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ABSTRACT

Integrating visual and textual data enables large language models (LLMs) to understand complex
information better, broadening their applicability in real-world tasks. While multimodal large language
models have advanced through large-scale image-text pre-training, few are optimized for Chinese forestry
image comprehension and dialogue. To address this gap, we propose the multimodal large language
model for image-to-text generation based on a vertical sector (MLLM-ITV), an efficient and adaptable
multimodal large language model designed for the forestry sector. It is trained on a carefully curated
Chinese forestry biology image-caption dataset and instruction-following data to support open-ended
dialogues. A Querying Transformer (Q-Former) module connects a pre-trained vision encoder to the
ChatGLM-6B (General Language Model for Chat, 6 Billion Parameters) language model, aligning visual
features with domain-specific vocabulary. Fine-tuning based on Low-Rank Adaptation (LoRA) further
adapts the model to forestry tasks. The resulting model performs strongly in species identification, image
understanding, and visual dialogue, outperforming five state-of-the-art Chinese multimodal LLMs.

1. INTRODUCTION

Large language models (LLMs) [1-6] have exhibited remarkable performance across diverse domains,
garnering substantial interest from both the academic and industrial spheres. While language models have
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demonstrated commendable performance, it is evident that possessing solely textual “comprehension”
often inadequately communicates information with vividness. The integration of information from
divergent modalities, notably textual and visual elements, coupled with the inclusion of perceptual
acumen linked to “visual” comprehension, facilitates the attainment of a more comprehensive grasp
of phenomena and amplifies our expressive proficiencies. Consequently, this expansion broadens the
horizons of language model applications. Multimodal fusion provides us with richer ways to explore
and solve complex problems. Artificial General Intelligence (AGI) [7] possesses efficient multimodal
information processing capability. Multimodal artificial intelligence (Al) not only tackles tasks involving
single data types but also establishes connections and fuses information across diverse data types, thus
offering support for addressing intricate challenges. An open and transparent open-source base language
model, ChatGLM [8], has caught our attention. It is an English and Chinese bidirectional dense model.
It contains 130 billion parameters and is pre-trained using the general language model (GLM) algorithm.
It unveils how the ChatGLM model with a 130 billion scale is successfully pre-trained. Hence, we
contemplate the feasibility of transposing large language models into cross-modal domains to emulate
human cognitive abilities.

Even with the notable performance showcased by the LLaMA [9] model through fine-tuning, its aptitude
within the domain of the Chinese language remains constrained, stemming from its limited exposure to
Chinese corpora during the pre-training stage. In contrast, the ChatGLM [8] model by Tsinghua University
stands for its exceptional performance in the realm of the Chinese language. It is based on the general
language model architecture, featuring 6.2 billion parameters. ChatGLM-6B employs methodologies
analogous to those employed by ChatGPT, tailored to optimize performance within Chinese question-
answering and dialogic interactions. However, it is noteworthy that frequent observation pertains to the
suboptimal performance of numerous expansive language models in scenarios necessitating a profound
grasp of domain-specific intricacies. Our supposition posits that this phenomenon may trace its origins
to the paucity of data originating from distinct specialized domains during the formative pre-training
phase of the model. Within an industrial purview, universal expansive models undertake the role akin to
“comprehensive compendiums”, typified by exemplars like GPT-3 [10], PaLM [11], MOSS [12], and ERNIE
Bot [13], characterized by their capacity to furnish comprehensive responses. Meanwhile, domain-specific
expansive models assume the semblance of mono-disciplinary experts, refined within the confines of their
specific niches.

The expansion of LLMs into visual-linguistic multimodality and their judicious utilization constitute a
subject of considerable significance. OpenAl’s release of the multimodal version of GPT-3 [10], known
as DALL.E [14], showcases remarkable capabilities in generating images from text. This achievement
effectively bridges visual and linguistic domains, underscoring the potency of pre-trained multimodal
models. Addressing the efficient synchronization of models with multimodal images and Chinese linguistic
directives has spurred a resurgence of focus within the community toward refining Chinese language-
enriched foundational visual models [15-16]. Concurrently, copious parallel image-text datasets across
diverse domains provide a prolific resource. Empirical findings substantiate the capacity of generative
pre-training to adeptly harness this parallel data for self-supervised visual-language modeling. Evidential
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validation of this phenomenon has been showcased through open-source initiatives such as multimodal
GPT-4 [17] and LLaVA [18]. The endeavor to equip ChatGLM with image recognition capabilities poses a
formidable challenge, considering that LLMs do not integrate images during their pre-training phase.

To enable the interaction between text and image modalities, we have employed a Querying
Transformer (Q-Former) [19]. Q-Former, a lightweight transformer, utilizes a set of trainable query vectors
to extract visual features from the image encoder, serving as an information bottleneck between the
image and text encoders. It supplies the most pertinent visual information required for text generation
by LLMs. Q-Former predominantly consists of learned queries for both modalities, Cross-Attention, Self-
Attention, and Feed Forward components. Concretely, during the training phase, we learn visual-language
representation by feeding vectors processed through the image and text encoders into Q-Former, which
bridges these two distinct modalities. Although natural image-text multimodal pre-training has shown
impressive efficacy in numerous downstream applications, its seamless adaptation to the forestry domain
faces challenges due to fundamental domain distinctions. Furthermore, collecting annotated datasets
for forestry-related diseases and pests typically necessitates substantial domain-specific knowledge
and resources, thereby making implementing our model in the specialized field of forestry a feasible
proposition. Given the inherent constraints associated with the modest scale of ChatGLM-6B, substantial
opportunities exist for further refining and optimizing the model.

In the past, the LLaMA-Adapter V2 [20] model effectively broadened the scope of language models
to encompass multimodality by implementing adapter-based strategies. However, the method often
introduces inference latency and increases memory demands. To address these limitations, Low-Rank
Adaptation (LoRA) [21] has been proposed. LoRA reduces parameter storage and VRAM usage without
adding inference overhead. When the rank r is much smaller than the original model dimensions, it
eliminates the need to store optimizer states, significantly lowering memory consumption. Instead
of updating all parameters, it fine-tunes only low-rank matrices, avoiding unnecessary gradient
computations and improving efficiency. By aligning the rank of its matrices with pre-trained weights, it
retains performance close to the original during fine-tuning. In multimodal scenarios, it also reduces the
dimensionality of image features, transforming high-dimensional data into compact representations. To
mitigate potential information loss, we adopt multiple parallel LoORA modules, combining their outputs to
preserve semantic richness.

The scale of large models does not inherently equate to general artificial intelligence. As a result, fine-
tuning in vertical domains has become a critical research direction to enhance their practical utility. In this
work, we focus on forestry pest and disease applications. Using ChatGLM as the backbone, we accelerate
scenario-specific iteration by integrating artificial intelligence into all forest pest detection and prevention
stages. We will fine-tune ChatGLM with Chinese-language, domain-specific forestry data, enabling the
model to adapt effectively during pre-training. This process steers the base language model towards better
aligning with forestry scenarios’ linguistic and semantic nuances.
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Amidst the backdrop of climate change, the gravity of forest pest and disease calamities in China is
escalating. The forestry ecosystem is confronting unparalleled trials, prompting an imperative need to
advance automated and intelligent pest and disease detection technologies. These progressions are pivotal
in guiding the biological and scientific strategies for preventing and managing forestry pests and diseases,
thereby safeguarding ecological integrity. Consequently, the proficient management of detrimental
organisms within forestry has acquired paramount significance and immediate attention. Certain
pernicious entities exhibit deceptive characteristics in their external features despite harboring substantial
peril. The forest-related biological catastrophes these detrimental organisms induce are frequently likened
to “latent forest conflagrations”. This analogy is drawn due to their shared resemblance with natural
disasters and the distinctive intricacies and protracted challenges involved in their management.

Therefore, large-scale Al models known as “agricultural brains” will play a pivotal role in the practical
implementation of pest and disease management solutions in the vertical domain of forestry. Fine-tuning in
vertical domains will inevitably become a prevailing trend.

This paper introduces a multimodal large language model for image-to-text generation based on a
vertical sector (MLLM-ITV). The primary purpose of this model is to expand the unadulterated language
instruction model, ChatGLM, into a multimodal architecture, thereby endowing LLMs with the capability
for generative production in alignment with visual modalities. This model represents the inaugural and
successful initiative to incorporate multimodal instruction extension within the purview of forestry biology.
The objective is directed at the comprehensive training of a forestry bio multimodal conversational
assistant through an end-to-end approach, streamlining its implementation across practical application
contexts. The efficacy of domain-specific pre-training has been demonstrated to be pertinent for Forestry
Bio Natural Language Processing (NLP) applications and Forestry Bio Visual Language (VL) tasks alike.

¢ A multimodal Chinese-language forestry pest and disease (FPD) dataset is constructed. The dataset
comprises forestry pest and disease images and their textual descriptions.

e A multimodal large language model for image-to-text generation based on a vertical sector
(MLLM-ITV) model is an extension of the ChatGLM model using LoRA fine-tuning techniques.

e Experiments show that MLLM-ITV outperforms five state-of-the-art models, including Visual GLM [22],
Ziya-BLIP2-14B-Visual [23], MiniGPT [24], VisCPM [25] and Qwen [26] models.

e Using Q-Former, a successful transformation from linguistic unimodality to image-linguistic
multimodality has been realized.

The rest of this paper is organized as follows. In Section 2, we present related work. Subsequently, we
provide a detailed exposition of our primary contributions in Section 3. Finally, in Section 4, we compare
our model with relevant models. Section 5 offers conclusions and outlines directions for future work.
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2. RELATED WORK

2.1 Language Models

The pre-training frameworks can be classified into three categories: autoregressive, autoencoding,
and encoder-decoder models. Contemporary pre-trained language models, built upon the Transformer
architecture like the GPT series [4, 27-28], BERT, and others, employ autoregressive Transformer models
to pre-train expansive language models on extensive textual corpora. This practice demonstrates their
prowess in few-shot learning capacities [4, 28]. Large Language Models (LLMs) have shown remarkable
progress through training on extensive text corpora, gradually finding utility across diverse domains. The
emergence of LLMs has initiated a technological paradigm shift, and a lineup of open-source large models,
including LLaMA [9], BLOOM [29], and ChatGLM [8], has substantially propelled the advancement of
the Natural Language Processing (NLP) field. In contrast, ChatGLM is a bilingual conversational language
model proficient in accommodating Chinese and English. Having undergone training involving around 1
trillion tokens in both languages, bolstered by techniques like supervised fine-tuning and self-feedback,
the ChatGLM model, boasting 6.2 billion parameters, demonstrates the capacity to generate responses that
closely align with human preferences.

Based on the ChatGLM model, we enhance LLMs with the capacity to capture image features through
fine-tuning. This endeavor lays the foundation for creating an open-source multimodal model. Within
this study, we integrate domain-specific knowledge of forestry diseases and pests into the ChatGLM
model, thereby reorienting the foundational language model towards a dedicated corpus specific to the
field of forestry.

2.2 Vision-Language Models

In light of the emergence of expansive language models, scholarly investigations have been fervently
delving into the application of LLMs for addressing multimodal challenges [20, 30], thereby culminating
in the conception of Multimodal Large Language Model (MLLM) [17, 19, 31-34]. Various methodologies
have entailed the infusion of visual data into LLMs and have meticulously refined these models through
instructional directives. This strategic augmentation has facilitated their adeptness in generating textual
content from visual inputs and has been shown to improve the generalization of language models to
unknown tasks. In recent times, an evident transition has transpired within the landscape of image-
language research, wherein the focus has shifted from expansive language models to substantial vision-
language models. The Generative Pre-trained Transformer 4 (GPT-4) [17] has impressively showcased
its prowess by adeptly handling inputs originating from diverse modalities, including images and text,
fulfilling a wide spectrum of tasks. This exceptional adeptness has acted as a catalyst, giving rise to a
fresh surge of investigation that extends the scope from singular language instruction models towards the
realm of multimodal instructional models. Analogous to the principles behind LLaMA-Adapter [20], this
emerging paradigm empowers LLMs with the faculty of visual reasoning, culminating in the proposal
of LLaMA-Adapter V2 [20]. Conversely, BLIP2 [35] capitalizes on integrating Q-Former to facilitate the
mapping of acquired image representations onto the textual embedding domain of LLMs.

Data Intelligence 5



MLIM-ITV: A Multimodal Large Language Model for Image-to-Text Generation Based on Vertical Sector

In the pursuit of cultivating a directive comprehension akin to that exhibited by GPT-4, endeavors such
as MiniGPT-4 [24] and LLaVA [18] have surfaced, embracing the utilization of datasets focused on image-
guided tracking to cultivate the capacities of image-guided tracking within LMMs. MiniGPT-4 [24] embarks
upon a trajectory of pre-training, encompassing a corpus of 134 million image-text pairs, to establish a
connection between the static visual encoder and the LLM. This connection is subsequently reinforced
through fine-tuning the model using well-aligned image-text datasets. LLaVA [18], in a similar vein, leverages
the pairings of image and text to serve as a conduit for achieving congruence between visual models and
LMMs. Video-chat [30] facilitates further expansion of the realm of comprehension, which extends the
boundaries of image encoders to empower expansive models with the competence to decode the visual
constituents embedded within videos. Although these methodologies have showcased commendable
aptitude in comprehending multiple modalities, they require the adjustment of billions of model parameters
and the assiduous aggregation of substantial quantities of training data encompassing multiple modalities.
This dataset is sourced from human annotations or outputs produced by the OpenAl API. Furthermore,
these models are predominantly designed for generic domains and have yet to be fine-tuned for the specific
context of forestry pest management, diminishing precision in their generated responses.

Our endeavor is directed towards endowing foundational LLMs with the ability to comprehend visual
attributes. In this context, our model introduces an innovative LoRA fine-tuning strategy, encompassing
the immobilization of parameters inherent to the initial pre-trained model. Additionally, augmentation is
achieved by integrating an auxiliary matrix to replicate the comprehensive fine-tuning of model parameters.
This strategic implementation curtails computational requirements and orchestrates a gradual infusion of
image-based visual attributes into the pre-existing ChatGLM model, facilitated by low-rank adaptive. The
outcome is a model that showcases robust generalization capacities. Moreover, existing antecedent models
have yet to attain the desired level of adeptness within forestry biology. Our model will demonstrate a high
level of competitiveness in the forestry domain compared to previous multimodal models.

2.3 Querying Transformer

Visual and linguistic modalities represent two fundamental channels through which human beings
apprehend and comprehend their external environment. The central predicament confronting image-
language models revolves around the harmonious amalgamation of data from these heterogeneous
modalities into a feature space that expansive language models can effectively apprehend. At present,
the adoption of the Transformer architecture has ascended as the predominant methodology in the realm
of multimodal algorithms for achieving the harmonious integration of information derived from diverse
modalities into a feature space intelligible to LLMs and streamlining the process of feature fusion, owing
to its remarkable aptitude in this regard. A new visual-language representation learning framework, Align
before Fuse (ALBEF) [36], has been introduced, integrating multimodal contrastive learning into the
domain of multimodal models. ALBEF encompasses an image encoder, a text encoder, and a multimodal
encoder. It presents a straightforward, end-to-end, and highly proficient framework for acquiring visual-
language representation skills.
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An enhanced iteration of ALBEF, Q-Former, has been introduced. Q-Former is a streamlined model
consisting of two transformer sub-modules. In contrast to ALBEF, the most salient divergence within
Q-Former lies in the integration of Learned Queries. These Queries actively interact with image attributes
through Cross-Attention and textual attributes through Self-Attention. Derived from information in both
modalities, these Queries yield feature outputs of query length, irrespective of the visual backbone’s scale,
thereby substantially diminishing computational complexity. The image transformer is predominantly
dedicated to extracting visual features, and the Text Transformer encompasses the roles of text encoder
and text decoder. Q-Former incorporates three distinct training tasks, namely Image-Text Contrastive
Learning (ITC), Image-grounded Text Generation (ITG), and Image-Text Matching (ITM) [19]. These tasks
collaboratively enable the extraction and fusion of features.

BLIP-2 [35] efficiently utilizes frozen image encoders and frozen LLMs to achieve various visual-
language tasks, yielding improved performance while minimizing computational overhead. Drawing from
the Q-Former framework advanced in the BLIP-2 model, InstructBLIP [37] presents an instruction-aware
visual feature extraction method. Q-Former serves as a lightweight bridge between the frozen vision
encoder and the language model. Specifically, it employs a set of learned queries that interact with the
visual features extracted by the image encoder through cross-attention. These queries generate compact
visual embeddings projected into a token-level representation space. The resulting query outputs match the
dimensional and semantic structure of language model input embeddings, allowing seamless integration
into the frozen LLM without retraining its backbone. This alignment enables the language model to
interpret visual semantics like textual tokens. The query outputs are prepended or interleaved with textual
inputs and passed to ChatGLM’s input layer during implementation. This mechanism ensures LLM can
condition its generation on visual and linguistic contexts in a unified token space. Ultimately, the model
performs better than GPT-4, attaining cutting-edge outcomes across diverse tasks. Recent research has also
highlighted the potential of Q-Former in integrating audio-visual signals, denoted as Audio Q-Former [38].
Our model employs a strategy that involves encoding and decoding images and text, followed by their
fusion within the Q-Former framework. Q-Former excels in extracting visual representations that are most
informative for textual content. Subsequently, the combined data is fed into a language model, ensuring
the model’s adaptability with dynamic adjustments and enhanced learning capabilities. This approach aims
to refine the training process for improved alignment.

2.4 Low-Rank Adaptation

For large models, full fine-tuning of all parameters of the retrained model becomes infeasible, and
fine-tuning large models and large model deployments is also infeasible due to the massive number of
parameters. The approach commonly used to adapt pre-trained models to multiple downstream tasks
is fine-tuning, but fine-tuning involves updating all parameters with the trained model. The Low-rank
structure is widespread in machine learning, and many machine learning algorithms have some inherent
low-rank structure [39-41]. Moreover, it is well known that for many deep learning tasks, especially
those with heavily overparameterized neural networks, the learned neural networks will have low-rank
properties after training [42]. Some previous work has even explicitly imposed low-rank constraints when
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training the original neural networks [43-47]. However, it was found that none of these works considered
low-rank updates to the frozen model to adapt to downstream tasks. Therefore, LoRA [21] was proposed
to indirectly train some dense layers in the neural network by optimizing the rank-decomposition matrix of
the dense layers as they change during adaptation while keeping the pre-trained weights constant.

As such, we will adopt LoRA’s adaptive strategy to enhance the effectiveness of the LLM fine-tuning for
downstream tasks. It maintains high-quality model performance without introducing inference latency
or reducing input sequence length. It can maintain high-quality model performance without introducing
inference delays or reducing the length of input sequences. It also demonstrates its excellent capability
in service deployment scenarios, achieving the goal of fast task switching by sharing most of the model
parameters. The framework successfully optimizes the performance by approximating global training,
thus effectively reducing the waste of resources. In achieving the best overall performance, LoRA cleverly
employs attention-related matrices, including W2 and WY, while taking WX into account. Experimental
evidence from a related study [21] shows that the utility of the top singular vector direction is high when
the matrix rank is set to 8, because the other directions usually contain most of the accumulated random
noise during training. Therefore, during the training of the LoRA model, the rank is set to 8. The study
shows that the neural network performs well when the underlying model concept has a low-rank structure.
The most significant advantage of LoRA is that it is faster and uses less memory. Therefore, it can be run on
consumer-grade hardware.

3. THE MULTIMODAL LARGE LANGUAGE MODEL FOR IMAGE-TO-TEXT GENERATION BASED ON
A VERTICAL SECTOR

3.1 Descriptions of Pertinent Symbols and Parameters

Table 1 summarizes the pertinent symbols utilized in the multimodal large language model for image-to-
text generation based on a vertical sector (MLLM-ITV), accompanied by their respective elucidations. In
order to maintain a state of stability throughout the model training procedure, the vector dimensions
resulting from the residual connections after the input of image-text pairs are consistently preserved. For the
initially trained images, they can be systematically transcribed into a matrix array comprising n matrices,
each delineated by 197 feature column vectors denoted as A/ =|a), a|, &), &, ..., a, ..., a4, . Herein,
A’ signifies the amalgamation of all feature vectors associated with the j-th training image. After applying
residual connections, the initial training textual content can be projected to generate a matrix table
mirroring the images. Each attribute delineated within the images possesses equivalent dimensions. In this
paradigm, each matrix is also characterized by 197 text-based feature vectors, denoted as the augmented
matrix B! =[b,, b,, b,, b,, ..., b1, representing the text-based feature vectors corresponding to the j-th
image. Subsequently, an alignment procedure is executed between the image-text vector pairs. Positive
samples are maximized to achieve optimal similarity alignment, whereas negative samples undergo
supplementary cross-attention mechanisms for fine-grained realignment. This supplementary step amplifies
the alignment efficacy, enabling the model to furnish more precise responses throughout the text-
generation process.
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Table 1. Symbols.

Symbols Symbol interpretation

A Vector matrix of image features

B Vector matrix of text features

Al An augmented matrix formed by splicing the overall vector of the picture
Al Augmented matrix embedding location features

B] Text augmentation matrix formed by splicing text topics

Fine-tuned image feature skill matrix

Coded text feature skill matrix

H Input description encoded feature matrix
H, An augmented matrix formed by splicing text features in the text encoding stage
H, Augmented matrix formed by self-attention

The MLLM-ITV model embarks on the LoRA fine-tuning of the foundational VisualGLM model. The
training process employs image-text data about forestry pest occurrences. Throughout this process, pertinent
parameters within the image encoder and language model remain fixed, while LoRA-associated parameters
in both components undergo refinement. Simultaneously, relevant parameters of Q-Former also undergo
tuning. As a result, the refined multimodal large language model tailored for forestry applications is
equipped to tackle issues surrounding forestry pest infestations. This development contributes to advancing
research in the specialized forestry domain, facilitated by integrating multimodal large language models.

3.2 The Framework of the Proposed MLLM-ITV Model

The MLLM-ITV model comprises five principal constituents encompassing LoRA fine-tuning training,
image encoding, text encoding, fine-grained hard sample alignment (fine-grained HSA), and answer
testing, as shown in Figure 1. Given the suboptimal outcomes achieved with alternative fine-tuning
methodologies, this study exclusively adopts LoRA for fine-tuning training. During the LoRA fine-tuning
training, the critical action involves freezing parameters within the image encoder and the extensive
language model. Q-Former connects the image encoder and the frozen large language model. As a
result, the fine-tuned parameters encompass LoRA-related parameters in both the image encoder and the
large language model, as well as the pertinent parameters within Q-Former. To align the model with the
following instructions, we further train the model by prompting language-only high-quality dialogues.
This training process culminates in acquiring and retaining multimodal proficiencies within the MLLM-ITV
Model. Notably, this training approach substantially curtails the consumption of hardware resources
throughout the training endeavor. During image encoding, the features of the image are subjected to
representation learning, culminating in encoding image attributes into a feature vector. The primary
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objective is to engage in comparative learning with the vector derived from the text encoding phase and to
perform cross-attention fusion analysis with subsequent components.
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Figure 1. The architecture of the MLLM-ITV model.

In the text encoding phase, image text descriptions are encoded to generate a text vector. Subsequently,
the vector dimensions undergo normalization through residual layers, aligning them with the dimensions
of the image vector to facilitate convenient comparative learning. Within the Fine-grained HSA phase,
an introduced cross-attention mechanism serves as the primary function, enabling the model to focus
concurrently on the feature sequences of an alternative image while processing the input sequence. This
endeavor is aimed at attaining a more meticulous alignment of image-text vectors. In the section dedicated
to image description, the process encompasses the extraction of image vectors, followed by integrating
cross-attention fusion with vectors derived from the text encoder. This process culminates in the task of text
generation. During the answer testing phase, questions and images are fed into our well-trained MLLM-ITV
model. Subsequently, the new model delivers exemplary responses grounded in the acquired skills and
input image attributes. The following sections will give a detailed elucidation of the five constituents of the
MLLM-ITV model.

3.3 LoRA Fine-Tuning Training

The LoRA fine-tuning training procedure can be delineated into two distinct stages, as shown in Figure 2.
During the initial stage, the primary emphasis lies on training input images. The images undergo encoding,
extracting features, and converting from multi-dimensional representations into one-dimensional column
vectors. This extraction sequence proceeds from left to right and top to bottom, forming column vectors.
Each column vector is denoted as a, where i = 1, 2, 3, ..., 196. The features of the j-th image are
encapsulated within the feature matrix A/ = [a,, a,, a,, ..., @, ..., a,,,] (( =1, 2, 3, ..., n). Following the

li

transformation of image vectors’ dimensions, they are concatenated with the comprehensive information
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vector a, which maintains an equivalent dimensionality as that of the image feature vectors. This
amalgamation yields an argmented matrix Ag =la, a, a, a, ..., &, ..., a4,]. After this, positional feature
embedding is implemented on the amalgamated feature vectors, and then a residual connection layer is
introduced. This iterative procedure culminates in the generation of a novel augmented feature matrix,

denoted by A’ =[a), a), ), a, ..., a, ..., a,] . Subsequently, it is subject to a normalization process.

i
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butterfly’s wings are oval with slightly curved edges,
contrasting with the surrounding leaves.)

Figure 2. The flow chart of the LoRA fine-tuning training.

During the training process, the parameters in the graph encoder are frozen and fine-tuned in
conjunction with LoRA. This process involves subjecting the image features to processing by both the
image encoder model and LoRA, resulting in the establishment of the image feature skills matrix
As=1Al, AY, AP, L AL L, A% After this step, a phase of comparative learning between Q-Former
and the image-text pairs ensued, aligning them with the text vectors. In this context, the text vector matrix
B encapsulates the textual description of the features for the j-th image, formulated as B' = [b,, b,, b, ...,
bi4e). It is followed by the concatenation with the topic vector b,, ensuring its dimensionality matches the
text vectors. Consequently, this process forms the augmented text matrix B! =[b,, b,, b,, b;, ..., big 1. In
Q-Former, text encoding leads to the formation of text features, resulting in a text feature skills matrix
B =IB!, BY, BY, ..., BI', ..., BY].The skills matrices align within Q-Former, employing cosine similarity
for the alignment analysis. Subsequently, the aligned vector features are fed into the ChatGLM language
model for training. Throughout this training process, the parameters of the ChatGLM language model
remain fixed while fine-tuning is carried out in conjunction with LoRA. The mathematical procedure for
the LoRA fine-tuning is delineated as follows.

x F

LoRA-zeros LoRA-gaussian ( 1 )

W = me + tWopn = me +tE
where t is a random variable with an absolute value not exceeding 1, and W, W, and W, represent the
weight matrices of the trained model, the frozen model, and the LoRA fine-tuning process, respectively.

During the model training, the F matrix is initialized using a normal distribution, while the £

LoRA-gaussian LoRA-zeros

matrix is initialized with zeros. It ensures that the bypass of the frozen model remains a zero matrix at the
beginning of the training process.
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In the process of fine-tuning LoRA, when LoRA is applied to the mapping matrices W of attention’s
Query and Value, the fine-tuning effect is further enhanced. The calculation process for the weights of the
Query and Value mapping matrices in attention is illustrated below.

we = Wme + tVVLgRA 2)
WY =Wy +TW (3)

When fine-tuning LoRA and passing through the multi-head self-attention layer for a training image-text
data Y, the corresponding mapping produces calculation formulas for the Query matrix Q, Key matrix K,
and Value matrix V. These formulas are shown below.

Query:YxWQ=Y><Wme + Y X W (4)
Key :Y xW =Y x Wi +tY x Wi, ®)
Value : Y x WY =Y x W, +1Y x W), )

When Softmax is utilized, the computational inference for matrices Q and K with LoRA layers can be
expressed as follows.

Softmax(Q, K) = softmax(YW.2 (WX )Y +tYW2 (W)Y
+ YW W)Y T+ YW Wik ) yT)

The final attention calculation can be represented as follows.

Head = softmax(Q, K")YW, +T x softmax(Q, K")YW,., (8)

After undergoing fine-tuning with LoRA training, a final image-text understanding skill matrix is formed
as C =[A,, BJ]. The corresponding understanding skills are stored in the newly trained model, achieving
the LoRA fine-tuning process.

3.4 Image Encoding

The image encoding process commences with the initial segmentation of input images into smaller blocks,
each signifying a distinct feature of the image. All images are uniformly divided into 14 x 14 blocks. The feature
of each diminutive block is then embedded to formulate a comprehensive feature vector. Subsequently, a residual
connection mapping is executed through a self-attention layer. The process further engages in residual
connection mapping through a feedforward network, creating a feature column vector, denoted as d;, where i =
1, 2,3, ..., 196. In this context, d,, represents the amalgamated vector encompassing the entirety of the image’s
information along with positional data. These feature vectors from the j-th image eventually amalgamate to form
a freshly augmented feature matrix D/ =[d!, d;, dj, d;, ..., d!, ..., di,,1. The vectors contained within this
feature matrix undergo alignment with subsequent-stage text encoding vectors. This alignment process is

implemented to prevent the occurrence of erroneous correlated alignments. To achieve this, the feature
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vectors of the images undergo a fusion analysis using a cross-attention mechanism in conjunction with the
text. The primary objective is to validate further whether the image and text convey identical information.
This approach aims to minimize alignment errors throughout the process. Additionally, these features offer
an augmented representation of feature vectors for text generation within the model. The process of cross-
attention fusion contributes to the generation of enhanced text descriptions. Consequently, this
optimization ensures the best expression of the training effect of the model in text generation, yielding
answers that more precisely align with the desired outcomes.

3.5 Text Encoding

Initially, the textual description of the image is input. During text encoding, the thematic content from the
image description is assimilated and transformed into a vector representation mirroring the dimensionality
of the image encoding. This vector is designated as h,. The text gives rise to a vector representation, denoted
by h, (i=1,2,3, .., 196). The complete j-th image description is aggregated into a feature matrix of text
descriptions, denoted as H' = [h,, h,, h,, ..., h, ..., hy,]. Ultimately, this feature matrix is merged with the
thematic vector, resulting in a text augmented matrix H/ =1h,, h, h,, h;, ..., h]. After encoding, a
residual connection is established through a self-attention mechanism within the encoding section. A
residual connection is created through a feedforward network involving the vector before the feedforward
network layer. This procedure results in the generation of a novel augmented feature matrix for the text,
denoted as H: =1hy, by, R, B, ..., h;, ..., hig 1. It promotes facilitative analysis in comparative learning.
In comparative learning, cosine similarity analysis is employed as follows.

d.-h,
cos<df,,h.,> =—J) 9)
TR
where d, and h, (i,j=1,2, 3, ..., 196) represent the i-th feature vector of an image and the j-th feature

vector of the corresponding text, respectively. This calculation assesses the similarity between text and
image features, where the closer the value of their similarity is to 1, the more they are similar. Nonetheless,
misalignments with negative samples can arise in the context of similarity contrastive learning.
Consequently, the model undertakes additional measures to address such challenges through fine-grained
Hard Sample Alignment.

3.6 Fine-Grained Hard Sample Alignment

In the fine-grained Hard Sample Alignment process, we commence with the encoding of the j-th text to

generate a matrix of text feature vectors, denoted as H' = [h,, h,, h,, ..., h, ..., h where h represents the

196]/
i-th content feature vector of the text. Furthermore, the encoding process is separately applied to the
thematic content of the text, resulting in a singular feature vector k. Ultimately, the feature vector
corresponding to the text’s theme is concatenated with the matrix of text feature vectors to create a new
augmented feature matrix, denoted by H; =lky, h, h,, B, ..., b, ..., Bl This matrix undergoes

i

additional cross-fusion and alignment with the previously inputted image feature vectors. The goal is to
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achieve a finer-grained matching between text and images, ensuring that the maximal correlation between
positive and negative samples is leveraged during the matching process. In the image description phase of
the model, the augmented matrix formed by the feature vectors of the images, denoted by
D' =[d;, di, dy, d;, ..., dl, ..., dls], is synchronized with the inputted text feature matrix and
subsequently input into the language model. Based on the feature vectors of the images, the language
model elaborates on the textual inference description. Algorithm 1 outlines the procedure of encoding
images to serve as prompts for the model.

Algorithm 1. Image encoding and model prompt process.

Input: Image vector feature matrix D! and corresponding text feature vector matrix H/

Output: Model’s description of the picture
function: Image feature matrix D/ and text feature vector matrix H/' embedding alignment
2 initialize D!, H!

3 for d.in D} do

4 for h in H! do

5 d: Count the first section on relevant features.
6 h.: Count corresponding features in the text.
7 end

8 D! . append(d)

9 H! . append(h)

10 end

1 nitialize D/, HY

12 repeat

13 for d,in D]

14 for hin HJ

15 after residual computation to obtain d/, h/

16 vector alignment using cosine similarity

17  until convergence
18  using fine-grained hard sample alignment

19 return D!" and H! embedding aligned feature vectors.

20 end function
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3.7 Answer Testing

Figure 3 presents a comprehensive overview of the answer testing phase. The pre-trained MLLM-ITV
model is initially supplied with the test image during answer testing. The image undergoes encoding
through the image encoder, resulting in the generation of image feature vectors. These feature vectors,
produced in the answer testing phase, are denoted as j, for k =0, 1, 2, ..., 196. The individual features are
then aggregated to construct the feature matrix for the image, represented as / = [, j,, jor -/ Jir - Jigg]- Al
the same time, inquiries to extract information from the image are made. These queries are encoded to form
a question vector. Subsequently, the image feature matrix and the question vector are fed into the Q-Former.
A fresh vector matrix is created by extracting image-text information vectors. The dimensions of the feature
matrix are then adjusted via a fully connected layer. This adapted matrix is subsequently input into the
language model, which proceeds to respond to the presented questions. Throughout this response process,
the language model generates answers based on the feature information extracted from the input image,
resulting in a textual representation. Algorithm 2 provides the pseudo-code outlining the pertinent process.

IR I 5K FE 1 5
(Descnbe the contextof this image. )

E KR 7 St R
= [EPNIDE S S p
M “ﬂll (In the background of
this photo is a tall green tree
with some branches on it.)

Input 1mage

Figure 3. Answer testing formation.

Algorithm 2. Answer Testing.

Input: Image feature vector matrix / and problem vector matrix for the desired problem
Output: Modelling targeted responses to questions
function: Alignment of the image feature matrix / with the desired problem vector
initialize J
for Vj_in J do
for problem vector in problem matrix do

Ji: Count Relevant features of responses to questions

problem vector: Count computing key features in problem vectors
end
J. append( )
problem matrix.append (problem vector)

R N SO U1 kAR WN =

- ©
=)

end

-
—

Alignment of features of computational questions with picture responses

-
N

Extract the required response feature vectors to pass to the language model

-
w

Language modeling for targeted responses to questions asked
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4. EXPERIMENTS

4.1 Dataset

Due to the absence of multimodal forestry-related datasets for model training, we construct a
multimodal Chinese-language forestry pest and disease (FPD) dataset® comprising forestry pest and
disease images and their textual descriptions. To facilitate comprehensive learning from the images, 3, 4,
or more relevant questions were generated for each image. The answers chiefly involve the image’s
presented content, the featured species, and the morphological attributes of said species. The FPD dataset
encompasses approximately 4620 color forestry pest and disease images concerning 80 insect categories.
This dataset includes information on pest categorization, temporal features, geographical distribution,
damage caused, and pest control methods, as shown in Figure 4.
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Figure 4. Overview of the FPD dataset.

To bolster the base model’s conversational adeptness in forestry pests and diseases, we collect
around 50,000 entries concerning various concepts within forestry pests and diseases. These entries are
meticulously selected to constitute a pre-training corpus. Additionally, we perform web scraping to extract
content related to forestry pests and diseases from Baidu Baike, incorporating it as an extra reservoir for
our pre-training corpus. It is worth noting that when training the model, all experiments will be conducted

@ https:/github.com/motuomumu/MLLM-For.
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on three NVIDIA A100 GPUs. The AdamW optimizer trains the model. Its learning rate, batch size, and
training epochs are 5e-5, 64, and 10, respectively. A linear learning rate warm-up was applied over the
first 500 steps. The maximum sequence includes 512 tokens. Input images are resized to 196x196 pixels.
Standard augmentation techniques such as random cropping, resizing, and horizontal flipping are used
to improve generalization. The training duration spans approximately 1 month and 5 days, including
hyperparameter tuning and repeated experiments. The dataset is distinguished into 80% for training, 10%
for validation, and 10% for testing. All experiments are repeated with three different random seeds, and
average performance is reported to ensure robustness.

4.2 Comparison Models

We evaluate five leading open-source Chinese MLLM models, including VisualGLM-6B, Ziya-BLIP2-
14B-Visual, MiniGPT, VisCPM, and Qwen-VL, as follows:

e VisualGLM-6B [22] is an open-source multimodal conversational language model that supports
images, Chinese, and English. The language model is based on ChatGLM-6B, with a total of 6.2
billion parameters. The visual component is established by training the BLIP2-Qformer, bridging
the gap between the visual and language models, resulting in a combined model with a total of
7.8 billion parameters. Pre-training is conducted on 30 million high-quality Chinese text-image
pairs from the CogView dataset and 300 million carefully curated English text-image pairs.

e Ziya-BLIP2-14B-Visual [23] is crafted by the “Fengshen List” research team through the process
of training on a subset of meticulously curated high-quality data sourced from open-access
datasets. It is fashioned using an extensive corpus of around 20 million high-fidelity data instances
designated for training.

e MiniGPT [24] originates from the King Abdullah University of Science and Technology. The
team integrates a static visual encoder (Q-Former & ViT) with an immobile, extensive-scale text
generation model, resulting in the development of MiniGPT-4.

e VisCPM [25] is a family of open-source large multimodal models that support multimodal
conversational capabilities (VisCPM-Chat model) and text-to-image generation capabilities
(VisCPM-Paint model) in both Chinese and English, achieving the state-of-the-art performance
among Chinese open-source multimodal models. VisCPM is trained based on the large language
model CPM-Bee with 10B parameters, fusing visual encoders including Muffin and Diffusion-
UNet to support visual inputs and outputs. Thanks to the good bilingual capability of CPM-Bee,
VisCPM can be pre-trained with English multimodal data only and well generalized to achieve
promising Chinese multimodal capabilities.

e Qwen-VL [26] is a large-scale Vision Language Model (LVLM) developed by Alibaba Cloud.
Qwen-VL can take images, text, and detection boxes as input and produce text and detection
boxes as output. The distinguishing features of the Qwen-VL series models offer advanced
capabilities in fine-grained recognition and understanding with robust performance.
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4.3 Experimental Results

Extensive experiments are conducted on our benchmark. All comparative experiments are performed
on an NVIDIA A100 GPU. We set the parameters for beam search to 1, set the temperature to 0.8, and set
the top p to 0.4. For experimental testing, including the cognitive task, question and answer, count task,
stages cognitive recognition, and common sense reasoning, we select images from our FPD dataset and
non-dataset images for experiments.

4.3.1 Cognitive Task

We assess to ascertain whether MLLMs can engage in advanced logical reasoning following the
perception of visual stimuli. For MLLMs to deduce accurate responses, they must adhere to instructions,
comprehend the contents of visual stimuli, align text with images, and draw upon knowledge from
LLM. This task presents a more formidable challenge compared to a singular perceptual assignment. The
application of MLLMs to address specialized issues necessitates a profound exploration of this domain. It
encompasses identifying fundamental problems and determining specific data essential for resolving them,
a “modal completion” process. Prompt identification of pest and disease types and categories in forestry
pests and diseases is paramount. Early detection and warning, facilitated through vigilant monitoring
and swift identification, enable the timely revelation of pests and diseases, the issuance of alerts, and
the implementation of control measures to contain their propagation. Swift and accurate identifications
pinpoint the pest or disease types, facilitating targeted control interventions.

Because many Al image recognition datasets are cultivated within Petri dishes, the model settings are
only conducive to real-world production requirements. As such, we randomly select 100 images from
Al image recognition datasets and research libraries on agricultural pests and diseases from the IDADP
dataset®. MLLMs are tasked with discerning the species depicted in each image. Al insect recognition
entails a conventional object detection task, primarily discerning the positions and classifications of seven
types of insects within monochromatic containers.

Perception is a fundamental capability of MLLMs, and its absence may lead to perceptual illusions. In
this experiment, a single-turn dialogue format was employed, wherein the model was directly presented
with an image and the prompt: “What species is shown in the picture?”. Figure 5 depicts the outcomes
of the baselines and the MLLM-ITV model. Within this task, none of the three comparative models could
definitively ascertain the species depicted in the image. Notably, Visual GLM-6B demonstrates a laudable
proficiency in scene depiction. It precisely delineates species patterns, spots, and the ambient milieu.
Particularly striking are its portrayals of the image’s backdrop, the habitat of the depicted animal, and finer
features such as antennae, stripes, and spots on the animal. However, Visual GLM-6B occasionally refrains
from answering queries or provides proverbial responses. The Ziya-BLIP2-14B-Visual model could discern
the image’s content, but not specify the exact species’ name. Similar to VisualGLM-6B, MiniGPT could
render an account of the overall environment and provide certain details about the insects. Nevertheless,

@ https://www.heywhale.com/mw/dataset/63e50cfea2c1716e14fb9db6.
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MiniGPT exhibits limited proficiency in adapting to Chinese; it responds in English to Chinese prompts,
showing relatively superior performance when queries are in English. The MLLM-ITV model exhibits
superior performance in this task. While it manages to identify some species, a discernible gap exists
compared to seasoned human experts on an aggregate scale. Our model accommodates questions in
Chinese and furnishes corresponding and accurate responses. Furthermore, upon further examination,
we discover that when we persistently inquire: “What is presented in the picture?”, the model capably
generates corresponding descriptions for the provided image, encompassing particulars such as antenna
length, the insect’s developmental and growth stages, distribution regions, and more.

B L JRom AT A Fh?

(What species is shown in the picture?)

(The species in this picture is called the Black-spotted Tiger Butterfly, an insect belonging to the Lepidoptera and Tiger
Butterfly families. Alias: Red Crested Butterfly, Black-margined Crested Butterfly, Black-spotted Tiger Butterfly, etc.) Ours

TR OM BN, SERERO. SARE RO T L, TR S E R,
(This butterfly is orange and black with a brown body. It was sitting on a green leaf that had some white powder on the

end of it.)

KR Lo e — Rk

(The image shows a butterfly.) Ziya

By

The image shows a butterfly sitting on a leaf in a green background. The butterfly has orange and black markings on its
wings and is perched on a leaf with small white flowers on it. The butterfly’s body is brown and its antennae are white.
The background is made up of green leaves and small white flowers.

KB LR 1 RSl fE 2R e ) L

) B)) B))

°°l (The image shows a beautiful butterfly sitting on a green plant.) VisCPM
B s — RS i s AE AR B, BIEE B R IR A
||ﬂ|, (The picture has an orange butterfly resting on a leaf with black spots on its wings.) Qwen

Figure 5. Experiment comparison chart of the cognitive task. In this figure, VisualGLM-6B, Ziya-BLIP2-14B-
Visual, and Qwen-VL are shortened to VisualGLM, Ziya, and Qwen, respectively (The model abbreviations of the
following figures are the same as those in this figure).

For the task of species recognition shown in Table 2, Visual GLM-6B, Ziya-BLIP2-14B-Visual, MiniGPT,
VisCPM, and Qwen-VL exhibit minimal capability in identifying the species in the images. Our MLLM-ITV
model outperforms these counterparts in this task. However, when it comes to identifying some species,
there is still a discernible gap compared to experienced human experts.
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Table 2. The Accuracy scores of evaluation models in the cognitive task.

Model Acc
Visual GLM-6B 0.13
Ziya-BLIP2-14B-Visual 0
MiniGPT 0
Viscpm 0
Qwen-VL 0
MLLM-ITV 0.21

4.3.2 Question and Answer

The recommendations for preventing and controlling forestry pests and diseases should exhibit a
scientific and rational foundation. They will furnish invaluable guidance for practical forestry production,
mitigating the environmental repercussions of prevention and control measures, reducing costs, and
bolstering economic efficiency. Furthermore, they will direct the refinement and advancement of
prevention and control technologies, establishing a robust framework for incorporating multimodal models
in the vertical domain. Conversations concerning the prevention and control of forestry pests and diseases
play a pivotal role in large-scale models. We curate 100 forestry prevention and control questions from
pertinent professional literature. The model undergoes assessment through a multi-turn dialogue, inquiring
about its approach to controlling specific species. The experimental outcomes are depicted in Figure 6. In
this endeavor, we employ GPT-4 for answer evaluation. Notably, even GPT-4 cannot definitively ascertain
the correctness of prevention and control measures. Therefore, we will manually assess the model’s
prevention and control methodologies, drawing from pertinent literature. We adopt a weighting ratio 3:7
between GPT-4 and human judgment, resulting in the ultimate scores delineated in Table 3.

In this task, VisualGLM-6B exhibits a laudable proficiency in responding to instructions, furnishing
lucid responses, and proposing specific preventative measures. Nonetheless, the method tends to be
overly general, lacking focused approaches tailored to specific insect species. Moreover, upon scrutiny,
the chemical control methods it advocates manifest certain inaccuracies and potentially misleading
information, rendering them unsuitable for guiding purposes. Ziya-BLIP2-14B-Visual demonstrates
comparatively diminished performance in this context. It can only proffer a single control method, and the
strategies for different species are similarly broad, needing more detailed explanations and instructional
value. VisCPM furnishes comprehensive responses, yet it lacks specificity. It cannot be construed as
prescriptive. MiniGPT follows a parallel pattern and cannot present targeted control methods contingent
on insect species. While our model draws on the foundation of VisualGLM-6B, we are proficient in
delivering more precise control strategies. The substance and range of our suggested control measures are
characterized by greater precision and comprehensiveness, signifying a notable enhancement. In the GPT-4
evaluation, our model also attains superior scores for the proposed control methods. Our model performs
the best in this regard. For some species, it can give specific, targeted recommendations for control.

20 Data Intelligence



MLIM-ITV: A Multimodal Large Language Model for Image-to-Text Generation Based on Vertical Sector

B R At A

(What species is shown in the picture?)

PRBESR BT iE T A R 2

(What are some ways to control tiger butterflies?)

PRBEMR — R B R, SR BE X RRRARIES . DR — S R BR 7 ik
;%Z?Jk?‘*ﬁﬁ AEGUREY, WA HRAAE, T LA R K 20 A F B AL Aﬂﬁﬁﬂ%ﬂ%‘ﬂi, feEmAK,

MIHLE o
2. (T T SRR R, o DA RO BRI B
3ALERR: T MER S AR PINE (PBO) BRI (b =W R (0 2 I HEAT 0, AR SE4)
AT (EHHE YA e AR [, DL SEL) i . ﬁﬁﬁ&ﬁﬁ%‘kﬁ*ﬁﬁﬁﬂi%ﬁ*‘h

(The Tiger Butterfly is an important pest that mainly affects trees and flowers. The following are some common control methods.
1. Agricultural measures: Planting insect-resistant plants, such as citrus and tea trees, can reduce the distribution and
reproduction opportunities of tiger butterflies; rational fertilization and management to

Promote plant growth and improve plant resistance.

2. Physical control: Using predatory tools or sticky boards to catch larvae can effectively reduce the number of tiger butterflies.

Ours 3. Chemical control: Sprays containing phenylbutazone (PBO) or other harmful chemicals can be used to kill larvae and pupae.

4. Pharmaceutical fumigation: Fumigants are heated and released into the space using smoke machines or burners to kill

||ﬁ|. larvae and pupae. This method is suitable for large scale pest control.)

Ziya

JEBEME L — RS2 A I, LB T AL
1A g @GR LG RIS ARRORIEE o SRR 2] DU TR B U2 R A X 3,

T 2 b /-5 1 )
2B tﬁ{ﬁ%jﬁifdﬁﬁ‘fﬂﬁﬁ)l: AR D7 1E e AR S e
AT RIS R 5] B A4, M)cul% MBI NFIAI . XA BT PR At

4B IJUﬁﬁﬁﬁnﬁﬁiﬁhﬂiﬂﬁfi@ﬁ&iﬂmﬁi%ﬁ’]ik, T2 47 R BB 75 £ e ok«

(The Tiger Butterfly is a widely distributed butterfly and its control methods include:

1. Agricultural control: killing the pests through the use of insect-resistant pesticides, biopesticides or chemical pesticides.

These pesticides can be used in the contact area between plants and insects, thus effectively reducing the number of pests.

2. Physical defense: Installation of insect-proof or other predatory traps to catch and prevent them from escaping from their
habitats.

3. Artificial management: using various baits to attract wild individuals and then introducing them to the planted area. This helps
to reduce the population size.

4. Environmental Improvement: Enhance vegetation cover to increase soil moisture to promote the growth of soil
microorganisms, which reduces the food source required by the tiger lily butterfly.)

PERER KB 6 R QLR E AR EVRUKIR. EATRT LA JERBUR S R E . JEsh, JRBRUE i 28
S REL BlAnG2AIAh R, X EEZh Y SR IR T, PERERR AT BRI R R AR SR M E R R A
(Tiger butterfly control involves finding food and water sources on plants. They can get nutrients from leaves, flowers or fruits.

In addition, tiger butterflies need to avoid from natural enemies. Examples include birds and other insects that catch and eat them.

Iﬁll Tiger butterflies may also protect themselves by roosting in trees or bushes.)

PRPHIRR R EF S R, BRI, I FLATRE SBUEYEE . WD G Ty A LA
AR R BT BAFH 2% BUGRRSE S S

2 AHFIGUBEE L) T AU 2GR B AL R DR et .

33 G T AR SRR B AR B SR R AeRA) o

A MRS AT OB BSOS FRBOR P 1R B S

(The Tiger Butterfly is an insect that harms thatch, infects plants, and can cause them to die. Methods of control of tiger
butterfly include:

1. using insecticides: insecticides can be used to kil tiger spot butterflies.

2. using anti-butterfly medication: anti-butterfly medication can be used to prevent tiger butterflies from infecting plants.
3. Use of pests: Pests can be used to prevent tiger butterflies from infecting plants.

.|ﬂ|, 4. Use environmental improvement: You can prevent tiger butterflies from infecting plants by modifying the environment.)

DRI B R B, PTRIRLA T i

1AL FE L AT CASR GBSO D, FFR 51 A FIFhSE B .
2.0 FEBIRZ R BTy, 2R R AT LA 51 BT

3 AEFIFRARALSE B A FRIER /I ) 7% s> o MR B ) 57 T S o

(The following measures can be taken to protect butterflies and their habitats:

\/isCpm 1. Greening the environment: planting more trees can provide additional habitat and attract different species of butterflies.

Qwer
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2. Create water features: installing fountains etc. in areas frequented by butterflies can attract them.
3. Use environmentally friendly pests: Choose insecticides that have a low impact on the environment to minimize the
negative effects on butterfly populations.)

%Fﬁi’c%l‘ﬁ?"?ﬂi PEREEE B S kAR, AT LI R R B . FHEVITERT. 4y Ui U BRI
UK, T LA i SR i «

MRHPB T LURI — L), %’Jﬁﬁiﬁ%%?&ﬁl%%i“)ﬁﬂi%ﬁ
KRBT W uﬁﬁﬁiﬁﬂ BRI RIREE, /0 IE R BRUR A K PR, TTTUR D 3L
SRR A CE(EITAEN], ATLACRECERD . MR GR S, S PR S o
(Adopting chemical control methods: The tiger butterfly mainly harms crops and can be controlled by spraying insecticides.
Crops can be controlled by spraying insecticides during the flowering, larval and adult stages.
Three times control can effectively reduce the damage of tiger butterfly.
Adopting biological control methods: The number of tiger butterflies can be controlled by introducing natural enemies.
Adopting biological natural enemy control methods: Some plants can be planted to control tiger butterflies by utilizing the
natural enemies of plants.
Adoption of ecological control methods: The number of tiger butterflies can be reduced by improving the environment of
' farmland and gardens to reduce the environment suitable for tiger butterflies to grow.
Adoption of agricultural measures: During the flowering period of crops, agricultural measures such as hedging and
D interplanting can be adopted to reduce the harm of tiger butterflies.)

Figure 6. Comparison chart of question and answer experiments.
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Table 3. The Accuracy scores of evaluation models in the question and answer task.

Model GPT4 Human
Visual GLM-6B 0.75 0.80
Ziya-BLIP2-14B-Visual 0.68 0.60
MiniGPT 0.53 0.65
VisCPM 0.67 0.60
Qwen-VL 0.73 0.75
MLLM-ITV 0.83 0.85

4.3.3 Count Task

In multimodal studies, the recognition of quantities assumes paramount significance. Within the
specialized domain of forestry, as applied to vertical contexts, the assessment of pest quantities within
images serves to ascertain the gravity of the infestation, track alterations in its progression, and scrutinize
the trends in pest evolution. To this end, we meticulously curated a subset of images from the IDADP
dataset, each featuring two or more insects, to serve as our testing cohort. While quantity recognition
constitutes a fundamental aptitude for MLLMs, it does not represent a singular specialized task. Our
manually chosen test set exclusively encompasses images portraying 2 or 3 insects, which are all distinctly
discernible. This selection deliberately eschews the complexities of recognizing intricate or densely
populated insect imagery. The testing protocol is elucidated in Figure 7, and the ensuing results are
meticulously tabulated in Table 4.

O B A JLR F 2

(How many insects are in this picture?)

(&)

XERER g FAE Xk R RaR T R A EFKE BRI R B
(There are two of them i BRER . (There are two insects in
in this photo.) (This picture shows two animals this picture.)

jumping in a grassy field.)

MiniGPT VisCPM

Xk B RN 3L AR AT L R ? RN
(There are two small (How many insects are (There are two little
insects in this picture.) in this picture?) animals.)

Figure 7. Comparison chart of the count experiment.
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Table 4. The Accuracy scores of evaluation models in the count task.

Model Acc
Visual GLM-6B 0.83
Ziya-BLIP2-14B-Visual 0.91
MiniGPT 0.85
VisCPM 0.75
Qwen-VL 0.60
MLLM-ITV 0.93

In this task, Ziya-BLIP2-14B-Visual, Visual GLM-6B, and our MLLM-ITV model all demonstrate accurate
judgments regarding the number of insects in the images. Ziya-BLIP2-14B-Visual and our model provide
concise responses, strictly adhering to the instructions by outputting the insect count. Furthermore, our
MLLM-ITV model performs best. Conversely, VisualGLM-6B and MiniGPT tend to be more verbose,
offering descriptions of the images in addition to the prompt. In certain test samples, some insects may
be misjudged by Ziya-BLIP2-14B-Visual due to their positioning or if only half of their body is within
the image frame. When an image contains butterfly and larval (caterpillar) stages, VisualGLM-6B and
Ziya-BLIP2-14B-Visual make incorrect quantity determinations. It is difficult for MiniGPT to respond
satisfactorily to slightly complex images or moderately intricate Chinese instructions. We attribute
this issue to the absence of similar fine-tuning instructions in the training set, resulting in significant
discrepancies in insect quantity judgments for images containing multiple stages. Qwen-VL performs
poorly in tasks related to specimen image recognition, but it excels in natural photography images and
adhering to instructions. Meanwhile, VisCPM slightly outperforms Qwen-VL.

4.3.4 Stages Cognitive Recognition

We examine whether MLLMs exhibit enhanced logical inference capacity when perceiving visual
stimuli. MLLMs differ significantly from conventional methodologies. In order to derive accurate
conclusions, MLLMs must adhere to directives, grasp visual representations, and tap into the knowledge
reservoir within LLMs. They pose a heightened challenge in contrast to solitary perceptual tasks. Within our
specialized domain, discerning various developmental phases within a specific insect species facilitates
the judicious selection of suitable control techniques, corresponding interventions, and control agents.
It contributes to the surveillance and timely forewarning of pestilence and disease outbreaks. Through
regular scrutiny of insect development stages, we can promptly identify upswings in pest populations
or the dissemination of pathogens. Furthermore, we can take appropriate measures to forestall the
proliferation of pests and diseases, ultimately furnishing more precise and informative recommendations.

In cognitive tasks, we utilize a format combining knowledge prompts with questions. Initially, we curate
a subset of the dataset and enlist human experts to comprehensively describe various facets of the insects
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within the images. These descriptions encompass adult insects, larvae, and insect eggs. Subsequently, we
probe the developmental stage of the insects portrayed in the images. To mitigate the possibility of the
model generating conjectural responses triggered by prompt words, we design prompts encompassing a
minimum of three distinct stages of insects. For the sake of evaluation, mirroring the approach in the initia
experiment, we instruct the model to produce solely “yes” or “no” responses. The correct answers are
evenly balanced between “yes” and “no”. The experimental findings are graphically illustrated in Figure 8.
This task predominantly evaluates the reasoning aptitude and coarse-grained recognition proficiency of
MLLMs. The results of the assessments are succinctly summarized in Table 5.

JeEBER B RARKEZR, AAM, T MERANIBEL WA KER, i, Haf. R,
REBE, AOLEE, Ml HER B =T S R R R A (. ATMPTI A A ARG, S B XA
RAAER A OHEBHR LA LA

(Light-shouldered stargazer larvae are millimeters long, creamy-white, and without legs; the dorsal plate of the
prothorax has a convex pattern, and the pupa is millimeters long; naked pupa, yellowish-white. Adult, body black,
glossy, antennae whip-like from the third segment onwards the base of each segment is gray-blue.There is a spiny
protuberance on each side of the prothorax, and the sheathed wings each have about one spot of varying sizes
composed of white downy hairs.)

h b TAT AR Be?
(What stage is the diagram in?)

RIS T — FOHERAFRR, R A49~612K.

(This photo shows an adult light-shouldered stargazer, which is 49 to 61 millimeters long.) Ours
FRATTAT LAHERT th P i JRoas R A e B R A R AR

(We can deduce that the picture shows the adult of the light-shouldered stargazer.)

FATHT LAt 1T o IR 1A A 6 B2 R AR B R

By

|||| (We can deduce that the figure shows the adults of the light-shouldered stargazer.) Ziya
RANE R ER T ARE, ERFEA.

{o°y  (This image shows an insect which is an insect.) MiniGPT
B A Ak Be?

{oo) (Whatstage is the diagram in?) VisCPM
b ab T4l B B

{ooy (The figure is in the larval stage.) Qwen

Figure 8. Experimental comparison chart of the stages cognitive recognition.
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Table 5. The accuracy scores of evaluation models in the stages cognitive recognition task.

Model Acc
Visual GLM-6B 0.53
Ziya-BLIP2-14B-Visual 0.65
MiniGPT 0.51
VisCPM 0.67
Qwen-VL 0.62
MLLM-ITV 0.71

From the results of the assessments, Ziya-BLIP2-14B-Visual could not grasp the instructions, resulting
in an inability to carry out comprehensive task inference based on the given prompts. Instead, it
rigidly identifies key terms within the knowledge and produces pertinent content associated with those
keywords. Visual GLM-6B and our MLLM-ITV models showcase enhanced comprehension and task
fulfillment capabilities. Our model slightly outperforms Visual GLM-6B by accurately discerning distinct
stages of the same insect. Moreover, it can furnish more relevant information and extract accurate data
for inference, leading to reasoned and precise responses. VisCPM deviates from strict adherence to
instructions, furnishing binary responses with a suboptimal accuracy rate. Qwen-VL tends to generate
illusions, presuming the presence of both larval and adult stages in the image upon encountering these
terms in the prompts, rendering it comparatively weaker in inference. MiniGPT performs poorly, and it is
hard to formulate responses in line with the provided instructions. When instructions involve describing
a non-existent stage of an insect, MLLMs conjure the existence of such a stage and respond accordingly,
indicating an illusion influenced by the instructions.

4.3.5 Common Sense Reasoning

In our investigation of fine-tuning and training utilizing the proposed MLLM-ITV model within specific
vertical domains, we also scrutinize the potential influence on the model’s performance in broader domains.
To this end, we adhere to the methodology referenced in prior studies and administer assessments of
common-sense reasoning to the model. Common-sense reasoning encompasses fundamental knowledge
applicable to everyday situations. For example, when we present an image of an individual donning a
down jacket, we inquire whether the model would be deemed appropriate attire in cold (or hot) weather
conditions. These queries entail rudimentary knowledge that individuals can promptly address without
necessitating intricate, step-by-step deliberation. The test experiment is shown in Figure 9.
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RKRKE ERARRESER R G ? W [ Z R sE AL
please think step by step.
(Is the dress in this picture suitable for summer? Just
answer yes or no. please think step by step.)

Ours: & FEANES . (The answer is not suitable.)

X R OER SRR T TR
(This black hooded jacket is
perfect for the summer season. )

Ziya: A &. (No)

XK R IR — 1 E A R
selfiFesi. (The dress in this
picture is a jacket containing
a blazer.)

VisCPM:A, A A IR IRANE & 7E
K R% . (No, the dress in
the picture is not suitable
for summer.)

Ajg. (No)

!
g
Rk ERRRE AR ? QIR mH AL .
please think step by step.
(Is the dress in this picture suitable for summer? Just
answer yes or no. please think step by step.)

Ours: £, (YeS)

XERE RN T AR A,
H£EJE. (This picture shows a
bottle of green liquid with the bottle
mouth is rounded. )

Ziya: 2, (Yes)

The image shows a bottle of
green tea with a white label on it.
VisCPM: A5, )i i A 2
HIRAC . (No, the items
in the picture are not for
repelling mosquitoes.)

JEo (Yes)

&

Rk ERRROE ARG ? A [IE R mE AL,

please think step by step.
(Is the dress in this picture suitable for summer? Just
answer yes or no. please think step by step.)

Ours: Afg. (No.)

X ME G BN T — % BEKHDMIE LS.
(This image shows a black HDMI cable.)

Ziya: &, (Yes)

The image shows a USB-C to
HDMI cable.
VisCPM:ZE[), By e it b el LA
RALEFHLFLHE. (No, the
dress in the picture is not
suitable for summer.)

. (No)

KA ERRRGESER R GG ? REEREE 2.
please think step by step.
(Is the dress in this picture suitable for summer? Just
answer yes or no. please think step by step.)

Ours: A&, (No)

BR e 1 X AL A,
Forh B R IE T AR SE . (Image
shows a couple in dresses, with the
male wearing a hat and glasses.)
ZiyarAi. KB R R R — AN AL
ANTERH 2% . (NO. This picture depicts
a man and woman laughing in the rain.)
Rk B R R R R R RS .
(This picture depicts the Titanic.)
VisCPM: 2], X3k f s
ZRHJETL . (Yes, this
picture depicts the Titanic.)

o (Yes)

Figure 9. Experimental comparison chart for the common sense reasoning
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In our experiments, most MLLMs exhibit a deficiency in reasoning abilities. For example, when we
query the suitability of wearing a down jacket in the summer, MLLMs logically deduce that it offers
substantial insulation; however, it still generates an affirmative response. This discrepancy signifies a
breakdown in the model’s cognitive process. Consequently, we incorporate CoT prompts in our inquiries,
such as “please engage in step-by-step thinking”, aiming to direct the model toward a marginally
enhanced outcome. From Table 6, while Visual GLM-6B and our MLLM-ITVL model display heightened
adherence to instructions in this context, their perceptual capacities were relatively inferior compared to
Ziya-BLIP2-14B-Visual. Ziya-BLIP2-14B-Visual and Qwen-VL demonstrate proficiency in providing more
refined responses guided by prompts within the chain of thought. Our model performs slightly below
Qwen-VL. Qwen-VL exhibits complete adherence to instructions and excels in common-sense reasoning
by delivering binary “yes” or “no” responses. Nevertheless, Qwen-VL still exhibits a minor performance
disparity compared to human experts.

Table 6. The scores of evaluation models in the common sense reasoning task.

Model Acc Human
VisualGLM-6B 0.30 0.76
Ziya-BLIP2-14B-Visual 0.80 0.72
MiniGPT 0.62 0.70
Viscpm 0.67 0.78
Qwen-VL 0.76 0.90
MLLM-ITV 0.65 0.78

4.3.6 Ablation Study

To assess the contribution of key components in MLLM-ITV, we conduct ablation experiments by
removing the Q-Former module, disabling Low-Rank Adaptation, and excluding instruction-tuned data
during training. The results are shown in Table 7. Through the experiments, removing the Q-Former
led to a significant drop in performance across all three tasks. The main reason is that Q-Former is the
critical bridge between the image encoder and the language model. Without it, the model fails to receive
meaningful visual semantics, severely impairing vision-language alignment. When LoRA is removed,
performance also degrades. The primary reason is that the language model cannot adapt to domain-spe-
cific knowledge from the vertical dataset. It weakens the understanding of specialized terminology and
negatively impacts classification accuracy. In contrast, excluding instruction tuning causes only a moderate
performance decline. While some capabilities are weakened, the model can also handle basic tasks.
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Table 7. Ablation results of key modules on three tasks: question answering, counting, and common sense reasoning.

Components Question and answer Count Common sense reasoning
w/o Q-Former 0.72 0.79 0.66
w/o LoRA 0.76 0.83 0.71
w/o Instruction Data 0.79 0.85 0.72
MLLM-ITV 0.85 0.93 0.78

5. CONCLUSIONS

This paper presents a multimodal large language model for image-to-text generation based on a vertical
sector (MLLM-ITV) model. We establish a multimodal Chinese-language forestry pest and disease dataset
with image-text instruction adherence within forestry pest and disease contexts. Based on the dataset,
we embark on a comprehensive pre-training process for MLLM-ITV to enhance the understanding of
forestry visuals and linguistics. MLLM-ITV showcases a robust repository of domain-specific knowledge.
We implement supplementary fine-tuning procedures to optimize its performance. The instruction data
trained on the model helps the model recognise and perform specific tasks more accurately, enabling the
model to understand and execute a diverse range of instructions, further refining the model. MLLM-ITV is
a substantial advancement in creating a practical forestry aide, signifying an expansion of MLLMs into the
vertical domain, particularly in the Chinese context. Nevertheless, we acknowledge ample opportunity
for enhancement in tasks demanding deep reasoning capabilities. The experiments compare five currently
outstanding open-source MLLMs in Chinese and English. Our model outperforms others in forestry pest
and disease control, surpassing the baseline model, VisualGLM, to a certain extent. However, there is still
significant room for pest and disease recognition. In the future, we plan to expand the annotated dataset,
address pest and disease recognition issues, and overcome challenges associated with model hallucinated
knowledge. Besides, we will improve the quality and reliability of MLLMs.
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