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ABSTRACT

Integrating visual and textual data enables large language models (LLMs) to understand complex 

information better, broadening their applicability in real-world tasks. While multimodal large language 

models have advanced through large-scale image-text pre-training, few are optimized for Chinese forestry 

image comprehension and dialogue. To address this gap, we propose the multimodal large language 

model for image-to-text generation based on a vertical sector (MLLM-ITV), an efficient and adaptable 

multimodal large language model designed for the forestry sector. It is trained on a carefully curated 

Chinese forestry biology image-caption dataset and instruction-following data to support open-ended 

dialogues. A Querying Transformer (Q-Former) module connects a pre-trained vision encoder to the 

ChatGLM-6B (General Language Model for Chat, 6 Billion Parameters) language model, aligning visual 

features with domain-specific vocabulary. Fine-tuning based on Low-Rank Adaptation (LoRA) further 

adapts the model to forestry tasks. The resulting model performs strongly in species identification, image 

understanding, and visual dialogue, outperforming five state-of-the-art Chinese multimodal LLMs.

1.  INTRODUCTION

Large language models (LLMs) [1-6] have exhibited remarkable performance across diverse domains, 

garnering substantial interest from both the academic and industrial spheres. While language models have 
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demonstrated commendable performance, it is evident that possessing solely textual “comprehension” 

often inadequately communicates information with vividness. The integration of information from 

divergent modalities, notably textual and visual elements, coupled with the inclusion of perceptual 

acumen linked to “visual” comprehension, facilitates the attainment of a more comprehensive grasp 

of phenomena and amplifies our expressive proficiencies. Consequently, this expansion broadens the 

horizons of language model applications. Multimodal fusion provides us with richer ways to explore 

and solve complex problems. Artificial General Intelligence (AGI) [7] possesses efficient multimodal 

information processing capability. Multimodal artificial intelligence (AI) not only tackles tasks involving 

single data types but also establishes connections and fuses information across diverse data types, thus 

offering support for addressing intricate challenges. An open and transparent open-source base language 

model, ChatGLM [8], has caught our attention. It is an English and Chinese bidirectional dense model. 

It contains 130 billion parameters and is pre-trained using the general language model (GLM) algorithm. 

It unveils how the ChatGLM model with a 130 billion scale is successfully pre-trained. Hence, we 

contemplate the feasibility of transposing large language models into cross-modal domains to emulate 

human cognitive abilities.

Even with the notable performance showcased by the LLaMA [9] model through fine-tuning, its aptitude 

within the domain of the Chinese language remains constrained, stemming from its limited exposure to 

Chinese corpora during the pre-training stage. In contrast, the ChatGLM [8] model by Tsinghua University 

stands for its exceptional performance in the realm of the Chinese language. It is based on the general 

language model architecture, featuring 6.2 billion parameters. ChatGLM-6B employs methodologies 

analogous to those employed by ChatGPT, tailored to optimize performance within Chinese question-

answering and dialogic interactions. However, it is noteworthy that frequent observation pertains to the 

suboptimal performance of numerous expansive language models in scenarios necessitating a profound 

grasp of domain-specific intricacies. Our supposition posits that this phenomenon may trace its origins 

to the paucity of data originating from distinct specialized domains during the formative pre-training 

phase of the model. Within an industrial purview, universal expansive models undertake the role akin to 

“comprehensive compendiums”, typified by exemplars like GPT-3 [10], PaLM [11], MOSS [12], and ERNIE 

Bot [13], characterized by their capacity to furnish comprehensive responses. Meanwhile, domain-specific 

expansive models assume the semblance of mono-disciplinary experts, refined within the confines of their 

specific niches.

The expansion of LLMs into visual-linguistic multimodality and their judicious utilization constitute a 

subject of considerable significance. OpenAI’s release of the multimodal version of GPT-3 [10], known 

as DALL.E [14], showcases remarkable capabilities in generating images from text. This achievement 

effectively bridges visual and linguistic domains, underscoring the potency of pre-trained multimodal 

models. Addressing the efficient synchronization of models with multimodal images and Chinese linguistic 

directives has spurred a resurgence of focus within the community toward refining Chinese language-

enriched foundational visual models [15-16]. Concurrently, copious parallel image-text datasets across 

diverse domains provide a prolific resource. Empirical findings substantiate the capacity of generative 

pre-training to adeptly harness this parallel data for self-supervised visual-language modeling. Evidential 
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validation of this phenomenon has been showcased through open-source initiatives such as multimodal 

GPT-4 [17] and LLaVA [18]. The endeavor to equip ChatGLM with image recognition capabilities poses a 

formidable challenge, considering that LLMs do not integrate images during their pre-training phase.

To enable the interaction between text and image modalities, we have employed a Querying 

Transformer (Q-Former) [19]. Q-Former, a lightweight transformer, utilizes a set of trainable query vectors 

to extract visual features from the image encoder, serving as an information bottleneck between the 

image and text encoders. It supplies the most pertinent visual information required for text generation 

by LLMs. Q-Former predominantly consists of learned queries for both modalities, Cross-Attention, Self-

Attention, and Feed Forward components. Concretely, during the training phase, we learn visual-language 

representation by feeding vectors processed through the image and text encoders into Q-Former, which 

bridges these two distinct modalities. Although natural image-text multimodal pre-training has shown 

impressive efficacy in numerous downstream applications, its seamless adaptation to the forestry domain 

faces challenges due to fundamental domain distinctions. Furthermore, collecting annotated datasets 

for forestry-related diseases and pests typically necessitates substantial domain-specific knowledge 

and resources, thereby making implementing our model in the specialized field of forestry a feasible 

proposition. Given the inherent constraints associated with the modest scale of ChatGLM-6B, substantial 

opportunities exist for further refining and optimizing the model.

In the past, the LLaMA-Adapter V2 [20] model effectively broadened the scope of language models 

to encompass multimodality by implementing adapter-based strategies. However, the method often 

introduces inference latency and increases memory demands. To address these limitations, Low-Rank 

Adaptation (LoRA) [21] has been proposed. LoRA reduces parameter storage and VRAM usage without 

adding inference overhead. When the rank r is much smaller than the original model dimensions, it 

eliminates the need to store optimizer states, significantly lowering memory consumption. Instead 

of updating all parameters, it fine-tunes only low-rank matrices, avoiding unnecessary gradient 

computations and improving efficiency. By aligning the rank of its matrices with pre-trained weights, it 

retains performance close to the original during fine-tuning. In multimodal scenarios, it also reduces the 

dimensionality of image features, transforming high-dimensional data into compact representations. To 

mitigate potential information loss, we adopt multiple parallel LoRA modules, combining their outputs to 

preserve semantic richness.

The scale of large models does not inherently equate to general artificial intelligence. As a result, fine-

tuning in vertical domains has become a critical research direction to enhance their practical utility. In this 

work, we focus on forestry pest and disease applications. Using ChatGLM as the backbone, we accelerate 

scenario-specific iteration by integrating artificial intelligence into all forest pest detection and prevention 

stages. We will fine-tune ChatGLM with Chinese-language, domain-specific forestry data, enabling the 

model to adapt effectively during pre-training. This process steers the base language model towards better 

aligning with forestry scenarios’ linguistic and semantic nuances.
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Amidst the backdrop of climate change, the gravity of forest pest and disease calamities in China is 

escalating. The forestry ecosystem is confronting unparalleled trials, prompting an imperative need to 

advance automated and intelligent pest and disease detection technologies. These progressions are pivotal 

in guiding the biological and scientific strategies for preventing and managing forestry pests and diseases, 

thereby safeguarding ecological integrity. Consequently, the proficient management of detrimental 

organisms within forestry has acquired paramount significance and immediate attention. Certain 

pernicious entities exhibit deceptive characteristics in their external features despite harboring substantial 

peril. The forest-related biological catastrophes these detrimental organisms induce are frequently likened 

to “latent forest conflagrations”. This analogy is drawn due to their shared resemblance with natural 

disasters and the distinctive intricacies and protracted challenges involved in their management.

Therefore, large-scale AI models known as “agricultural brains” will play a pivotal role in the practical 

implementation of pest and disease management solutions in the vertical domain of forestry. Fine-tuning in 

vertical domains will inevitably become a prevailing trend.

This paper introduces a multimodal large language model for image-to-text generation based on a 

vertical sector (MLLM-ITV). The primary purpose of this model is to expand the unadulterated language 

instruction model, ChatGLM, into a multimodal architecture, thereby endowing LLMs with the capability 

for generative production in alignment with visual modalities. This model represents the inaugural and 

successful initiative to incorporate multimodal instruction extension within the purview of forestry biology. 

The objective is directed at the comprehensive training of a forestry bio multimodal conversational 

assistant through an end-to-end approach, streamlining its implementation across practical application 

contexts. The efficacy of domain-specific pre-training has been demonstrated to be pertinent for Forestry 

Bio Natural Language Processing (NLP) applications and Forestry Bio Visual Language (VL) tasks alike.

 •  A multimodal Chinese-language forestry pest and disease (FPD) dataset is constructed. The dataset 

comprises forestry pest and disease images and their textual descriptions.

 •  A multimodal large language model for image-to-text generation based on a vertical sector 

(MLLM-ITV) model is an extension of the ChatGLM model using LoRA fine-tuning techniques.

 •  Experiments show that MLLM-ITV outperforms five state-of-the-art models, including VisualGLM [22], 

Ziya-BLIP2-14B-Visual [23], MiniGPT [24], VisCPM [25] and Qwen [26] models.

 •  Using Q-Former, a successful transformation from linguistic unimodality to image-linguistic 

multimodality has been realized.

The rest of this paper is organized as follows. In Section 2, we present related work. Subsequently, we 

provide a detailed exposition of our primary contributions in Section 3. Finally, in Section 4, we compare 

our model with relevant models. Section 5 offers conclusions and outlines directions for future work.
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2.  RELATED WORK

2.1  Language Models

The pre-training frameworks can be classified into three categories: autoregressive, autoencoding, 

and encoder-decoder models. Contemporary pre-trained language models, built upon the Transformer 

architecture like the GPT series [4, 27-28], BERT, and others, employ autoregressive Transformer models 

to pre-train expansive language models on extensive textual corpora. This practice demonstrates their 

prowess in few-shot learning capacities [4, 28]. Large Language Models (LLMs) have shown remarkable 

progress through training on extensive text corpora, gradually finding utility across diverse domains. The 

emergence of LLMs has initiated a technological paradigm shift, and a lineup of open-source large models, 

including LLaMA [9], BLOOM [29], and ChatGLM [8], has substantially propelled the advancement of 

the Natural Language Processing (NLP) field. In contrast, ChatGLM is a bilingual conversational language 

model proficient in accommodating Chinese and English. Having undergone training involving around 1 

trillion tokens in both languages, bolstered by techniques like supervised fine-tuning and self-feedback, 

the ChatGLM model, boasting 6.2 billion parameters, demonstrates the capacity to generate responses that 

closely align with human preferences.

Based on the ChatGLM model, we enhance LLMs with the capacity to capture image features through 

fine-tuning. This endeavor lays the foundation for creating an open-source multimodal model. Within 

this study, we integrate domain-specific knowledge of forestry diseases and pests into the ChatGLM 

model, thereby reorienting the foundational language model towards a dedicated corpus specific to the 

field of forestry.

2.2  Vision-Language Models

In light of the emergence of expansive language models, scholarly investigations have been fervently 

delving into the application of LLMs for addressing multimodal challenges [20, 30], thereby culminating 

in the conception of Multimodal Large Language Model (MLLM) [17, 19, 31-34]. Various methodologies 

have entailed the infusion of visual data into LLMs and have meticulously refined these models through 

instructional directives. This strategic augmentation has facilitated their adeptness in generating textual 

content from visual inputs and has been shown to improve the generalization of language models to 

unknown tasks. In recent times, an evident transition has transpired within the landscape of image-

language research, wherein the focus has shifted from expansive language models to substantial vision-

language models. The Generative Pre-trained Transformer 4 (GPT-4) [17] has impressively showcased 

its prowess by adeptly handling inputs originating from diverse modalities, including images and text, 

fulfilling a wide spectrum of tasks. This exceptional adeptness has acted as a catalyst, giving rise to a 

fresh surge of investigation that extends the scope from singular language instruction models towards the 

realm of multimodal instructional models. Analogous to the principles behind LLaMA-Adapter [20], this 

emerging paradigm empowers LLMs with the faculty of visual reasoning, culminating in the proposal 

of LLaMA-Adapter V2 [20]. Conversely, BLIP2 [35] capitalizes on integrating Q-Former to facilitate the 

mapping of acquired image representations onto the textual embedding domain of LLMs.



MLLM-ITV: A Multimodal Large Language Model for Image-to-Text Generation Based on Vertical Sector

Data Intelligence6

In the pursuit of cultivating a directive comprehension akin to that exhibited by GPT-4, endeavors such 

as MiniGPT-4 [24] and LLaVA [18] have surfaced, embracing the utilization of datasets focused on image-

guided tracking to cultivate the capacities of image-guided tracking within LMMs. MiniGPT-4 [24] embarks 

upon a trajectory of pre-training, encompassing a corpus of 134  million image-text pairs, to establish a 
connection between the static visual encoder and the LLM. This connection is subsequently reinforced 

through fine-tuning the model using well-aligned image-text datasets. LLaVA [18], in a similar vein, leverages 

the pairings of image and text to serve as a conduit for achieving congruence between visual models and 

LMMs. Video-chat [30] facilitates further expansion of the realm of comprehension, which extends the 

boundaries of image encoders to empower expansive models with the competence to decode the visual 

constituents embedded within videos. Although these methodologies have showcased commendable 

aptitude in comprehending multiple modalities, they require the adjustment of billions of model parameters 

and the assiduous aggregation of substantial quantities of training data encompassing multiple modalities. 

This dataset is sourced from human annotations or outputs produced by the OpenAI API. Furthermore, 

these models are predominantly designed for generic domains and have yet to be fine-tuned for the specific 

context of forestry pest management, diminishing precision in their generated responses.

Our endeavor is directed towards endowing foundational LLMs with the ability to comprehend visual 

attributes. In this context, our model introduces an innovative LoRA fine-tuning strategy, encompassing 

the immobilization of parameters inherent to the initial pre-trained model. Additionally, augmentation is 

achieved by integrating an auxiliary matrix to replicate the comprehensive fine-tuning of model parameters. 

This strategic implementation curtails computational requirements and orchestrates a gradual infusion of 

image-based visual attributes into the pre-existing ChatGLM model, facilitated by low-rank adaptive. The 

outcome is a model that showcases robust generalization capacities. Moreover, existing antecedent models 

have yet to attain the desired level of adeptness within forestry biology. Our model will demonstrate a high 

level of competitiveness in the forestry domain compared to previous multimodal models.

2.3  Querying Transformer

Visual and linguistic modalities represent two fundamental channels through which human beings 

apprehend and comprehend their external environment. The central predicament confronting image-

language models revolves around the harmonious amalgamation of data from these heterogeneous 

modalities into a feature space that expansive language models can effectively apprehend. At present, 

the adoption of the Transformer architecture has ascended as the predominant methodology in the realm 

of multimodal algorithms for achieving the harmonious integration of information derived from diverse 

modalities into a feature space intelligible to LLMs and streamlining the process of feature fusion, owing 

to its remarkable aptitude in this regard. A new visual-language representation learning framework, Align 

before Fuse (ALBEF) [36], has been introduced, integrating multimodal contrastive learning into the 

domain of multimodal models. ALBEF encompasses an image encoder, a text encoder, and a multimodal 

encoder. It presents a straightforward, end-to-end, and highly proficient framework for acquiring visual-

language representation skills.
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An enhanced iteration of ALBEF, Q-Former, has been introduced. Q-Former is a streamlined model 

consisting of two transformer sub-modules. In contrast to ALBEF, the most salient divergence within 

Q-Former lies in the integration of Learned Queries. These Queries actively interact with image attributes 

through Cross-Attention and textual attributes through Self-Attention. Derived from information in both 

modalities, these Queries yield feature outputs of query length, irrespective of the visual backbone’s scale, 

thereby substantially diminishing computational complexity. The image transformer is predominantly 

dedicated to extracting visual features, and the Text Transformer encompasses the roles of text encoder 

and text decoder. Q-Former incorporates three distinct training tasks, namely Image-Text Contrastive 

Learning (ITC), Image-grounded Text Generation (ITG), and Image-Text Matching (ITM) [19]. These tasks 

collaboratively enable the extraction and fusion of features.

BLIP-2 [35] efficiently utilizes frozen image encoders and frozen LLMs to achieve various visual-

language tasks, yielding improved performance while minimizing computational overhead. Drawing from 

the Q-Former framework advanced in the BLIP-2 model, InstructBLIP [37] presents an instruction-aware 
visual feature extraction method. Q-Former serves as a lightweight bridge between the frozen vision 

encoder and the language model. Specifically, it employs a set of learned queries that interact with the 

visual features extracted by the image encoder through cross-attention. These queries generate compact 

visual embeddings projected into a token-level representation space. The resulting query outputs match the 

dimensional and semantic structure of language model input embeddings, allowing seamless integration 

into the frozen LLM without retraining its backbone. This alignment enables the language model to 

interpret visual semantics like textual tokens. The query outputs are prepended or interleaved with textual 

inputs and passed to ChatGLM’s input layer during implementation. This mechanism ensures LLM can 

condition its generation on visual and linguistic contexts in a unified token space. Ultimately, the model 

performs better than GPT-4, attaining cutting-edge outcomes across diverse tasks. Recent research has also 

highlighted the potential of Q-Former in integrating audio-visual signals, denoted as Audio Q-Former [38]. 

Our model employs a strategy that involves encoding and decoding images and text, followed by their 

fusion within the Q-Former framework. Q-Former excels in extracting visual representations that are most 

informative for textual content. Subsequently, the combined data is fed into a language model, ensuring 

the model’s adaptability with dynamic adjustments and enhanced learning capabilities. This approach aims 

to refine the training process for improved alignment.

2.4  Low-Rank Adaptation

For large models, full fine-tuning of all parameters of the retrained model becomes infeasible, and 

fine-tuning large models and large model deployments is also infeasible due to the massive number of 

parameters. The approach commonly used to adapt pre-trained models to multiple downstream tasks 

is fine-tuning, but fine-tuning involves updating all parameters with the trained model. The Low-rank 

structure is widespread in machine learning, and many machine learning algorithms have some inherent 

low-rank structure [39-41]. Moreover, it is well known that for many deep learning tasks, especially 

those with heavily overparameterized neural networks, the learned neural networks will have low-rank 

properties after training [42]. Some previous work has even explicitly imposed low-rank constraints when 
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training the original neural networks [43-47]. However, it was found that none of these works considered 

low-rank updates to the frozen model to adapt to downstream tasks. Therefore, LoRA [21] was proposed 

to indirectly train some dense layers in the neural network by optimizing the rank-decomposition matrix of 

the dense layers as they change during adaptation while keeping the pre-trained weights constant.

As such, we will adopt LoRA’s adaptive strategy to enhance the effectiveness of the LLM fine-tuning for 

downstream tasks. It maintains high-quality model performance without introducing inference latency 

or reducing input sequence length. It can maintain high-quality model performance without introducing 

inference delays or reducing the length of input sequences. It also demonstrates its excellent capability 

in service deployment scenarios, achieving the goal of fast task switching by sharing most of the model 

parameters. The framework successfully optimizes the performance by approximating global training, 

thus effectively reducing the waste of resources. In achieving the best overall performance, LoRA cleverly 

employs attention-related matrices, including WQ and WV, while taking WK into account. Experimental 

evidence from a related study [21] shows that the utility of the top singular vector direction is high when 

the matrix rank is set to 8, because the other directions usually contain most of the accumulated random 

noise during training. Therefore, during the training of the LoRA model, the rank is set to 8. The study 

shows that the neural network performs well when the underlying model concept has a low-rank structure. 

The most significant advantage of LoRA is that it is faster and uses less memory. Therefore, it can be run on 

consumer-grade hardware.

3.  THE MULTIMODAL LARGE LANGUAGE MODEL FOR IMAGE-TO-TEXT GENERATION BASED ON 

A VERTICAL SECTOR

3.1  Descriptions of Pertinent Symbols and Parameters

Table 1 summarizes the pertinent symbols utilized in the multimodal large language model for image-to-
text generation based on a vertical sector (MLLM-ITV), accompanied by their respective elucidations. In 

order to maintain a state of stability throughout the model training procedure, the vector dimensions 

resulting from the residual connections after the input of image-text pairs are consistently preserved. For the 

initially trained images, they can be systematically transcribed into a matrix array comprising n matrices, 

each delineated by 197 feature column vectors denoted as . Herein, 
j
aA ′  signifies the amalgamation of all feature vectors associated with the j-th training image. After applying 

residual connections, the initial training textual content can be projected to generate a matrix table 

mirroring the images. Each attribute delineated within the images possesses equivalent dimensions. In this 

paradigm, each matrix is also characterized by 197 text-based feature vectors, denoted as the augmented 

matrix …0 1 2 3 196= [ ,  ,  ,  ,  ,  ]j
aB b b b b b , representing the text-based feature vectors corresponding to the j-th 

image. Subsequently, an alignment procedure is executed between the image-text vector pairs. Positive 

samples are maximized to achieve optimal similarity alignment, whereas negative samples undergo 

supplementary cross-attention mechanisms for fine-grained realignment. This supplementary step amplifies 

the alignment efficacy, enabling the model to furnish more precise responses throughout the text-

generation process.
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The MLLM-ITV model embarks on the LoRA fine-tuning of the foundational VisualGLM model. The 

training process employs image-text data about forestry pest occurrences. Throughout this process, pertinent 

parameters within the image encoder and language model remain fixed, while LoRA-associated parameters 

in both components undergo refinement. Simultaneously, relevant parameters of Q-Former also undergo 

tuning. As a result, the refined multimodal large language model tailored for forestry applications is 

equipped to tackle issues surrounding forestry pest infestations. This development contributes to advancing 

research in the specialized forestry domain, facilitated by integrating multimodal large language models.

3.2  The Framework of the Proposed MLLM-ITV Model

The MLLM-ITV model comprises five principal constituents encompassing LoRA fine-tuning training, 

image encoding, text encoding, fine-grained hard sample alignment (fine-grained HSA), and answer 

testing, as shown in Figure 1. Given the suboptimal outcomes achieved with alternative fine-tuning 

methodologies, this study exclusively adopts LoRA for fine-tuning training. During the LoRA fine-tuning 

training, the critical action involves freezing parameters within the image encoder and the extensive 

language model. Q-Former connects the image encoder and the frozen large language model. As a 

result, the fine-tuned parameters encompass LoRA-related parameters in both the image encoder and the 

large language model, as well as the pertinent parameters within Q-Former. To align the model with the 

following instructions, we further train the model by prompting language-only high-quality dialogues. 

This training process culminates in acquiring and retaining multimodal proficiencies within the MLLM-ITV 

Model. Notably, this training approach substantially curtails the consumption of hardware resources 

throughout the training endeavor. During image encoding, the features of the image are subjected to 

representation learning, culminating in encoding image attributes into a feature vector. The primary 

Table 1.  Symbols.

Symbols Symbol interpretation

Aj Vector matrix of image features

Bj Vector matrix of text features

j
aA An augmented matrix formed by splicing the overall vector of the picture

j
aA ′

Augmented matrix embedding location features

j
aB Text augmentation matrix formed by splicing text topics

A
IS

Fine-tuned image feature skill matrix

B
TS

Coded text feature skill matrix

Hj Input description encoded feature matrix

j
aH An augmented matrix formed by splicing text features in the text encoding stage

j
aH ′

Augmented matrix formed by self-attention
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objective is to engage in comparative learning with the vector derived from the text encoding phase and to 

perform cross-attention fusion analysis with subsequent components.

In the text encoding phase, image text descriptions are encoded to generate a text vector. Subsequently, 

the vector dimensions undergo normalization through residual layers, aligning them with the dimensions 

of the image vector to facilitate convenient comparative learning. Within the Fine-grained HSA phase, 

an introduced cross-attention mechanism serves as the primary function, enabling the model to focus 

concurrently on the feature sequences of an alternative image while processing the input sequence. This 

endeavor is aimed at attaining a more meticulous alignment of image-text vectors. In the section dedicated 

to image description, the process encompasses the extraction of image vectors, followed by integrating 

cross-attention fusion with vectors derived from the text encoder. This process culminates in the task of text 

generation. During the answer testing phase, questions and images are fed into our well-trained MLLM-ITV 

model. Subsequently, the new model delivers exemplary responses grounded in the acquired skills and 

input image attributes. The following sections will give a detailed elucidation of the five constituents of the 

MLLM-ITV model.

3.3  LoRA Fine-Tuning Training

The LoRA fine-tuning training procedure can be delineated into two distinct stages, as shown in Figure 2. 

During the initial stage, the primary emphasis lies on training input images. The images undergo encoding, 

extracting features, and converting from multi-dimensional representations into one-dimensional column 

vectors. This extraction sequence proceeds from left to right and top to bottom, forming column vectors. 

Each column vector is denoted as a
i
, where i = 1, 2, 3, …, 196. The features of the j-th image are 

encapsulated within the feature matrix Aj = [a
1
, a

2
, a

3
, …, a

i
, …, a

196
] (j = 1, 2, 3, …, n). Following the 

transformation of image vectors’ dimensions, they are concatenated with the comprehensive information 

Figure 1.  The architecture of the MLLM-ITV model.
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vector a
0
, which maintains an equivalent dimensionality as that of the image feature vectors. This 

amalgamation yields an argmented matrix . After this, positional feature 

embedding is implemented on the amalgamated feature vectors, and then a residual connection layer is 

introduced. This iterative procedure culminates in the generation of a novel augmented feature matrix, 

denoted by . Subsequently, it is subject to a normalization process.

During the training process, the parameters in the graph encoder are frozen and fine-tuned in 

conjunction with LoRA. This process involves subjecting the image features to processing by both the 

image encoder model and LoRA, resulting in the establishment of the image feature skills matrix 

. After this step, a phase of comparative learning between Q-Former 

and the image-text pairs ensued, aligning them with the text vectors. In this context, the text vector matrix 

Bj encapsulates the textual description of the features for the j-th image, formulated as Bj = [b1, b2, b3, …, 

b196]. It is followed by the concatenation with the topic vector b0, ensuring its dimensionality matches the 

text vectors. Consequently, this process forms the augmented text matrix …0 1 2 3 196= [ ,  ,  ,  ,  ,  ]j
aB b b b b b . In 

Q-Former, text encoding leads to the formation of text features, resulting in a text feature skills matrix 

. The skills matrices align within Q-Former, employing cosine similarity 

for the alignment analysis. Subsequently, the aligned vector features are fed into the ChatGLM language 

model for training. Throughout this training process, the parameters of the ChatGLM language model 

remain fixed while fine-tuning is carried out in conjunction with LoRA. The mathematical procedure for 

the LoRA fine-tuning is delineated as follows.

- -= =pm LoRA pm LoRA zeros LoRA gaussianW W tW W tE F+ + ×  (1)

where t is a random variable with an absolute value not exceeding 1, and W, Wpm, and WLoRA represent the 

weight matrices of the trained model, the frozen model, and the LoRA fine-tuning process, respectively. 

During the model training, the F
LoRA-gaussian

 matrix is initialized using a normal distribution, while the E
LoRA-zeros

 

matrix is initialized with zeros. It ensures that the bypass of the frozen model remains a zero matrix at the 

beginning of the training process.

Figure 2.  The flow chart of the LoRA fine-tuning training.

Image
encoder

LoRA

Input image

Q-Former ChatGLM LoRA

...

一只黑色的蝴停在一
片树叶上。

rests on a leaf.)

这张照片展示了一只黑色的蝴蝶，它正坐在一片绿叶上。
这只蝴蝶的体型非常小，只有几毫米大小。它的身体呈现

出深棕色和黑色相间的颜色，给人一种神秘而优雅的感觉。
翅膀的形状十分独特，具有独特的花纹和图案。这些花纹
在光线下闪烁着迷人的光芒，仿佛一幅精美的艺术品。蝴
蝶的翅膀是椭圆形的，边缘略微弯曲，与周围的树叶形成

millimeters in size. Its body has a dark brown and black

shape of its wings was very unique, with distinctive

butterfly’s wings are oval with slightly curved edges,
contrasting with the surrounding leaves.)

in the light, as if they were a fine work of art. The
patterns and motifs. These patterns shimmer charmingly

color that gives it a mysterious and elegant look. The

green leaf. This butterfly is very small, only a few
（This photo shows a black butterfly that is sitting on a

了鲜明的对比。

(A black butterfly
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In the process of fine-tuning LoRA, when LoRA is applied to the mapping matrices W of attention’s 

Query and Value, the fine-tuning effect is further enhanced. The calculation process for the weights of the 

Query and Value mapping matrices in attention is illustrated below.

=Q Q Q
pm LoRAW W tW+  (2)

=V V V
pm LoRAW W TW+  (3)

When fine-tuning LoRA and passing through the multi-head self-attention layer for a training image-text 

data Y, the corresponding mapping produces calculation formulas for the Query matrix Q, Key matrix K, 

and Value matrix V. These formulas are shown below.

: =Q Q Q
pm LoRAQuery Y W Y W tY W× × + ×  (4)

: =k k k
pm LoRAKey Y W Y W tY W× × + ×  (5)

: =V V V
pm LoRAValue Y W Y W tY W× × + ×  (6)

When Softmax is utilized, the computational inference for matrices Q and K with LoRA layers can be 

expressed as follows.

2

( ,  ) = ( ( ) ( )

 ( ) ( ) )

T Q k T T Q k T T
pm pm pm LoRA

Q k T T Q k T T
LoRA pm LoRA LoRA

Softmax Q K softmax YW W Y tYW W Y

tYW W Y t YW W y

+
+ +

 (7)

The final attention calculation can be represented as follows.

= ( ,  ) ( ,  )T V T V
pm LoRAHead softmax Q K YW T softmax Q K YW+ ×  (8)

After undergoing fine-tuning with LoRA training, a final image-text understanding skill matrix is formed 

as = [ ,  ]T
IS TSC A B . The corresponding understanding skills are stored in the newly trained model, achieving 

the LoRA fine-tuning process.

3.4  Image Encoding

The image encoding process commences with the initial segmentation of input images into smaller blocks, 

each signifying a distinct feature of the image. All images are uniformly divided into 14 × 14 blocks. The feature 

of each diminutive block is then embedded to formulate a comprehensive feature vector. Subsequently, a residual 

connection mapping is executed through a self-attention layer. The process further engages in residual 

connection mapping through a feedforward network, creating a feature column vector, denoted as id′, where i = 

1, 2, 3, ..., 196. In this context, 0d′  represents the amalgamated vector encompassing the entirety of the image’s 

information along with positional data. These feature vectors from the j-th image eventually amalgamate to form 

a freshly augmented feature matrix . The vectors contained within this 

feature matrix undergo alignment with subsequent-stage text encoding vectors. This alignment process is 

implemented to prevent the occurrence of erroneous correlated alignments. To achieve this, the feature 
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vectors of the images undergo a fusion analysis using a cross-attention mechanism in conjunction with the 

text. The primary objective is to validate further whether the image and text convey identical information. 

This approach aims to minimize alignment errors throughout the process. Additionally, these features offer 

an augmented representation of feature vectors for text generation within the model. The process of cross-

attention fusion contributes to the generation of enhanced text descriptions. Consequently, this 

optimization ensures the best expression of the training effect of the model in text generation, yielding 

answers that more precisely align with the desired outcomes.

3.5  Text Encoding

Initially, the textual description of the image is input. During text encoding, the thematic content from the 

image description is assimilated and transformed into a vector representation mirroring the dimensionality 

of the image encoding. This vector is designated as h0. The text gives rise to a vector representation, denoted 

by hi (i = 1, 2, 3, ..., 196). The complete j-th image description is aggregated into a feature matrix of text 

descriptions, denoted as H j = [h1, h2, h3, ..., hi, ..., h196]. Ultimately, this feature matrix is merged with the 

thematic vector, resulting in a text augmented matrix …0 1 2 3 196= [ ,  ,  ,  ,  ,  ]j
aH h h h h h . After encoding, a 

residual connection is established through a self-attention mechanism within the encoding section. A 

residual connection is created through a feedforward network involving the vector before the feedforward 

network layer. This procedure results in the generation of a novel augmented feature matrix for the text, 

denoted as . It promotes facilitative analysis in comparative learning. 

In comparative learning, cosine similarity analysis is employed as follows.

cos , =
i j

i j

i j

d h
d h

d h

′ ′
′ ′

′ ′

⋅

⋅
 (9)

where id ′  and jh ′  (i, j = 1, 2, 3, ..., 196) represent the i-th feature vector of an image and the j-th feature 

vector of the corresponding text, respectively. This calculation assesses the similarity between text and 

image features, where the closer the value of their similarity is to 1, the more they are similar. Nonetheless, 

misalignments with negative samples can arise in the context of similarity contrastive learning. 

Consequently, the model undertakes additional measures to address such challenges through fine-grained 

Hard Sample Alignment.

3.6  Fine-Grained Hard Sample Alignment

In the fine-grained Hard Sample Alignment process, we commence with the encoding of the j-th text to 

generate a matrix of text feature vectors, denoted as H j = [h
1
, h

2
, h

3
, ..., h

i
, ..., h

196
], where h

i
 represents the 

i-th content feature vector of the text. Furthermore, the encoding process is separately applied to the 

thematic content of the text, resulting in a singular feature vector k
0
. Ultimately, the feature vector 

corresponding to the text’s theme is concatenated with the matrix of text feature vectors to create a new 

augmented feature matrix, denoted by . This matrix undergoes 

additional cross-fusion and alignment with the previously inputted image feature vectors. The goal is to 
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achieve a finer-grained matching between text and images, ensuring that the maximal correlation between 

positive and negative samples is leveraged during the matching process. In the image description phase of 

the model, the augmented matrix formed by the feature vectors of the images, denoted by 

, is synchronized with the inputted text feature matrix and 

subsequently input into the language model. Based on the feature vectors of the images, the language 

model elaborates on the textual inference description. Algorithm 1 outlines the procedure of encoding 

images to serve as prompts for the model.

Algorithm 1.  Image encoding and model prompt process.

Input: Image vector feature matrix j
aD ′  and corresponding text feature vector matrix j

aH ′

Output: Model’s description of the picture

1 function: Image feature matrix j
aD ′ and text feature vector matrix j

aH ′ embedding alignment

2 initialize j
aD , j

aH

3 for d
i
 in j

aD  do

4 for h
i
 in j

aH  do

5 d
i
: Count the first section on relevant features.

6 h
i
: Count corresponding features in the text.

7 end

8 j
aD . append(d

i
)

9 j
aH . append(h

i
)

10 end

11 initialize j
aD ′, j

aH ′

12 repeat

13 for d
i
 in j

aD

14 for h
i
 in j

aH

15 after residual computation to obtain 
id′ , ih′

16 vector alignment using cosine similarity

17 until convergence

18 using fine-grained hard sample alignment

19 return j
aD ′  and j

aH ′
 embedding aligned feature vectors.

20 end function
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3.7  Answer Testing

Figure 3 presents a comprehensive overview of the answer testing phase. The pre-trained MLLM-ITV 

model is initially supplied with the test image during answer testing. The image undergoes encoding 

through the image encoder, resulting in the generation of image feature vectors. These feature vectors, 

produced in the answer testing phase, are denoted as j
k
 for k = 0, 1, 2, ..., 196. The individual features are 

then aggregated to construct the feature matrix for the image, represented as J = [ j
0
, j

1
, j

2
, ..., j

k
, ..., j

196
]. At 

the same time, inquiries to extract information from the image are made. These queries are encoded to form 

a question vector. Subsequently, the image feature matrix and the question vector are fed into the Q-Former. 

A fresh vector matrix is created by extracting image-text information vectors. The dimensions of the feature 

matrix are then adjusted via a fully connected layer. This adapted matrix is subsequently input into the 

language model, which proceeds to respond to the presented questions. Throughout this response process, 

the language model generates answers based on the feature information extracted from the input image, 

resulting in a textual representation. Algorithm 2 provides the pseudo-code outlining the pertinent process.

Figure 3.  Answer testing formation.

描述这张图的背景。
 

Image
encoder

...

Full
connected

......

Input image

这张照片的背景是一棵
高大的绿绿的树木，
树上有一些树枝。

this photo is a tall green tree
with some branches on it.)

Q-Former （In the background of

（Describe the contextof this image.）

Algorithm 2.  Answer Testing. 

Input: Image feature vector matrix J and problem vector matrix for the desired problem

Output: Modelling targeted responses to questions

1 function: Alignment of the image feature matrix J with the desired problem vector

2 initialize J

3 for ∀j
k
 in J do

4 for problem vector in problem matrix do

5 j
k
: Count Relevant features of responses to questions

6 problem vector: Count computing key features in problem vectors

7 end

8 J. append( j
k
)

9 problem matrix.append (problem vector)

10 end

11 Alignment of features of computational questions with picture responses

12 Extract the required response feature vectors to pass to the language model

13 Language modeling for targeted responses to questions asked
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4.  EXPERIMENTS

4.1  Dataset

Due to the absence of multimodal forestry-related datasets for model training, we construct a 

multimodal Chinese-language forestry pest and disease (FPD) dataseta comprising forestry pest and 

disease images and their textual descriptions. To facilitate comprehensive learning from the images, 3, 4,  

or more relevant questions were generated for each image. The answers chiefly involve the image’s 

presented content, the featured species, and the morphological attributes of said species. The FPD dataset 

encompasses approximately 4620 color forestry pest and disease images concerning 80 insect categories. 

This dataset includes information on pest categorization, temporal features, geographical distribution, 

damage caused, and pest control methods, as shown in Figure 4.

To bolster the base model’s conversational adeptness in forestry pests and diseases, we collect 

around 50,000 entries concerning various concepts within forestry pests and diseases. These entries are 

meticulously selected to constitute a pre-training corpus. Additionally, we perform web scraping to extract 

content related to forestry pests and diseases from Baidu Baike, incorporating it as an extra reservoir for 

our pre-training corpus. It is worth noting that when training the model, all experiments will be conducted 

a  https://github.com/motuomumu/MLLM-For.

Figure 4.  Overview of the FPD dataset.
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on three NVIDIA A100 GPUs. The AdamW optimizer trains the model. Its learning rate, batch size, and 

training epochs are 5e-5, 64, and 10, respectively. A linear learning rate warm-up was applied over the 

first 500 steps. The maximum sequence includes 512 tokens. Input images are resized to 196×196 pixels. 
Standard augmentation techniques such as random cropping, resizing, and horizontal flipping are used 

to improve generalization. The training duration spans approximately 1  month and 5  days, including 
hyperparameter tuning and repeated experiments. The dataset is distinguished into 80% for training, 10% 

for validation, and 10% for testing. All experiments are repeated with three different random seeds, and 

average performance is reported to ensure robustness.

4.2  Comparison Models

We evaluate five leading open-source Chinese MLLM models, including VisualGLM-6B, Ziya-BLIP2-

14B-Visual, MiniGPT, VisCPM, and Qwen-VL, as follows:

 •  VisualGLM-6B [22] is an open-source multimodal conversational language model that supports 

images, Chinese, and English. The language model is based on ChatGLM-6B, with a total of 6.2 

billion parameters. The visual component is established by training the BLIP2-Qformer, bridging 

the gap between the visual and language models, resulting in a combined model with a total of 

7.8 billion parameters. Pre-training is conducted on 30 million high-quality Chinese text-image 
pairs from the CogView dataset and 300 million carefully curated English text-image pairs.

 •  Ziya-BLIP2-14B-Visual [23] is crafted by the “Fengshen List” research team through the process 

of training on a subset of meticulously curated high-quality data sourced from open-access 

datasets. It is fashioned using an extensive corpus of around 20 million high-fidelity data instances 
designated for training.

 •  MiniGPT [24] originates from the King Abdullah University of Science and Technology. The 

team integrates a static visual encoder (Q-Former & ViT) with an immobile, extensive-scale text 

generation model, resulting in the development of MiniGPT-4.

 •  VisCPM [25] is a family of open-source large multimodal models that support multimodal 

conversational capabilities (VisCPM-Chat model) and text-to-image generation capabilities 

(VisCPM-Paint model) in both Chinese and English, achieving the state-of-the-art performance 

among Chinese open-source multimodal models. VisCPM is trained based on the large language 

model CPM-Bee with 10B parameters, fusing visual encoders including Muffin and Diffusion-

UNet to support visual inputs and outputs. Thanks to the good bilingual capability of CPM-Bee, 

VisCPM can be pre-trained with English multimodal data only and well generalized to achieve 

promising Chinese multimodal capabilities.

 •  Qwen-VL [26] is a large-scale Vision Language Model (LVLM) developed by Alibaba Cloud. 

Qwen-VL can take images, text, and detection boxes as input and produce text and detection 

boxes as output. The distinguishing features of the Qwen-VL series models offer advanced 

capabilities in fine-grained recognition and understanding with robust performance.
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4.3  Experimental Results

Extensive experiments are conducted on our benchmark. All comparative experiments are performed 

on an NVIDIA A100 GPU. We set the parameters for beam search to 1, set the temperature to 0.8, and set 

the top p to 0.4. For experimental testing, including the cognitive task, question and answer, count task, 

stages cognitive recognition, and common sense reasoning, we select images from our FPD dataset and 

non-dataset images for experiments.

4.3.1  Cognitive Task

We assess to ascertain whether MLLMs can engage in advanced logical reasoning following the 

perception of visual stimuli. For MLLMs to deduce accurate responses, they must adhere to instructions, 

comprehend the contents of visual stimuli, align text with images, and draw upon knowledge from 

LLM. This task presents a more formidable challenge compared to a singular perceptual assignment. The 

application of MLLMs to address specialized issues necessitates a profound exploration of this domain. It 

encompasses identifying fundamental problems and determining specific data essential for resolving them, 

a “modal completion” process. Prompt identification of pest and disease types and categories in forestry 

pests and diseases is paramount. Early detection and warning, facilitated through vigilant monitoring 

and swift identification, enable the timely revelation of pests and diseases, the issuance of alerts, and 

the implementation of control measures to contain their propagation. Swift and accurate identifications 

pinpoint the pest or disease types, facilitating targeted control interventions.

Because many AI image recognition datasets are cultivated within Petri dishes, the model settings are 

only conducive to real-world production requirements. As such, we randomly select 100 images from 

AI image recognition datasets and research libraries on agricultural pests and diseases from the IDADP 

datasetb. MLLMs are tasked with discerning the species depicted in each image. AI insect recognition 

entails a conventional object detection task, primarily discerning the positions and classifications of seven 

types of insects within monochromatic containers.

Perception is a fundamental capability of MLLMs, and its absence may lead to perceptual illusions. In 

this experiment, a single-turn dialogue format was employed, wherein the model was directly presented 

with an image and the prompt: “What species is shown in the picture?”. Figure 5 depicts the outcomes 
of the baselines and the MLLM-ITV model. Within this task, none of the three comparative models could 

definitively ascertain the species depicted in the image. Notably, VisualGLM-6B demonstrates a laudable 

proficiency in scene depiction. It precisely delineates species patterns, spots, and the ambient milieu. 

Particularly striking are its portrayals of the image’s backdrop, the habitat of the depicted animal, and finer 

features such as antennae, stripes, and spots on the animal. However, VisualGLM-6B occasionally refrains 

from answering queries or provides proverbial responses. The Ziya-BLIP2-14B-Visual model could discern 

the image’s content, but not specify the exact species’ name. Similar to VisualGLM-6B, MiniGPT could 

render an account of the overall environment and provide certain details about the insects. Nevertheless, 

b  https://www.heywhale.com/mw/dataset/63e50cfea2c1716e14fb9db6.
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MiniGPT exhibits limited proficiency in adapting to Chinese; it responds in English to Chinese prompts, 

showing relatively superior performance when queries are in English. The MLLM-ITV model exhibits 

superior performance in this task. While it manages to identify some species, a discernible gap exists 

compared to seasoned human experts on an aggregate scale. Our model accommodates questions in 

Chinese and furnishes corresponding and accurate responses. Furthermore, upon further examination, 

we discover that when we persistently inquire: “What is presented in the picture?”, the model capably 

generates corresponding descriptions for the provided image, encompassing particulars such as antenna 

length, the insect’s developmental and growth stages, distribution regions, and more.

For the task of species recognition shown in Table 2, VisualGLM-6B, Ziya-BLIP2-14B-Visual, MiniGPT, 

VisCPM, and Qwen-VL exhibit minimal capability in identifying the species in the images. Our MLLM-ITV 

model outperforms these counterparts in this task. However, when it comes to identifying some species, 

there is still a discernible gap compared to experienced human experts.

Figure 5.  Experiment comparison chart of the cognitive task. In this figure, VisualGLM-6B, Ziya-BLIP2-14B-
Visual, and Qwen-VL are shortened to VisualGLM, Ziya, and Qwen, respectively (The model abbreviations of the 
following figures are the same as those in this figure).

图片上展示的是什么物种？

 

这只蝴蝶是橙色和黑色的，身体呈棕色。它坐在一片绿色的叶子上，叶子的末端有一些白色粉末。

 
end of it.）

图像上展示的是一只蝴蝶。

 

图像上显示了一只美丽的蝴蝶坐在绿色植物上。

图片中有一只橙色的蝴蝶停在了树叶上，翅膀上有黑色的斑点。
(The picture has an orange butterfly resting on a leaf with black spots on its wings.)

这张图片中所示的物种叫黑点虎斑蝶，属于鳞翅目、虎斑蝶科的一种昆虫。别名：红凤蝶、黑
缘凤蝶、黑点虎斑蝶等。

(The species in this picture is called the Black-spotted Tiger Butterfly, an insect belonging to the Lepidoptera and Tiger 
Butterfly families. Alias: Red Crested Butterfly, Black-margined Crested Butterfly, Black-spotted Tiger Butterfly, etc.)

(What species is shown in the picture?)

(The image shows a butterfly.)

The image shows a butterfly sitting on a leaf in a green background. The butterfly has orange and black markings on its 
wings and is perched on a leaf with small white flowers on it. The butterfly’s body is brown and its antennae are white. 
The background is made up of green leaves and small white flowers.

(The image shows a beautiful butterfly sitting on a green plant.)

(This butterfly is orange and black with a brown body. It was sitting on a green leaf that had some white powder on the

Ours

VisualGML

Ziya

MiniGPT

Qwen

VisCPM
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4.3.2  Question and Answer

The recommendations for preventing and controlling forestry pests and diseases should exhibit a 

scientific and rational foundation. They will furnish invaluable guidance for practical forestry production, 

mitigating the environmental repercussions of prevention and control measures, reducing costs, and 

bolstering economic efficiency. Furthermore, they will direct the refinement and advancement of 

prevention and control technologies, establishing a robust framework for incorporating multimodal models 

in the vertical domain. Conversations concerning the prevention and control of forestry pests and diseases 

play a pivotal role in large-scale models. We curate 100 forestry prevention and control questions from 

pertinent professional literature. The model undergoes assessment through a multi-turn dialogue, inquiring 

about its approach to controlling specific species. The experimental outcomes are depicted in Figure 6. In 

this endeavor, we employ GPT-4 for answer evaluation. Notably, even GPT-4 cannot definitively ascertain 

the correctness of prevention and control measures. Therefore, we will manually assess the model’s 

prevention and control methodologies, drawing from pertinent literature. We adopt a weighting ratio 3:7 

between GPT-4 and human judgment, resulting in the ultimate scores delineated in Table 3.

In this task, VisualGLM-6B exhibits a laudable proficiency in responding to instructions, furnishing 

lucid responses, and proposing specific preventative measures. Nonetheless, the method tends to be 

overly general, lacking focused approaches tailored to specific insect species. Moreover, upon scrutiny, 

the chemical control methods it advocates manifest certain inaccuracies and potentially misleading 

information, rendering them unsuitable for guiding purposes. Ziya-BLIP2-14B-Visual demonstrates 

comparatively diminished performance in this context. It can only proffer a single control method, and the 

strategies for different species are similarly broad, needing more detailed explanations and instructional 

value. VisCPM furnishes comprehensive responses, yet it lacks specificity. It cannot be construed as 

prescriptive. MiniGPT follows a parallel pattern and cannot present targeted control methods contingent 

on insect species. While our model draws on the foundation of VisualGLM-6B, we are proficient in 

delivering more precise control strategies. The substance and range of our suggested control measures are 

characterized by greater precision and comprehensiveness, signifying a notable enhancement. In the GPT-4 

evaluation, our model also attains superior scores for the proposed control methods. Our model performs 

the best in this regard. For some species, it can give specific, targeted recommendations for control.

Table 2.  The Accuracy scores of evaluation models in the cognitive task.

Model Acc

VisualGLM-6B 0.13

Ziya-BLIP2-14B-Visual 0

MiniGPT 0

Viscpm 0

Qwen-VL 0

MLLM-ITV 0.21
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图片上展示的是什么物种？
(What species is shown in the picture?)

......

虎斑蝶的防治方法有哪些？
(What are some ways to control tiger butterflies?)

提高植物的抗性。

reproduction opportunities of tiger butterflies; rational fertilization and management to
Promote plant growth and improve plant resistance.

虎斑蝶是一种广泛分布的蝴蝶，其防治方法包括：

从而有效地减少害虫的数量。

habitats.

to reduce the population size.

虎斑蝶的防治方法包括在植物上寻找食物和水源。它们可以从叶子、花朵或果实中获得营养。此外，虎斑蝶还需要避

免天敌。例如鸟类和其他昆虫，这些动物会捕捉并吃掉它们。虎斑蝶也可能通过在树木或灌木丛中栖息来保护自己。

In addition, tiger butterflies need to avoid from natural enemies. Examples include birds and other insects that catch and eat them.  

虎斑蝶是一种危害茅草的昆虫，它会感染植物，并且可能导致植物死亡。蝴蝶斑的防治方法包括：

butterfly include:
1. using insecticides: insecticides can be used to kill tiger spot butterflies.
2. using anti-butterfly medication: anti-butterfly medication can be used to prevent tiger butterflies from infecting plants.
3. Use of pests: Pests can be used to prevent tiger butterflies from infecting plants.

为保护蝴蝶及其栖息地，可采取以下措施：

采用化学防治方法：虎斑蝶主要危害农作物，可以通过喷杀虫剂进行防治。再作物开花期、幼虫期和成虫期可以采取
三次防治，可以有效地减少虎斑蝶的危害。
采用生物防治方法：可以通过引进天敌来控制虎斑蝶的数量。
采用生物天敌防治方法：可以种植一些植物，利用植物的天敌来防治虎斑蝶。
采用生态防治方法：可以通过改善农田和园林环境，减少适合虎斑蝶生长的环境，从而减少其数量。

采用农业措施：在作物开花期，可以采取套种、间种等农业措施，以减少虎斑蝶的危害。

Crops can be controlled by spraying insecticides during the flowering, larval and adult stages.

natural enemies of plants.

Adoption of agricultural measures: During the flowering period of crops, agricultural measures such as hedging and  

Ours

Ziya

MiniGPT

虎斑蝶是一种重要的害虫，其主要危害对象是树木和花卉。以下是一些常用的防治方法:

1.农业措施：种植抗虫植物，如柑橘、茶树等，可以减少虎斑蝶的分布和繁殖机会；合理施肥和管理，促进植物生长，

2.物理控制：使用捕食工具或粘板捕捉幼虫，可以有效减少虎斑蝶的数量。
3.化学防治：可以使用含有苯丙胺（PBO）或其他有害化学物质的喷雾剂进行喷洒，杀死幼虫和蛹。
4.药剂熏蒸：使用烟雾机燃烧器将熏蒸剂加热并释放到空间中，以杀死幼虫和蛹。这种方法适用于大规模的虫害控制。

1. Agricultural measures: Planting insect-resistant plants, such as citrus and tea trees, can reduce the distribution and 
(The Tiger Butterfly is an important pest that mainly affects trees and flowers. The following are some common control methods.

2. Physical control: Using predatory tools or sticky boards to catch larvae can effectively reduce the number of tiger butterflies.
3. Chemical control: Sprays containing phenylbutazone (PBO) or other harmful chemicals can be used to kill larvae and pupae.
4. Pharmaceutical fumigation: Fumigants are heated and released into the space using smoke machines or burners to kill 
larvae and pupae. This method is suitable for large scale pest control.)

(The Tiger Butterfly is a widely distributed butterfly and its control methods include:

1.农业控制：通过使用抗虫农药、生物农药或化学农药来杀死害虫。这些农药可以用于植物和昆虫之间的接触区域，

2.物理防御：安装防虫或其他捕食性陷阱，以捕捉并防止它们从栖息地中逃脱。
3.人工管理：利用各种诱饵吸引野生个体，然后将它们引入种植区。这有助于降低种群数量。
4.环境改善：加强植被覆盖率增加土壤湿度促进土壤微生物的生长，从而减少护虎斑蝶所需的食物来源。

These pesticides can be used in the contact area between plants and insects, thus effectively reducing the number of pests.
1. Agricultural control: killing the pests through the use of insect-resistant pesticides, biopesticides or chemical pesticides. 

2. Physical defense: Installation of insect-proof or other predatory traps to catch and prevent them from escaping from their 

3. Artificial management: using various baits to attract wild individuals and then introducing them to the planted area. This helps 

4. Environmental Improvement: Enhance vegetation cover to increase soil moisture to promote the growth of soil 
microorganisms, which reduces the food source required by the tiger lily butterfly.)

Tiger butterflies may also protect themselves by roosting in trees or bushes.)

(Tiger butterfly control involves finding food and water sources on plants. They can get nutrients from leaves, flowers or fruits. 

(The following measures can be taken to protect butterflies and their habitats:

1.绿化环境：种植更多的树木可以提供额外的栖息地，并吸引不同种类的蝴蝶。

2.创造水景：在蝴蝶经常出没的地方，安装喷泉等可以吸引它们。

3.使用环保型害虫剂：选择对环境影响小的杀虫剂来减少对蝴蝶种群的负面影响。

1. Greening the environment: planting more trees can provide additional habitat and attract different species of butterflies.
2. Create water features: installing fountains etc. in areas frequented by butterflies can attract them.
3. Use environmentally friendly pests: Choose insecticides that have a low impact on the environment to minimize the 
negative effects on butterfly populations.)

(Adopting chemical control methods: The tiger butterfly mainly harms crops and can be controlled by spraying insecticides. 

Three times control can effectively reduce the damage of tiger butterfly.
Adopting biological control methods: The number of tiger butterflies can be controlled by introducing natural enemies.
Adopting biological natural enemy control methods: Some plants can be planted to control tiger butterflies by utilizing the 

Adoption of ecological control methods: The number of tiger butterflies can be reduced by improving the environment of 
farmland and gardens to reduce the environment suitable for tiger butterflies to grow.

interplanting can be adopted to reduce the harm of tiger butterflies.)

1.使用杀虫剂：可以用杀虫剂杀死虎斑蝶。
2.使用抗斑蝶药物：可以用抗斑蝶药物来防止虎斑蝶感染植物。
3.使用害虫剂：可以用害虫剂来防止虎斑蝶感染植物。
4.使用环境改善：可以通过改造环境来防止虎斑蝶感染植物。
(The Tiger Butterfly is an insect that harms thatch, infects plants, and can cause them to die. Methods of control of tiger 

4. Use environmental improvement: You can prevent tiger butterflies from infecting plants by modifying the environment.)

VisualGML

Qwen

VisCPM

Figure 6.  Comparison chart of question and answer experiments.
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4.3.3  Count Task

In multimodal studies, the recognition of quantities assumes paramount significance. Within the 

specialized domain of forestry, as applied to vertical contexts, the assessment of pest quantities within 

images serves to ascertain the gravity of the infestation, track alterations in its progression, and scrutinize 

the trends in pest evolution. To this end, we meticulously curated a subset of images from the IDADP 

dataset, each featuring two or more insects, to serve as our testing cohort. While quantity recognition 

constitutes a fundamental aptitude for MLLMs, it does not represent a singular specialized task. Our 

manually chosen test set exclusively encompasses images portraying 2 or 3 insects, which are all distinctly 

discernible. This selection deliberately eschews the complexities of recognizing intricate or densely 

populated insect imagery. The testing protocol is elucidated in Figure 7, and the ensuing results are 

meticulously tabulated in Table 4.

Figure 7.  Comparison chart of the count experiment.

Ours

这张照片上共有两只。

(There are two of them
in this photo.)

Q : 这张图上有几只昆虫？
(How many insects are in this picture?)

这张图片展示了两只动物在

草地上跳跃。

(This picture shows two animals 
jumping in a grassy field.)

VisualGLM

这张图上有两只小昆虫。

(There are two small
insects in this picture.)

这张图上有几只昆虫？
(How many insects are

 
in this picture?)

VisCPM Qwen

Ziya

这张图上有两只昆虫。

(There are two insects in
this picture.)

有两只小动物。

(There are two little
animals.)

MiniGPT

Table 3.  The Accuracy scores of evaluation models in the question and answer task.

Model GPT4 Human

VisualGLM-6B 0.75 0.80

Ziya-BLIP2-14B-Visual 0.68 0.60

MiniGPT 0.53 0.65

VisCPM 0.67 0.60

Qwen-VL 0.73 0.75

MLLM-ITV 0.83 0.85
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In this task, Ziya-BLIP2-14B-Visual, VisualGLM-6B, and our MLLM-ITV model all demonstrate accurate 

judgments regarding the number of insects in the images. Ziya-BLIP2-14B-Visual and our model provide 

concise responses, strictly adhering to the instructions by outputting the insect count. Furthermore, our 

MLLM-ITV model performs best. Conversely, VisualGLM-6B and MiniGPT tend to be more verbose, 

offering descriptions of the images in addition to the prompt. In certain test samples, some insects may 

be misjudged by Ziya-BLIP2-14B-Visual due to their positioning or if only half of their body is within 

the image frame. When an image contains butterfly and larval (caterpillar) stages, VisualGLM-6B and 

Ziya-BLIP2-14B-Visual make incorrect quantity determinations. It is difficult for MiniGPT to respond 

satisfactorily to slightly complex images or moderately intricate Chinese instructions. We attribute 

this issue to the absence of similar fine-tuning instructions in the training set, resulting in significant 

discrepancies in insect quantity judgments for images containing multiple stages. Qwen-VL performs 

poorly in tasks related to specimen image recognition, but it excels in natural photography images and 

adhering to instructions. Meanwhile, VisCPM slightly outperforms Qwen-VL.

4.3.4  Stages Cognitive Recognition

We examine whether MLLMs exhibit enhanced logical inference capacity when perceiving visual 

stimuli. MLLMs differ significantly from conventional methodologies. In order to derive accurate 

conclusions, MLLMs must adhere to directives, grasp visual representations, and tap into the knowledge 

reservoir within LLMs. They pose a heightened challenge in contrast to solitary perceptual tasks. Within our 

specialized domain, discerning various developmental phases within a specific insect species facilitates 

the judicious selection of suitable control techniques, corresponding interventions, and control agents. 

It contributes to the surveillance and timely forewarning of pestilence and disease outbreaks. Through 

regular scrutiny of insect development stages, we can promptly identify upswings in pest populations 

or the dissemination of pathogens. Furthermore, we can take appropriate measures to forestall the 

proliferation of pests and diseases, ultimately furnishing more precise and informative recommendations.

In cognitive tasks, we utilize a format combining knowledge prompts with questions. Initially, we curate 

a subset of the dataset and enlist human experts to comprehensively describe various facets of the insects 

Table 4.  The Accuracy scores of evaluation models in the count task.

Model Acc

VisualGLM-6B 0.83

Ziya-BLIP2-14B-Visual 0.91

MiniGPT 0.85

VisCPM 0.75

Qwen-VL 0.60

MLLM-ITV 0.93
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within the images. These descriptions encompass adult insects, larvae, and insect eggs. Subsequently, we 

probe the developmental stage of the insects portrayed in the images. To mitigate the possibility of the 

model generating conjectural responses triggered by prompt words, we design prompts encompassing a 

minimum of three distinct stages of insects. For the sake of evaluation, mirroring the approach in the initial 

experiment, we instruct the model to produce solely “yes” or “no” responses. The correct answers are 

evenly balanced between “yes” and “no”. The experimental findings are graphically illustrated in Figure 8. 

This task predominantly evaluates the reasoning aptitude and coarse-grained recognition proficiency of 

MLLMs. The results of the assessments are succinctly summarized in Table 5.

Figure 8.  Experimental comparison chart of the stages cognitive recognition.

我们可以推断出图中展示的是光肩星天牛的成虫。

这个图片显示了一个昆虫，它是一种昆虫。

图中处于什么阶段？

图中处于幼虫阶段。

Ours

Ziya

MiniGPT

Qwen

光肩星天牛幼虫体长毫米，乳白色，无足；前胸背板有凸形纹，蛹体长毫米；裸蛹，黄白色。成虫，
体黑色，有光泽，触角鞭状自第三节开始各节基部呈灰蓝色。前胸两侧各有个刺状突起，鞘翅上各有
大小不等的由白色绒毛组成的斑纹个左右。
(Light-shouldered stargazer larvae are millimeters long, creamy-white, and without legs; the dorsal plate of the 
prothorax has a convex pattern, and the pupa is millimeters long; naked pupa, yellowish-white. Adult, body black, 
glossy, antennae whip-like from the third segment onwards the base of each segment is gray-blue.There is a spiny 
protuberance  on each side of the prothorax, and the sheathed wings each have about one spot of varying sizes 
composed of white downy hairs.)

(We can deduce that the picture shows the adult of the light-shouldered stargazer.)

(This photo shows an adult light-shouldered stargazer, which is 49 to 61 millimeters long.)

这张照片展示了一只光肩星天牛成虫，它的体长为49~61毫米。

图中处于什么阶段？
(What stage is the diagram in?)

我们可以推断出图中展示的是光肩星天牛的成虫。

(What stage is the diagram in?)

(The figure is in the larval stage.)

(This image shows an insect which is an insect.)

(We can deduce that the figure shows the adults of the light-shouldered stargazer.)

VisualGML

VisCPM
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From the results of the assessments, Ziya-BLIP2-14B-Visual could not grasp the instructions, resulting 

in an inability to carry out comprehensive task inference based on the given prompts. Instead, it 

rigidly identifies key terms within the knowledge and produces pertinent content associated with those 

keywords. VisualGLM-6B and our MLLM-ITV models showcase enhanced comprehension and task 

fulfillment capabilities. Our model slightly outperforms VisualGLM-6B by accurately discerning distinct 

stages of the same insect. Moreover, it can furnish more relevant information and extract accurate data 

for inference, leading to reasoned and precise responses. VisCPM deviates from strict adherence to 

instructions, furnishing binary responses with a suboptimal accuracy rate. Qwen-VL tends to generate 

illusions, presuming the presence of both larval and adult stages in the image upon encountering these 

terms in the prompts, rendering it comparatively weaker in inference. MiniGPT performs poorly, and it is 

hard to formulate responses in line with the provided instructions. When instructions involve describing 

a non-existent stage of an insect, MLLMs conjure the existence of such a stage and respond accordingly, 

indicating an illusion influenced by the instructions.

4.3.5  Common Sense Reasoning

In our investigation of fine-tuning and training utilizing the proposed MLLM-ITV model within specific 

vertical domains, we also scrutinize the potential influence on the model’s performance in broader domains. 

To this end, we adhere to the methodology referenced in prior studies and administer assessments of 

common-sense reasoning to the model. Common-sense reasoning encompasses fundamental knowledge 

applicable to everyday situations. For example, when we present an image of an individual donning a 

down jacket, we inquire whether the model would be deemed appropriate attire in cold (or hot) weather 

conditions. These queries entail rudimentary knowledge that individuals can promptly address without 

necessitating intricate, step-by-step deliberation. The test experiment is shown in Figure 9.

Table 5.  The accuracy scores of evaluation models in the stages cognitive recognition task.

Model Acc

VisualGLM-6B 0.53

Ziya-BLIP2-14B-Visual 0.65

MiniGPT 0.51

VisCPM 0.67

Qwen-VL 0.62

MLLM-ITV 0.71
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Figure 9.  Experimental comparison chart for the common sense reasoning

不是。(No)

MiniGPT:

VisCPM:

这张图上的衣服是一件含有夹
克的夹克。(The dress in this
picture is a jacket containing
a blazer.)

不，图片中的衣服不适合在
夏天穿。(No, the dress in
the picture is not suitable
for summer.)

Qwen:不是。(No)

VisualGML:

Ziya:

这张图上的衣服适合在夏天穿吗？只回答是或者不是。
please think step by step.

(Is the dress in this picture suitable for summer? Just
answer yes or no. please think step by step.)

Ours:答案是不适合。(The answer is not suitable.)

这件黑色连帽夹克适合在夏季穿着。
(This black hooded jacket is
perfect for the summer season. )

MiniGPT:

VisCPM:

是。

The image shows a USB-C to

 HDMI cable.

是的，图片中的物品可以用
来给手机充电。(No, the
dress in the picture is not
suitable for summer.)

VisualGML:

Ziya:

Qwen: 不是。(No)

这张图上的衣服适合在夏天穿吗？只回答是或者不是。
please think step by step.

(Is the dress in this picture suitable for summer? Just
answer yes or no. please think step by step.)

Ours:不能。(No.)

(This image shows a black HDMI cable.)

MiniGPT:

VisCPM:

The image shows a bottle of
green tea with a white label on it.

不，图片中的物品不是用
来驱蚊的。(No, the items
in the picture are not for
repelling mosquitoes.)

Qwen:是。(Yes)

VisualGML:

Ziya:

这张图片展示了一瓶绿色的液体，瓶
口呈圆形。(This picture shows a
bottle of green liquid with the bottle
mouth is rounded. )

是。(Yes)

这张图上的衣服适合在夏天穿吗？只回答是或者不是。
please think step by step.

(Is the dress in this picture suitable for summer? Just
answer yes or no. please think step by step.)

Ours:是。(Yes)

MiniGPT:

不是。这张图片描述的是一个男人和女
人在雨中笑着。

a man and woman laughing in the rain.)

Ziya:

这张图片描述的是泰坦尼克号。

VisCPM:是的，这张图片描述的是
泰坦尼克号。

Qwen: 是。

VisualGML:图片展示了一对穿着礼服的情侣，
其中男性戴着帽子和眼镜。(Image
shows a couple in dresses, with the 
male wearing a hat and glasses.)  

这张图上的衣服适合在夏天穿吗？只回答是或者不是。
please think step by step.

(Is the dress in this picture suitable for summer? Just
answer yes or no. please think step by step.)

Ours:不是。(No)

这幅图像显示了一条黑色的HDMI电缆。

(Yes)

(Yes)

(NO. This picture depicts

(This picture depicts the Titanic.)

(Yes, this
picture depicts the Titanic.)
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In our experiments, most MLLMs exhibit a deficiency in reasoning abilities. For example, when we 

query the suitability of wearing a down jacket in the summer, MLLMs logically deduce that it offers 

substantial insulation; however, it still generates an affirmative response. This discrepancy signifies a 

breakdown in the model’s cognitive process. Consequently, we incorporate CoT prompts in our inquiries, 

such as “please engage in step-by-step thinking”, aiming to direct the model toward a marginally 

enhanced outcome. From Table 6, while VisualGLM-6B and our MLLM-ITVL model display heightened 

adherence to instructions in this context, their perceptual capacities were relatively inferior compared to 

Ziya-BLIP2-14B-Visual. Ziya-BLIP2-14B-Visual and Qwen-VL demonstrate proficiency in providing more 

refined responses guided by prompts within the chain of thought. Our model performs slightly below 

Qwen-VL. Qwen-VL exhibits complete adherence to instructions and excels in common-sense reasoning 

by delivering binary “yes” or “no” responses. Nevertheless, Qwen-VL still exhibits a minor performance 

disparity compared to human experts.

4.3.6  Ablation Study

To assess the contribution of key components in MLLM-ITV, we conduct ablation experiments by 

removing the Q-Former module, disabling Low-Rank Adaptation, and excluding instruction-tuned data 

during training. The results are shown in Table 7. Through the experiments, removing the Q-Former 

led to a significant drop in performance across all three tasks. The main reason is that Q-Former is the 

critical bridge between the image encoder and the language model. Without it, the model fails to receive 

meaningful visual semantics, severely impairing vision-language alignment. When LoRA is removed, 

performance also degrades. The primary reason is that the language model cannot adapt to domain-spe-

cific knowledge from the vertical dataset. It weakens the understanding of specialized terminology and 

negatively impacts classification accuracy. In contrast, excluding instruction tuning causes only a moderate 

performance decline. While some capabilities are weakened, the model can also handle basic tasks.

Table 6.  The scores of evaluation models in the common sense reasoning task.

Model Acc Human

VisualGLM-6B 0.30 0.76

Ziya-BLIP2-14B-Visual 0.80 0.72

MiniGPT 0.62 0.70

Viscpm 0.67 0.78

Qwen-VL 0.76 0.90

MLLM-ITV 0.65 0.78
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5.  CONCLUSIONS

This paper presents a multimodal large language model for image-to-text generation based on a vertical 

sector (MLLM-ITV) model. We establish a multimodal Chinese-language forestry pest and disease dataset 

with image-text instruction adherence within forestry pest and disease contexts. Based on the dataset, 

we embark on a comprehensive pre-training process for MLLM-ITV to enhance the understanding of 

forestry visuals and linguistics. MLLM-ITV showcases a robust repository of domain-specific knowledge. 

We implement supplementary fine-tuning procedures to optimize its performance. The instruction data 

trained on the model helps the model recognise and perform specific tasks more accurately, enabling the 

model to understand and execute a diverse range of instructions, further refining the model. MLLM-ITV is 

a substantial advancement in creating a practical forestry aide, signifying an expansion of MLLMs into the 

vertical domain, particularly in the Chinese context. Nevertheless, we acknowledge ample opportunity 

for enhancement in tasks demanding deep reasoning capabilities. The experiments compare five currently 

outstanding open-source MLLMs in Chinese and English. Our model outperforms others in forestry pest 

and disease control, surpassing the baseline model, VisualGLM, to a certain extent. However, there is still 

significant room for pest and disease recognition. In the future, we plan to expand the annotated dataset, 

address pest and disease recognition issues, and overcome challenges associated with model hallucinated 

knowledge. Besides, we will improve the quality and reliability of MLLMs.
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