propose a chain-of-thought-
augmenteD syntactlc-baSed in-ContExt LeaRNing framework (DISCERN), which aims to en-
hance the performance of Large Language Models’ (LLMs) in Chinese semantic error detection
tasks. DISCERN consists of three core modules: Semantic Error Mechanism Mining (SEMM),
Demonstration Sample Selection (DSS), and Template Filling Output (TFO). It integrates Chain-
of-Thought (CoT) prompting technique of LLMs with dependency syntax tree-based similarity
calculation to select appropriate demonstration examples. Experiments on the CSED-R dataset
demonstrate that compared to existing methods, DISCERN can effectively improve the perfor-
mance of LLMs in semantic error detection tasks.

Keywords: In-context Learning; Chain-of-Thought; Chinese Semantic Error Detection; Large
Language Models; Syntax Tree-based Similarity Calculation

1. Introduction

In today’s era of digital transformation and deepening global communication, text, as the pri-
mary carrier of information transmission, directly impacts operational efficiency and decision-
making quality across various sectors of society. With the proliferation of Artificial Intelligence
(AI) writing assistants and automated content generation tools, the scale and speed of Chinese
text production have grown exponentially. Efficiently analyzing and detecting semantic errors in
these textual data has become a crucial research direction in Natural Language Processing (NLP).
Semantic errors, as a special category of textual errors, not only involve fundamental theoretical
issues in linguistics, such as lexical semantics and syntactic semantics, but are also closely re-
lated to language comprehension and information processing mechanisms in cognitive science.
From an information theory perspective, semantic errors increase information entropy and re-
duce communication efficiency, potentially leading to severe economic losses, legal disputes,
or life-threatening situations in professional domains such as medical diagnostic reports, legal
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documents, technical specifications, and financial contracts. Compared to spelling and gram-
matical errors, semantic errors are more prominently manifested in complex syntactic structures
and semantic relationships. Sentences containing semantic errors often appear superficially flu-
ent, making them difficult for even human readers to detect. For example, the sentence “fZ &
XM RAERE . TE - EIMBIKR, BB TRMRTRICEIER (Repeatedly
reading these exquisite passages, thythms, tones, and nuances helps cultivate a strong sense of
Classical Chinese) is formally grammatically correct but exhibits a collocational mismatch: 7
Z= « BRI (rthythms, tones, and nuances) are improperly coordinated with “f& %" (pas-
sages), resulting in inconsistent semantic categories that undermine precision and may lead to
misunderstanding. In practice, semantic errors commonly take the form of word order errors,
missing constituents, improper collocations, redundancy, confusion, fuzziness, and illogicality.
Such errors are not only difficult to detect with conventional text-editing tools but often require
specialized knowledge and specific contextual information for accurate identification. Therefore,
developing efficient semantic error detection technologies holds significant theoretical value in
linguistics while providing technical support for enhancing social information exchange effi-
ciency and reducing communication costs.

However, semantic error detection faces multiple technical challenges. First, the diversity
and complexity of semantic errors make it difficult for traditional rule-based methods to com-
prehensively cover all error types. Second, semantic understanding itself is a complex cognitive
process requiring models to possess strong language comprehension and knowledge reasoning
capabilities. In recent years, Large Language Models (LLMs) have offered new solutions for
semantic error detection through their powerful language understanding abilities and flexible In-
Context Learning (ICL) capabilities. LLMs can quickly acquire task-relevant knowledge from
few-shot examples without requiring large-scale training data and complex model fine-tuning.
Nevertheless, selecting effective ICL demonstration samples to enhance model performance in
error detection remains a significant challenge. Furthermore, since semantic error detection fun-
damentally focuses on semantic-level analysis, effectively integrating more fine-grained semantic
information remains a critical issue to be resolved.

To address these challenges, we propose a chain-of-thought-augmenteD syntactIc-baSed in-
ContExt LeaRNing framework (DISCERN). The framework comprises three core modules: Se-
mantic Error Mechanism Mining module (SEMM), Demonstration Sample Selection module
(DSS), and Template Filling and Output module (TFO). The SEMM module achieves precise
detection, classification, and causal analysis of semantic errors by integrating the LLMs’ Chain
of Thought (CoT) prompting technique. The DSS module calculates semantic similarity between
sentences through dependency tree kernel functions to ensure the selection of the most represen-
tative ICL demonstration samples. The TFO module ensures consistency and interpretability of
model inputs and outputs through standardized template design. Experimental results demon-
strate that DISCERN effectively improves the performance of large models in Chinese semantic
error detection tasks. Our main contributions are summarized as follows:

1) We propose a novel Chinese semantic error detection framework DISCERN based on
CoT and ICL. By integrating the advantages of these two techniques, the framework effectively
enhances the LLMs’ understanding and detection capabilities for complex semantic errors.

2) We design a demonstration sample selection mechanism based on dependency syntax
trees, which effectively improves the accuracy of demonstration example selection.

3) We conduct extensive experiments on the CSED-R dataset. The results show that our
method DISCERN enhances the LLMs’ performance for the semantic error detection tasks.
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2. Related Work

2.1. Chinese Semantic Error Detection

In the field of Chinese semantic error detection, while spelling and grammatical error detec-
tion have garnered widespread attention and research, studies on semantic errors remain rel-
atively underdeveloped [1]. Existing research mainly revolves around three major technical
approaches: rule-based methods, neural network-based methods, and pre-trained model-based
methods.

Rule-based methods. In the early studies on semantic error detection, rule-based methods
dominated the field. These methods rely on statistical theories and dependency analysis to iden-
tify collocation relationships between words by analyzing large-scale corpora [2]. While such
methods can yield good results in certain scenarios, their major drawback lies in weak gener-
alization capabilities when faced with complex semantic structures. In particular, rule-based
methods often fall short in handling scenarios where semantic dependencies across sentences or
even paragraphs are required [3].

Neural network-based methods. With the rapid development of deep learning technology,
neural networks have gradually become the main tool for Chinese semantic error detection. Neu-
ral network models can automatically learn contextual information from large-scale data, thereby
capturing complex semantic relationships [4]. PHMOSpell enhances the detection accuracy of
spelling and semantic errors by incorporating phonetic and glyph information [4]. However,
neural network-based models are still limited by the training data and model architecture when
dealing with long-distance dependent semantic structures, leading to certain limitations in spe-
cific scenarios.

Pre-trained model-based methods. In recent years, the development of pre-trained models
has greatly improved the performance of Chinese semantic error detection. The Desket model,
which combines dependency syntax analysis [2], captures dependency relationships and part-
of-speech information in sentences to achieve more accurate semantic error correction. Wu et
al. propose a CSER method with the Dependency Syntactic Attention mechanism (CSER-DSA)
to explicitly infuse dependency syntactic information only in the fine-tuning stage, achieving
robust performance [5]. These pre-trained models can effectively handle long-distance seman-
tic dependencies and demonstrate strong generalization capabilities, making them adaptable to
more complex semantic structures and diverse linguistic environments. By leveraging the learn-
ing from large-scale corpora, pre-trained models have significantly improved the accuracy and
robustness of semantic error detection [6, 7, 8].

2.2. In-context Learning

ICL is a learning paradigm that has attracted widespread attention with the emergence of
LLMs [9, 10]. Typically, ICL prompts LLMs with contextual examples, enabling them to learn
tasks from only a few examples. Positive impacts of ICL on LLMs have been observed in various
tasks such as text classification and answering [11, 12], images generations [13], speech tasks
[14], and multi-modal scenarios [15, 16]. Recent works have aimed to enhance ICL by selecting
valuable demonstrations [17, 18], optimizing the order of demonstrations [19], etc.

To the best of our knowledge, there is no previous work investigating the potential of ICL for
Chinese semantic error detection tasks. Existing ICL demonstration selection methods struggle
to incorporate fine-grained semantic information, and thus the ICL capabilities of LLMs have
not been fully leveraged in error detection tasks requiring deep semantic understanding. Our
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Figure 1: DISCERN framework. DISCERN first identifies and classifies semantic errors in training sentences through
the SEMM module using LLM’s CoT prompting technique. Next, the DSS module selects appropriate ICL examples for
each test sample based on dependency tree similarity computation. Finally, in the TFO module, DISCERN populates a
predefined template with selected examples to assist LLMs in Chinese semantic error detection. The text in parentheses
provides the English translation of the original prompt.

work succeeds in addressing this limitation to some extent and confirms the potential of ICL for
Chinese semantic error detection.

3. Methods

3.1. Overview

We propose a chain-of-thought-augmenteD syntactIc-baSed in-ContExt LeaRNing frame-
work (DISCERN), which comprises three primary modules: Semantic Error Mechanism Mining
(SEMM) module, the Demonstration Sample Selection (DSS) module, and the Template Filling
and Output (TFO) module. The complete framework flow chart is presented in Fig. 1. In SEMM,
we utilize LLM’s CoT prompting technique to identify and classify semantic errors in sentences
and extract specific reasons for the error. By populating predefined templates with sentences
from the training set and feeding them into LLMs, we obtain specific error types and their un-
derlying causes, which are then standardized into structured formats for subsequent analysis.
DSS aims to identify appropriate ICL examples based on semantic similarity between sentences.
We employ tree kernel functions to compute the similarity between dependency trees extracted
from sentences. Finally, in TFO, we design a predefined template to standardize the input format
for the LLMs. The constructed template is subsequently fed into the LLMs, which determines
whether the test samples contain any semantic errors.

3.2. Semantic Error Mechanism Mining

CoT is a prompting technique that guides LLMs through step-by-step reasoning, enhancing
their performance on complex tasks by encouraging them to demonstrate their reasoning process.
To effectively identify and classify semantic errors in sentences, we employ the CoT prompting
technique of LLMs. Specifically, we input sentences X from the training set into LLMs. For
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sentences containing semantic errors (i.e., samples labeled as “;&(yes)”), we encapsulate them
into a predefined template. This template explicitly instructs the model to confirm the presence
of semantic errors and requires it to analyze and enumerate specific types of semantic errors
and their causes, as shown in Fig. 2. Subsequently, the LLMs output a binary label C € {0, 1},
where 0 and 1 denote the absence and presence of semantic errors respectively, the semantic
error classification 7, and a detailed explanation of the error reason R. For each instance i in
the training set where the LLMs outputs C equals 1 indicating semantic errors, we construct
a structured template Template; = (X;, T;, R;). These templates are aggregated into a set 7 =

{Templatei}l].\; |» where N denotes the total number of semantic error instances.

! T 85 A 35 R, AR 7 AR 68 R £ 1
! | maaa. !
! Instruction | (The following sentences contain semantic errors. '
1 Analyze and identify the specific types of semantic errors !
' and their causes.) i
! |
! |
! 1

Input: { X'}

1/0O Format Gt

Figure 2: Prompt template for semantic error mechanism mining. The text in parentheses provides the English translation
of the original prompt.

3.3. Demonstration Sample Selection

For each sentence in both the training and test sets, we first perform word segmentation and
extract its dependency tree. Then, for each dependency tree of sentences in the test set, we
utilize tree kernel functions to calculate similarity scores between it and the dependency trees of
all sentences in the training set, selecting the top K sentences with the highest similarity scores
as its demonstration samples.

3.3.1. Construction of Dependency Syntax Trees

In this study, we employ the Language Technology Platform (LTP) [20], which is a compre-
hensive Chinese natural language processing toolkit providing extensive functionalities. Specif-
ically, we utilize LTP for word segmentation and dependency parsing, constructing syntax trees
to capture the grammatical and semantic relationships between word segments in sentences.
For each sentence S in the training and test sets, we first segment it into a sequence of words
W = {wi,ws,...,w,}, where each w; represents a word token in the sentence. Subsequently, LTP
identifies the dependency relations for each word token w; and assigns it a dependency label d;,
which indicates the relationship type between w; and its head word. These dependency relations
can be formalized as a set of binary tuples D = {(;, r)}L,, where h; denotes the head word
index of w;, and r; represents the type of dependency relation. Based on this information, we
can construct a syntax tree 7, mathematically represented as a Directed Acyclic Graph (DAG)
T = (V,E), where the node set V = {v|,v,,...,v,} corresponds to words w;, and the edge set
E = {(vy;, vi, r))};_, represents the dependency relation r; from the head word vy, to the dependent
word v;.

3.3.2. Subtree Kernel Function
The subtree kernel function is a convolutional kernel method used to measure the similarity
between two trees [21]. Its core idea is to compare the subtrees of two syntax trees and calculate

Datalntelligence 5



DISCERN: Chain-of-Thought-Augmented Syntactic-based In-Context Learning for CSED

the number of shared substructures to quantify their similarity. For two dependency trees, T, and
T,, we utilize the following subtree kernel function formula to calculate their similarity score:

KT, T)= ), > kn,m), (1)

n1eN| nyeN,

where N; and N, are the node sets of dependency trees T'1 and 72, respectively, and k(n;, ny)
is the recursive formulation of the subtree kernel function that computes the similarity between
subtrees rooted at nodes n; and n;.

3.3.3. Recursive Definition

(1) If the labels of nodes n; and n, differ, then k(n;, n,)=0, ensuring that only nodes with the
same label contribute to the similarity.

(2) If both nodes are leaf nodes and their labels match, then k(n;,n,)=A4, where A (0 < 2 < 1)
is a decay factor that controls overall similarity’s impact by matching leaf nodes.

(3) If the labels of two nodes are the same and they have child nodes, then:

l
k(m,m) = A[ [+ ke, ea), @)
i=1

where [ is the number of child nodes, and c}; and c,; represent the i-th child nodes of n; and n,,
respectively.

3.4. Template Filling and Output

To facilitate effective interaction with LLMs in semantic error detection tasks, we construct a
predefined template to standardize the input format. This template aims to provide clear instruc-
tions to LLMs while incorporating K demonstration samples selected through DSS. Our template
format is shown in Fig. 3. Finally, we input the constructed template into the large model to allow
the model to determine whether the test sample contains semantic errors.
| HR— Ao SIS K 5, ABIRAI TP R B
i LA iR o '

Instuction | (You are a Chinese semantic error detection system capable afi

identifying whether a sentence contains semantic errors.)

! Input: {X,} &X AR LA (T} RHE: (R} Output: &
: Input: {X,} &R £A: {T,} AE: {R,} Output: & !

: ICL Input: {Xg} EXEEEEA: (T} BRE: {Rg} Output: & '
E example (Input: {X,} Semantic Error Type: {T,} Reason: {R;} Output: Yes i
! Input: {X,} Semantic Error Type: {T,} Reason: {R,} Output: Yes

Input: {Xy! Semantic Error Ty;}e: {Ty} Reason: {Ry} Output: Yes) i

E Input: {Test sample} ;
I/O Format Ot !

Figure 3: Prompt template for semantic error detection. The text in parentheses provides the English translation of the
original prompt.
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4. Experiments

4.1. Experimental Settings and Datasets

We evaluate DISCERN and other ICL methods on ChatGLM3-6B! and DeepSeek-R]2 [22].
Both models are selected for their strong Chinese understanding and ICL abilities, achieving a
balance between computational efficiency and reasoning depth. We perform experimental testing
using the Chinese Semantic Error Diagnosis Recognition (CSED-R) dataset built by Sun et al.
[1]. This dataset contains 45,248 training samples, 2,160 validation samples, and 2,000 test
samples, which contains richer semantic error types compared to other existing datasets. All
experiments are conducted on an RTX8000.

4.2. Evaluation Metrics

In all experiments, precision, recall, F1-score, and accuracy are regarded as the most crucial
performance metrics. Higher values of these metrics correspond to better performance.

4.3. Comparison Methods

To assess the effectiveness of DISCERN, we perform comparative analyses using several
established methods in this field.

Universal Pre-trained Model-Based Methods. Universal pre-trained model-based meth-
ods refer to the capability of universal pre-trained language models to perform semantic error
detection tasks without explicit training on specific tasks or dataset examples [23].

Syntax-Infused Fine-tuning Methods. Models [24] enhanced with syntactic information
serve as the foundational architecture. These models are subsequently fine-tuned on the CSED-R
dataset to improve their adaptation to the semantic error detection tasks. To evaluate the effec-
tiveness of different approaches, various fine-tuning strategies are employed, including CSER-
DSA [5] as well as Syntax-RoBERTa [25] and its variants that incorporate additional syntactic
information.

RoBERTa Pre-training with Syntax-related Task Approach. RoBERTa models are ini-
tially pre-trained using one million Wikipedia articles, utilizing the LTP tool to perform syntactic
parsing and obtain sentence dependency structures. Subsequently, specialized pre-training tasks,
such as DP and DP*, are designed based on these dependency structures, enabling the models
to acquire syntactic knowledge during the pre-training phase. For experiments on the CSED-
R dataset, various pre-training strategies, including ROBERTa+DP and RoBERTa+DP* [1], are
implemented and their performance is compared against baseline models.

Jaccard-based ICL. Jaccard-based ICL [26] method refers to a word similarity-based ex-
ample selection approach for ICL, which leverages the Jaccard coefficient to identify the most
relevant demonstration examples for test samples by computing the ratio between intersection
and union of segmented sentence sets.

Thttps://huggingface.co/THUDM/chatglm3-6b-base
2https://www.o]1ama.com/SIGJNF/deepseek—r] -671b-1.58bit
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Model P R F, ACC
RoBERTa [24] 729 724 72,6 727
MacBERT [27] 723 753 737 731
SLA [28] 728 73.0 729 729
Syntax-RoBERTa[25] 733 743 738 73.6
RoBERTa+DP [1] 742 744 743 743
RoBERTa+DP" [1] 732 75.8 748 741
SLA+DP [1] 721 77.1 745  73.6
SLA+DP* [1] 720 769 744 735
Syntax-RoBERTa+DP [1] 7377 759 748 744
Syntax-RoBERTa+DP* [1] 73.6 76.1 748 744
CSER-DSA [5] 756 748 752 75.3
ChatGLM3 512 98.8 67.5 524
Jaccard-based ICL (ChatGLM3) [26] 51.1 962 66.8 522
DISCERN (ChatGLM3) 52.6 945 67.6 54.6
DISCERN w/o SEMM (ChatGLM3) 51.7 985 67.8 532
DeepSeek-R1 51.6 728 604 52.1
Jaccard-based ICL (DeepSeek-R1) 53.1 9277 67.5 555
DISCERN (DeepSeek-R1) 547 872 672 575

DISCERN w/o SEMM (DeepSeek-R1) 52.1 90.8 662 53.7

Table 1: Performance comparison of different models

4.4. Comparison Experimental Results

The comparison experimental results are shown in Table 1. The results demonstrate that
LLMs exhibit relatively inferior performance in Chinese semantic error detection tasks. For
instance, ChatGLM3 achieved an accuracy of 52.4% and an Fl-score of 67.5%, showing a
significant performance gap compared to specialized models such as CSER-DSA and Syntax-
RoBERTa+DP. For the DeepSeek-R1 model, its accuracy and Fl-score are also significantly
lower than those of the specialized models. This indicates that purpose-designed pre-trained
language models possess substantial advantages in Chinese semantic error detection tasks.

In our analysis of different enhancement approaches for ChatGLM3, the Jaccard-based ICL
(ChatGLM3) achieved an accuracy of 52.2% and an Fl-score of 66.8%, showing slight de-
creases of 0.2% and 0.7% respectively compared to the original ChatGLM3 model. In contrast,
DISCERN (ChatGLM3) attained an accuracy of 54.6% and an Fl-score of 67.6%, represent-
ing improvements of 2.2% and 0.1% respectively over the original ChatGLM3 model. For the
DeepSeek-R1 model, DISCERN (DeepSeek-R1) achieved an accuracy of 57.5% and an F1-
score of 67.2%, marking significant improvements of 5.4% and 6.8% respectively compared to
the original DeepSeek-R1 model. When compared to Jaccard-based ICL (DeepSeek-R1), which
achieved an accuracy of 55.5% and an F1-score of 67.5%, DISCERN (DeepSeek-R1) demon-
strated a 2.0% increase in accuracy while maintaining comparable F1-score performance.

Overall, DISCERN demonstrates significant enhancement in model performance, surpassing
traditional Jaccard-based ICL approaches. This improvement can be attributed to DISCERN’s
comprehensive consideration of both semantic and syntactic relationships during example se-
lection, as well as the integration of additional semantic information through CoT prompting
technique, thereby enhancing the model’s logical understanding and detection capabilities for
semantic errors.
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4 3 g
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Figure 4: Variations in the performance of each method in response to changes in the K value.

Template A

HIRH T THRGSHEE R, WREEREE, SUEEES .

Please identify whether there are any semantic errors in the following sentence. If yes,
please answer “yes”; if no, please answer “no”.

Template B

PREGAESS BRI LU )7 i B W AFAE TR LR - B AAEN AR, 5 A FI0E
AL MEES .

Your task is to detect whether there are any semantic errors in the following sentence. If an
error exists, answer “’yes”; if the sentence is correct, answer “no”.

Table 2: Different prompt templates for semantic error detection

4.5. Parameter Study Experiment

We further investigate the impact of the number of ICL demonstration samples K on the
performance of the model. For this purpose, we conduct experiments with K values ranging
from 1 to 4. At each value of K, we test under consistent computational resource configura-
tions and model parameter settings to ensure the comparability of the results. These experiments
are conducted on the ChatGLM3-6B. As shown in Figure 4, the results indicate that, with the
increase in K, the DISCERN framework equipped with the SEMM module exhibits a signifi-
cant monotonic decrease in both the F1 score and accuracy metrics. In contrast, the DISCERN
framework without the SEMM module (DISCERN w/o SEMM) shows only a slight decrease in
these metrics, with overall performance remaining relatively stable. This phenomenon reveals
that after incorporating the SEMM module, increasing the number of ICL demonstration samples
actually leads to an information redundancy effect (IRE). The introduction of excessive samples
brings additional feature noise, negatively impacting the model’s performance in semantic er-
ror detection tasks. This finding, which has significant practical implications for selecting the
appropriate number of ICL samples, suggests that when utilizing the ICL technique, it is neces-
sary to balance the trade-off between sample scale and model performance to avoid performance
degradation caused by excessive samples.
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Sentences [ Ans. [ Orig.] Ours
Tk 7 po3 o P
Whatever you do, mdmtammg a clear mind and serious attitude is the key to success. yes no yes
BRI, Z R - A NS, e s N e Ewmes T — L2 EE - po3 = f 3
The core of the image is a passionate bird that tirelessly sings for the wind, land, rivers, and dawn, and even yes no yes
dedicates its feathers to the earth after death.
FEERRORZ , KEMETR, LT AT EERARIEE P EE - 3 ) &
China is the homeland of Chang’e, the birthplace of rockets, and the nation that gave birth to Wan Hu, yes no yes
humanity’s ’true pioneer of space travel’.

Case 2
LTl iﬁ’]fﬁ?i%?rﬁkﬁTﬂFlﬁﬁﬁz MERERE . BSFEEEEMT (B MCINE, P o &

BRI R — YRR 5
Confucius established Confucmmsm which became the orthodox ideology of ancient Chinese society. Ad- yes no no
ditionally, he edited and revised The Spring and Autumn Annals, originally recorded by the official historians
of the State of Lu, transforming it into China’s first chronicle-style historical work.

BN EERNEENRT TR, BT IERRIAR - KEOSEERY, BREZEA
HIZEARRE S -

The best way to commemorate Mr. Ji Xianlin is to learn from his independent personality, detached mindset, yes no no
and rigorous scholarship, and to carry forward his academic spirit.

o
iy
oy

TERIARET R ERRE, FiR (DLEI B R S S Ed iR s E AR =5
RO S, BRSNS .

To curb the rising number of accidents, the new "Regulations on the Application and Use of Motor Vehicle yes no no
Driver’s Licenses’ guides civilized driving by increasing the cost of violations, which is indeed necessary.

o
iy
o

Table 3: A case study of model outputs before and after integrating DISCERN

4.6. Investigation of Different Templates

In the context of LLMs’ limited semantic understanding capabilities, the design of prompt
templates plays a key role in determining whether models can correctly understand and solve
semantic error detection tasks. To this end, we designed two different prompt templates and
explored their impact on model output.

Experimental results show that when using the templates in Table 2, regardless of the value of
K, the predicted results of the model are consistently “#5(no)”, suggesting that in semantic error
detection tasks the model is very sensitive to changes in prompt words and may not correctly
understand the task requirements. In contrast, using our initially designed prompt template that
includes examples, the model can correctly differentiate sentences with semantic errors. This
emphasizes the critical importance of accurate template design in improving model performance.

4.7. Case Study

We conduct case studies to investigate the effectiveness and limitations of DISCERN. As
shown in Table 3, Case 1 presents three examples where DISCERN succeeds in providing cor-
rect answers whereas the original model falls short. In Case 2, neither DISCERN nor the original
model provides the correct answer for the three examples. The results from Case 1 demon-
strate that DISCERN can significantly improve LLMs’ performance in semantic error detection
through two key mechanisms. DISCERN selects example sentences that are highly similar both
semantically and syntactically to the test samples by computing similarity scores based on de-
pendency parse trees. LLMs can then perform ICL through these example sentences, thereby
improving their performance in semantic error detection tasks. Additionally, the integration of
CoT prompting technique provides the model with additional semantic information, enhancing
its understanding of complex semantic relationships. However, the analysis of Case 2 reveals
several limitations of DISCERN. It still faces challenges in handling complex semantic rela-
tionships in lengthy sentences. For instance, in the first sentence of Case 2, the model fails to
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correctly resolve references between entities. This indicates that the model has limited capabil-
ity in understanding deep semantic relationships such as anaphora, ellipsis, implicit logic, and
discourse cohesion.Additionally, when encountering sentences with intricate semantic relation-
ships, CoT reasoning often fails to resolve the issue in a single step. If the analytical content is
suboptimal or redundant, it may hinder the model’s grasp of the task requirements. In the fu-
ture, vector-based semantic representations from pre-trained language models can be integrated
to compensate for the deficiencies of traditional dependency-based similarity measures in com-
plex sentences. Furthermore, by designing task-decomposition-based CoT strategies, complex
problems that are difficult to resolve in one step can be broken down into smaller, interpretable
reasoning chains, thus improving the depth and reliability of the reasoning process.

5. Conclusion

In this paper, we propose a chain-of-thought-augmented syntactic-based in-context learn-
ing framework DISCERN for Chinese semantic error detection tasks. The proposed framework
integrates the CoT prompting technique with dependency syntax tree-based similarity calcula-
tion to select appropriate demonstration examples, aiming to enhance LLMs’ performance in
detecting complex semantic errors. Experimental results on the CSED-R dataset demonstrate
that DISCERN achieves promising results in improving the accuracy of semantic error detec-
tion, particularly when the original model output is inaccurate. While showing effectiveness, the
framework still faces challenges in example selection strategies and handling complex seman-
tic relationships, which provides valuable directions for future research to further optimize the
performance of LLMs in semantic error detection tasks.
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