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1 Introduction

The notion of left-symmetric algebras was originally introduced by Vinberg, which are also called Vinberg

algebras [19], Koszul algebras or quasi-associative algerbas [13]. Cayley firstly introduced a kind of left-

symmetric algebras (LSAs, for short), called rooted tree algebras in [5]. LSAs are closely related to vector

fields, rooted tree algebras, vertex algebras, operad theory, convex homogeneous cones, affine manifolds,

Lie groups, Lie algebras and so on. For more information on origins and the applications of LSAs see

the survey paper [4] by Burde. Recently much attention has been paid to such objects and many related

papers appeared (i.e., [2,4,7,10–12,17]). We know that LSAs and RSAs (the opposite algebras of LSAs,

called right-symmetric algebras) are examples of Lie-admissible algebras, i.e., the commutator defines a

Lie bracket. An important project related to LSAs is to determine all the compatible left-symmetric

algebra structures on a Lie algbera. The left-symmetric algebra structures on the Virasoro algebra were

investigated in [12] and [14], whose super cases were determined in [11]. Recently, the authors classified

all the compatible left-symmetric algebra structures on the W -algebra W (2, 2) in [6].

In the present paper, we classify all the left-symmetric algebra structures on the twisted Heisenberg-

Virasoro algebra with similar natural grading conditions. The twisted Heisenberg-Virasoro algebra H,
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introduced by Arbarello et al. [1] more than twenty years ago, is an infinite-dimensional Lie algebra with

a C-basis {Ln, In, c1, c2, c3 |n ∈ Z } and the following non-vanishing brackets:

[Lm, Ln] = (m− n)Lm+n +
m3 −m

12
δm+n,0c1,

[Lm, In] = −nIm+n + (m2 −m)δm+n,0c2,

[Im, In] = nδm+n,0c3.

(1.1)

The twisted Heisenberg-Virasoro algebra is the central extension of the Lie algebra {f(t) d
dt

+ g(t) |

f, g ∈ C[t, t−1]} of differential operators of order at most one [1] and contains the infinite-dimensional

Heisenberg algebra (the subalgebra spanned by {c3, In |n ∈ Z}) and the Virasoro algebra (the subalge-

bra spanned by {c1, Ln |n ∈ Z}, denoted by V) as its subalgebras, which both play important roles in

mathematical physics. Until now the structures and representations of the twisted Heisenberg-Virasoro

have been investigated in many papers, among which Arbarello et al. [1] studied the irreducible highest

weight representations for H, Billig [3] described the structure of the irreducible highest weight modules

for the twisted Heisenberg-Virasoro Lie algebra at level zero, Shen and Jiang [18] determined its deriva-

tion algebra and automorphism group, Lu and Zhao [16] gave a complete classification of irreducible

Harish-Chandra modules, Liu and Jiang [15] classified all indecomposable Harish-Chandra modules of

the intermediate series and Fu et al. [9] exhausted all the possible nontrivial superextensions of this type

algebra.

Throughout this paper, C and Z denote the field of complex numbers and the ring of integers, respec-

tively. Unless specified otherwise, all the Lie algebras and left-symmetric algebras are defined over C and

we assume that ǫ ∈ C possesses the following properties:

Re ǫ > 0, ǫ−1 /∈ Z or Re ǫ = 0, Imǫ > 0.

2 Preliminaries and main results

In this section, we introduce some definitions and notation for left-symmetric algebras, and follow with

some results about the left-symmetric algebra structures on the Virasoro algebra.

Definition 2.1. Let A be a vector space over a field F equipped with a bilinear product (x, y) 7→ xy.

A is called a left-symmetric algebra if for any x, y, z ∈ A, the associator

(x, y, z) = (xy)z − x(yz)

is symmetric in x, y, that is,

(x, y, z) = (y, x, z), or equivalently (xy)z − x(yz) = (yx)z − y(xz).

Modules over left-symmetric algebras can also be defined [8]. In particular, for any left-symmetric

algebraA, its underlying vector space can be endowed with the naturalA-module structure: (a,m) 7→ am,

(m, a) 7→ ma, a,m ∈ A.

Left-symmetric algebras are Lie-admissible algebras (see [17]).

Proposition 2.2. Let A be a left-symmetric algebra. For any x ∈ A, denote by Lx the left multipli-

cation operator (i.e., Lx(y) = xy, for all y ∈ A).

(1) The commutator

[x, y] = xy − yx, ∀x, y ∈ A,

defines a Lie algebra G(A), which is called the sub-adjacent Lie algebra of A and A is called a compatible

left-symmetric algebra structure on the Lie algebra G(A).

(2) Let L : G(A) → gl(A) with x 7→ Lx. Then (L,A) gives a representation of the Lie algebra G(A),

that is,

[Lx, Ly] = L[x,y], ∀x, y ∈ A.
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Let ρ : G → gl(V ) be a representation of any Lie algebra G. A 1-cocycle q : G → V is a linear map on

vector space associated with ρ (denoted by (ρ, q)) satisfying

q[x, y] = ρ(x)q(y) − ρ(y)q(x), ∀x, y ∈ G.

Let A be a left-symmetric algebra and ρ : G(A) → gl(V ) be a representation of its sub-adjacent Lie

algebra. If g is a homomorphism of the representations from A to V , then g is a 1-cocycle of G(A)

associated with ρ. There is not always a compatible left-symmetric algebra structure on any Lie algebra G.

A sufficient and necessary condition for a Lie algebra with a compatible left-symmetric algebra structure

is given as follows.

Proposition 2.3. Let G be a Lie algebra. Then there is a compatible left-symmetric algebra structure

on G if and only if there exists a bijective 1-cocycle of G.

In fact, let (ρ, q) be a bijective 1-cocycle of G, then

x ∗ y = q−1ρ(x)q(y), ∀x, y ∈ G,

defines a left-symmetric algebra structure on G. Conversely, for a left-symmetric algebra A, the identity

transformation id is a 1-cocycle of G(A) associated with the regular representation L (see [10, 17]).

To avoid confusion, for a Lie algebra G we denote a compatible left-symmetric algebra on G by A(G).

A compatible left-symmetric algebra structure on the Virasoro algebra V =
⊕

n∈Z
Ln ⊕ Cc1 is said to

have the natural grading condition if the multiplication of A(V) satisfies

c1 c1 = c1Lm = Lmc1 = 0, LmLn = f(m,n)Lm+n + ω(m,n)c1, (2.1)

for two complex-valued functions f(m,n), ω(m,n) on Z × Z. The condition (2.1) is said to be natural

because it means that A(V) is still Z-graded and c1 is also a central extension given by ω(m,n). Such

left-symmetric algebra structures were classified in [12].

Theorem 2.4. Any left-symmetric algebra structure on the Virasoro algebra V satisfying (2.1) is

isomorphic to one of the left-symmetric algebras given by the multiplication

LmLn =
−n(1 + ǫn)

1 + ǫ(m+ n)
Lm+n +

c1
24

(m3 −m+ (ǫ − ǫ−1)m2)δm+n,0.

The Lie algebra H contains a Heisenberg subalgebra and a Virasoro subalgebra, and is also Z-graded:

H =
⊕

m∈Z
Hm, where Hm = CLm ⊕ CIm ⊕ δm,0(Cc1 ⊕ Cc2 ⊕ Cc3) for all m ∈ Z. Then it is natural to

suppose that the compatible left-symmetric algebra structures satisfy similar conditions. Hence we can

safely make the following assumptions on A(H):

LmLn = f(m,n)Lm+n + ω(Lm, Ln)c1,

LmIn = g(m,n)Im+n + ω(Lm, In)c2,

ImLn = h(m,n)Im+n + ω(Im, Ln)c2,

ImIn = a(m,n)Lm+n + b(m,n)Im+n + ω(Im, In)c3,

cicj = ciLm = Lmci = ciIn = Inci = 0,

(2.2)

where f(m,n), g(m,n), h(m,n), ω(· , ·) are all complex-valued functions.

The main result of this paper can be formulated as the following theorem.

Theorem 2.5. Any left-symmetric algebra structure on the twisted Heisenberg-Virasoro algebra H

satisfying relation (2.2) is isomorphic to one of the left-symmetric algebras determined by the following
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functions:

f(m,n) =
−n(1 + ǫn)

1 + ǫ(m+ n)
, g(m,n) = −n(1 + (1− ǫn)αδm+n,0),

h(m,n) = n(1 + ǫn)αδm+n,0, a(m,n) = b(m,n) = 0,

ω(Lm, Ln) =
1

24
(m3 −m+ (ǫ − ǫ−1)m2)δm+n,0,

ω(Lm, In) = (m2 −m+ (ǫm2 +m)β)δm+n,0,

ω(Im, Ln) = n(1 + ǫn)βδm+n,0, ω(Im, In) =
n

2
δm+n,0

(2.3)

for any m,n ∈ Z and some constants α, β ∈ C.

By the main theorem, the following corollary is obvious.

Corollary 2.6. Let A(H) be a compatible left-symmetric algebra on H satisfying relation (2.2). Denote

A(V) = spanC{Ln, c1 |n ∈ Z}, A2 = spanC{In, c2 |n ∈ Z}, A3 = spanC{In, c3 |n ∈ Z} and A23 =

A2 +A3. Then all A(V), A3 and A23 are infinite-dimensional subalgebras of A(H). Furthermore, A23

is both an A(H)-module and an A(V)-module. However, the A(V)-module A2 is not always an A(H)-

submodule.

3 Proof of Theorem 2.5

We will divide the proof of main theorem into two steps. The first step is to determine the left-symmetric

algebra structures on the centerless Heisenberg-Virasoro algebra, denoted by H , which is defined by the

relations (1.1) with ci = 0. Then we obtain the central extensions of the left-symmetric algebra on H ,

i.e., the left-symmetric algebra structures on H.

3.1 The centerless case

The grading conditions of the left-symmetric algebra structures on H are those given in the relations (2.2)

with ci = 0, which give the following lemma.

Lemma 3.1. A bilinear product defined by (2.2) with ci = 0 gives a compatible left-symmetric algebra

structure on H if and only if

f(m,n)− f(n,m) = m− n, g(m,n)− h(n,m) = −n,

a(m,n) = a(n,m), b(m,n) = b(n,m),

f(n, k)f(m,n+ k)− f(m, k)f(n,m+ k) = (m− n)f(m+ n, k),

g(n, k)g(m,n+ k)− g(m, k)g(n,m+ k) = (m− n)g(m+ n, k),

h(n, k)g(m,n+ k)− f(m, k)h(n,m+ k) = −nh(m+ n, k),

h(n, k)a(m,n+ k)− h(m, k)a(n,m+ k) = 0,

h(n, k)b(m,n+ k)− h(m, k)b(n,m+ k) = 0,

a(n, k)f(m,n+ k)− g(m, k)a(n,m+ k) = −na(m+ n, k),

b(n, k)g(m,n+ k)− g(m, k)b(n,m+ k) = −nb(m+ n, k),

b(n, k)a(m,n+ k)− b(m, k)a(n,m+ k) = 0,

a(n, k)h(m,n+ k) + b(n, k)b(m,n+ k) = a(m, k)h(n,m+ k) + b(m, k)b(n,m+ k)

(3.1)

hold for all m,n, k ∈ Z.

By Theorem 2.4, in order to obtain a compatible left-symmetric algebra structure on H with the

grading condition (2.2), one can suppose

f(m,n) =
−n(1 + ǫn)

1 + ǫ(m+ n)
. (3.2)
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Furthermore, we have the following technical lemma that determines all the compatible left-symmetric

algebra structures on H with f(m,n) defined by (3.2).

Lemma 3.2. Fixing some α, ǫ, a, b ∈ C and the corresponding f(m,n) defined by (3.2), there is only

the following solution simultaneously satisfying all equations in (3.1):

h(m,n) = n(1 + ǫn)αδm+n,0, g(m,n) = −n(1 + (1− ǫn)αδm+n,0),

a(m,n) =
aδα,0

1 + ǫ(m+ n)
, b(m,n) = bδα,0.

(3.3)

Hence these functions define a compatible left-symmetric algebra structure on H .

Proof. It is easy to check that the complex-valued functions f(m,n), g(m,n), h(m,n), a(m,n) and

b(m,n) given in (3.3) simultaneously satisfy (3.1).

Conversely, for any m,n ∈ Z, introduce the notation:

G(m,n) =
1 + ǫ(m+ n)

1 + ǫn
g(m,n), H(n,m) =

1 + ǫ(m+ n)

1 + ǫm
h(n,m),

then (3.1) implies the following relations:

(1 + ǫn)G(m,n)− (1 + ǫm)H(n,m) = −n(1 + ǫ(m+ n)), (3.4)

G(n, k)G(m,n+ k)−G(m, k)G(n,m+ k) = (m− n)G(m+ n, k), (3.5)

H(n, k)G(m,n+ k) + kH(n,m+ k) = −nH(m+ n, k). (3.6)

Taking m = 0 in (3.4) and in (3.6), we obtain H(n, k)H(n+ k, 0) = 0. Immediately, we have

H(n, 0) = 0, G(0, n) = −n, ∀n ∈ Z.

Noticing that (3.6) implies

H(0, k)G(m, k) + kH(0,m+ k) = 0

for all m, k ∈ Z, thus, if there is some k 6= 0 such that H(0, k) = 0, then H(0,m) = 0 for all m ∈ Z.

According to the above discussion, the proof of this lemma shall be fall into two cases.

Case 1. H(0, l) = 0 for all l ∈ Z.

In this case, taking n = −k = m in (3.6), we obtain H(−2k, k) = 0 for all k ∈ Z. Observing the

sequence

H(−2k, k)
n=−2k=2m,(3.6)
−−−−−−−−−−−→ H(−3k, k)

n=−3k=3m,(3.6)
−−−−−−−−−−−→ · · ·

n=−ak=am,(3.6)
−−−−−−−−−−−→ H(−(a+ 1)k, k) · · · ,

one can deduce

H(−am,m) = 0, G(m,−am) = am
1 + ǫ(m− am)

1− ǫam
, ∀ a,m ∈ Z, a > 2.

Similarly, one has

H(0, k)
n=k=−m,(3.6)
−−−−−−−−−−→ H(k, k)

n=2k=−2m,(3.6)
−−−−−−−−−−−→ · · ·

n=ak=−am,(3.6)
−−−−−−−−−−−→ H(ak, k) · · · ,

which implies H(am,m) = 0 for all a ∈ Z\{−1}. By these vanishing cases and (3.6), for m+ n 6= 0, we

have

H(m,n) = 0, ∀m,n ∈ Z, m+ n 6= 0.

Now, taking m+ n+ k = 0 in (3.6), we have

kH(n,−n) = −nH(−k, k), ∀n, k ∈ Z.

If we denote H(−1, 1) by α, then we have H(−k, k) = kα, ∀ k ∈ Z.
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Case 2. G(−k, k) = 0, for all k ∈ Z.

Firstly, taking m+ n+ k = 0 in (3.6), we obtain

kH(n,−n) = −nH(−k, k), ∀n, k ∈ Z,

which implies
kn

1− ǫn
=

kn

1 + ǫk
, ∀n, k ∈ Z

by using (3.4). But this is impossible.

According to (3.1), we have obtained

f(m,n) =
−n(1 + ǫn)

1 + ǫ(m+ n)
, h(m,n) = n(1 + ǫn)αδm+n,0, g(m,n) = −n(1 + (1− ǫn)αδm+n,0).

The left thing we have to do is to calculate a(m,n) and b(m,n). If α = 0, then one has g(m,n) = −n

and h(m,n) = 0. Similarly as before, setting A(m,n) = (1 + ǫ(m+ n))a(m,n), we have the relation

(n+ k)A(n, k) = kA(n,m+ k) + nA(m+ n, k). (3.7)

Taking k = 0 in the above relation, we obtain

A(m, 0) = A(0, n) = A(0, 0), ∀m,n ∈ Z.

Considering the case n = k in (3.7) and using A(m,n) = A(n,m), one has A(m,n) = a, which implies

a(m,n) =
a

1 + ǫ(m+ n)

for some constant a ∈ C and for all m,n ∈ Z. Similarly, we have b(m,n) = b for some constant b ∈ C.

If α 6= 0, we have h(n,−n)a(m, 0) = 0 by taking n = −k 6= m in the sixth relation in (3.1). This

implies a(m, 0) = 0. Thus g(m, k)a(n,m+ k) = −ka(n,m+ k). By the similar discussion to that of the

α = 0 case, we get

a(m,n) = b(m,n) = 0, ∀m,n ∈ Z.

The proof of Lemma 3.2 is now complete.

3.2 Left-symmetric algebra structures on the twisted Heisenberg-Virasoro algebra

We give our classification of left-symmetric algebra structures on the twisted Heisenberg-Virasoro algebra

by determining the central extensions of the left-symmetric algebra structures on H . First, one has the

following lemma:

Lemma 3.3. A multiplication defined by relations in (2.2) gives a compatible left-symmetric algebra

structure on H if and only if (3.1) and the following identities hold for all m,n, k ∈ Z,

ω(Lm, Ln)− ω(Ln, Lm) =
m3 −m

12
δm+n,0,

ω(Lm, In)− ω(In, Lm) = (m2 −m)δm+n,0,

ω(Im, In)− ω(In, Im) = nδm+n,0,

f(n, k)ω(Lm, Ln+k)− f(m, k)ω(Ln, Lm+k) = (m− n)ω(Lm+n, Lk),

g(n, k)ω(Lm, In+k)− g(m, k)ω(Ln, Im+k) = (m− n)ω(Lm+n, Ik),

h(n, k)ω(Lm, In+k)− f(m, k)ω(In, Lm+k) = −nω(Im+n, Lk),

h(n, k)ω(Im, In+k) = h(m, k)ω(In, Im+k),

g(m, k)ω(In, Im+k)− nω(Im+n, Ik) = 0,

a(n, k)ω(Lm, Ln+k) = b(n, k)ω(Lm, In+k) = 0,

a(n, k)ω(Im, Ln+k) = a(m, k)ω(In, Lm+k),

b(n, k)ω(Im, In+k) = b(m, k)ω(In, Im+k).

(3.8)
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According to Theorem 2.4 and Lemma 3.2, one can suppose

f(m,n) =
−n(1 + ǫn)

1 + ǫ(m+ n)
, ω(Lm, Ln) =

1

24
(m3 −m+ (ǫ− ǫ−1)m2)δm+n,0, (3.9)

h(m,n) = n(1 + ǫn)αδm+n,0, (3.10)

g(m,n) = −n(1 + (1− ǫn)αδm+n,0), b(m,n) = bδα,0, (3.11)

for some constants b, α ∈ C and it is clear that (3.9) implies that a(m,n) = 0 for all m,n ∈ Z.

Proof of Theorem 2.5. It is easy to check that the complex-valued functions f(m,n), g(m,n), h(m,n),

a(m,n), b(m,n) and ω( · , · ) given in (3.3) simultaneously satisfy (3.1) and (3.8). Set ϕ(m,n) = ω(Lm, In)

and ψ(m,n) = ω(Im, Ln). Then we have the relations

ϕ(m,n)− ψ(n,m) = (m2 −m)δm+n,0, (3.12)

g(n, k)ϕ(m,n+ k)− g(m, k)ϕ(n,m+ k) = (m− n)ϕ(m+ n, k), (3.13)

h(n, k)ϕ(m,n+ k)− f(m, k)ψ(n,m+ k) = −nψ(m+ n, k), (3.14)

which together give

ψ(m, 0) = ϕ(m, 0) = ψ(0,m) = ϕ(0,m) = 0, ∀m ∈ Z.

Then (3.13) and (3.14) become

kϕ(n,m+ k)− kϕ(m,n+ k) = (m− n)ϕ(m+ n, k), (3.15)

and

k
ψ(n,m+ k)

1 + ǫ(m+ k)
= −n

ψ(m+ n, k)

1 + ǫk
. (3.16)

Setting m = 0 in the above equations, one can suppose

ϕ(m,n) = δm+n,0ϕ(m), ψ(m,n) = (1 + ǫn)δm+n,0ψ(m).

Now taking m+ n+ k = 0 in (3.15) and (3.16), we obtain

(m− n)ϕ(m+ n) = (m+ n)(ϕ(m) − ϕ(n)), (m+ n)ψ(n) = nψ(m+ n).

By induction on m,n, one can deduce

ϕ(m) =
m2 −m

2
ϕ(2)− (m2 − 2m)ϕ(1) and ψ(m) = −mψ(−1).

Pluging them into (3.12), we obtain

m2 −m

2
ϕ(2)− (m2 − 2m)ϕ(1)−m(1 + ǫm)ψ(−1) = m2 −m,

which implies

ϕ(2) = 2(1 + ψ(−1) + 2ǫψ(−1)), ϕ(1) = (1 + ǫ)ψ(−1). (3.17)

Denoting ψ(−1) by β, we get

ω(Lm, In) = ϕ(m)δm+n,0 = (m2 −m+ (ǫm2 +m)β)δm+n,0,

ω(Im, Ln) = (1 + ǫn)ψ(m)δm+n,0 = n(1 + ǫn)βδm+n,0.

Furthermore, recalling the ninth relation in (3.8), one has b(m,n) = 0, ∀m,n ∈ Z.

Finally, we aim to determining ω(Im, In). First, we have (n+ k)ω(In, Ik) = 0 by taking m = 0 in the

eighth relation in (3.8). Then we can suppose ω(Im, In) = θ(m)δm+n,0. Taking k = 0 in (3.8), one has

θ(0) = 0. Then we can rewrite the relation in (3.8) as (taking m+ n+ k = 0)

(m+ n)θ(n) = nθ(m+ n).



476 Chen H J et al. Sci China Math March 2014 Vol. 57 No. 3

Therefore, there exists some θ ∈ C such that θ(n) = nθ. Taking it back to the third relation of (3.8), we

obtain θ = − 1
2 . Thus we obtain

ω(Im, In) = θ(m)δm+n,0 =
n

2
δm+n,0.

Then the main theorem follows.
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