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Abstract

Large Language Models (LLMs) in the financial domain have predominantly focused on high-
risk financial market prediction. However, there remains a severe scarcity of tools and correspond-
ing high-quality datasets capable of generating in-depth financial analysis reports to assist human
experts in investment decision making. To address this research gap, this paper makes two main
contributions. First, we construct and release MultiModal Stock Analytics (MMSA), the first
large-scale multimodal financial data set that deeply couples real stock charts with expert-level
analytical texts. Second, we propose a novel reinforcement learning method named Stock-R1,
which enhances the Group Relative Policy Optimization (GRPO) framework by introducing two
core mechanisms. The first mechanism operationalizes the principles of Axiomatic Construc-
tion in a composite reward function to ascertain the validity and optimality of the analysis. The
second mechanism introduces a Progressive Curriculum Reward strategy, which enables efficient
curriculum learning by dynamically reshaping the incentive landscape. Extensive experiments
on MMSA demonstrate that Stock-R1’s performance significantly outperforms several State-of-
the-Art (SOTA) models, including those with larger parameter counts. Furthermore, compared
to the conventional Supervised Fine-Tuning (SFT) method, it achieves an improvement of up to
30% in the F1 score on key analytical tasks. This work provides a new benchmark dataset and
an efficient training methodology, driving the paradigm shift of financial Large Vision-Language
Models (LVLMs) from market prediction to decision support.

Keywords: LLM;Large vision-language models; Group relative policy optimization;
Multi-modulal stock analytics; Reinforcement learning

1. Introduction

Financial market analysis is fundamentally a multimodal task, relying on experts’ integrated
interpretation of visual charts and textual signals. However, traditional quantitative models [1–7]
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and existing public datasets [5, 7, 8] are predominantly unimodal. Although some research has
begun to leverage financial images [9, 10], the market still significantly lacks high-quality data
sets that tightly link charts rich in technical indicators with their structured and in-depth textual
interpretations. This focus on chart imagery is deliberate. While time series data provide raw
numerical input, technical charts serve as a critical abstraction layer, converting numerical se-
quences into the visual patterns central to expert human analysis. Our research motivation is thus
to emulate this human-centric visual reasoning process. Consequently, for the task of generat-
ing reports that replicate expert discourse, chart images are the natural and indispensable input
modality, positioning our work to address the distinct challenge of deep visual chart interpretation.

While the latest Large Vision-Language Models (LVLMs) [11–20] provide the technical foun-
dation to address this challenge, their fine-tuning paradigms within the financial domain remain
bottlenecked. Mere Supervised Fine-Tuning (SFT) [16] is insufficient for cultivating deep cross-
modal analytical capabilities, prompting our turn to Reinforcement Learning (RL). Within the RL
paradigm, methods based on human preference [21–27] are ill-suited for the objectivity required
in financial analysis due to their inherent subjectivity. Consequently, rule-based reinforcement
learning [28–30] —which aligns models with objective, verifiable criteria—emerges as a more
promising technical path. However, the complexity and hierarchical nature of financial analysis
also reveal a fundamental limitation of existing rule-based RL paradigms when handling complex
generation tasks: the lack of a sophisticated mechanism capable of precisely modeling multidi-
mensional, structured logic and dynamically guiding the learning process.

To address the dual challenges of data and methodology, this paper first introduces MMSA,
a novel multimodal stock analysis dataset containing 20k chart-text pairs. Each entry consists
of a professional stock chart and an in-depth textual description generated by GPT-4o [31] and
rigorously calibrated by 15 financial experts. To our knowledge, MMSA is the first dataset to
systematically couple visual stock information with deep textual interpretations, aiming to pro-
vide a cornerstone for training multimodal models capable of complex, cross-modal analytical
reasoning.

Building on this data foundation, we further propose Stock-R1, a rule-based reinforcement
learning framework specifically designed for stock chart analysis. At its core, it utilizes the
GRPO [28–30] algorithm, guided by an axiomatic composite reward function, which we designed.
The framework also incorporates a Progressive Curriculum Reward strategy. This strategy mim-
ics the concept of curriculum learning [32] by dynamically increasing the difficulty of evaluation
during training. This ensures steady evolution of the model’s capabilities and effectively prevents
reward hacking.

We conducted comprehensive experiments on the MMSA dataset and the results fully val-
idate the effectiveness of our approach. The main contributions of this paper can be summarized
as follows.

1. We built and are releasing MMSA, the first multimodal financial dataset that systematically
couples professional stock charts with in-depth textual interpretations. This dataset provides
a critical foundation for rule-based model optimization and will be made publicly available
upon the paper’s acceptance.
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2. We propose the innovative Stock-R1 fine-tuning framework. Its core technical contribution
lies in two synergistic mechanisms specifically designed to overcome the unique challenges
of financial analysis: (1) An Axiomatic Reward Construction that translates the complex, hi-
erarchical logic of expert-level financial reports into deterministic, verifiable reward signals,
transcending subjective human preferences. (2) A Progressive Curriculum Reward strategy
that dynamically adjusts learning objectives, addressing the critical issues of reward sparsity
and capability stagnation commonly encountered when generating complex financial reports
that must simultaneously satisfy both structural regularity and multi-dimensional content cor-
rectness.

3. We validate a new, efficient fine-tuning paradigm that works without human preference label-
ing. This paradigm successfully extends deterministic rule-based reinforcement learning to
complex multimodal financial scenarios, offering a viable solution for model alignment chal-
lenges in specialized domains like finance where data is scarce.

2. Related Work

2.1. Progress in the General Capabilities of Vision-Language Models
In recent years, the development of LVLMs has progressed at a remarkable pace [11–16].

Led by cutting-edge closed-source models like GPT-4o [31], LVLMs have achieved outstanding
visual understanding and multimodal interaction capabilities by effectively integrating visual en-
coders with LLMs. This fusion of vision and text has significantly enhanced the models’ ability
to comprehend complex scenes, process chart-and-text inputs, and perform corresponding rea-
soning. As a result, it has driven the development of more advanced foundation models. In the
open-source community, the capabilities of LVLMs have also made significant breakthroughs by
aligning visual modules with state-of-the-art LLMs [33–35] and leveraging high-quality instruc-
tion data [15, 36] for end-to-end training. Among these, leading open-source models such as
InternVL-2.5 [37] and Qwen2.5-VL [38] have demonstrated performance on challenging multi-
disciplinary, multimodal reasoning benchmarks like MMMU [39] that is gradually approaching
or even surpassing closed-source models [40], showcasing their powerful potential in general-
purpose question answering and reasoning.

2.2. The New Paradigm of Reinforcement Learning with Rule-Based Rewards
Despite the success of LVLMs in general visual understanding, how to efficiently fine-tune

them to precisely execute complex tasks in specific domains remains a core challenge. In re-
sponse, the research community has begun to explore new paths beyond traditional instruction
fine-tuning, with direct optimization of model behavior through reinforcement learning emerging
as a promising direction. A particularly prominent new paradigm is reinforcement learning with
rule-based rewards, which shifts the optimization objective from mimicking human-annotated
data to satisfying a series of objectively verifiable, programmatic criteria. Pioneering work in
this direction, such as Deepseek-R1 [28], has demonstrated that even by skipping the supervised
fine-tuning stage, high-performance models can be trained in tasks like mathematics [30] and
code [29] generation solely through reinforcement learning algorithms like GRPO [28–30] and
clear, rule-based rewards. This strategy provides models with a more consistent and unambiguous
learning signal. Its data efficiency and significant effectiveness have inspired us in tackling the
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problem of scarce supervised data and rule-assessable task performance in stock chart analysis.
This has laid the methodological foundation for the design of Stock-R1.

2.3. Financial Models
In recent years, the advancement of LLMs has catalyzed the creation of numerous finance-

specific models [41–43]. While these models excel at processing vast amounts of financial text,
they generally overlook critical visual information, such as the stock charts that human analysts
heavily rely on. To bridge this gap, recent multimodal explorations in finance [9, 10] have begun
to integrate visual data. However, their paradigm still largely focuses on directly predicting fu-
ture trends by analyzing historical charts. However, given the inherent stochasticity of financial
markets and the Efficient Market Hypothesis, the stability and reliability of prediction-centric
methods are often difficult to guarantee.

We contend that a more robust and practical financial model should not aim to replace decision-
makers by making uncertain predictions, but rather serve as an advanced decision support tool.
Specifically, such a model should be capable of deeply integrating and understanding multimodal
information like a human expert to generate a high-quality, logically coherent, and opinionated
stock analysis report. Such reports can provide investors with a comprehensive basis for their de-
cisions, assisting them in making their own judgments. However, the current research landscape
lacks multimodal financial models centered on generating high-quality analytical reports, as well
as the high-quality chart-text paired datasets required to train them.

3. MMSA:MultiModal Stock Analytics

The construction of the MMSA dataset follows a three-stage process, which includes data
collection, automated text generation, and manual verification. The core of this process lies in a
meticulously designed structured prompt engineering strategy, which guides a LVLM to generate
professional texts that include deep analytical logic and are strictly aligned with the corresponding
charts, thereby ensuring the high-quality standard of the dataset.

3.1. Data Collection and Generation
Data and Chart Construction Our dataset originates from the daily trading data of compa-
nies listed on the Shenzhen Stock Exchange, covering two distinct six-month periods (April
2023–September 2023 and October 2023–March 2024) across different market cycles to enhance
the model’s generalization capabilities. We further calculated four mainstream technical indica-
tors (MACD, KDJ, RSI, and BOLL)1 with their commonly used parameters. These indicators,
along with price candlesticks and moving averages, are standardized and visualized to generate

1The four technical indicators are briefly described as follows: MACD (Moving Average Convergence Divergence) is a
trend-following momentum indicator that shows the relationship between two moving averages of a price. KDJ (Stochas-
tic Oscillator) is a momentum indicator commonly used to determine overbought and oversold conditions. Similarly, RSI
(Relative Strength Index) is an indicator that measures momentum to identify overbought (typically >70) or oversold
(typically <30) levels. BOLL (Bollinger Bands) is a volatility indicator used to define the relative high and low range of
a price.
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the charts required for our research.

Analytical Text Generation The generation of analytical text relies on a carefully designed so-
phisticated structured prompt engineering strategy to ensure professionalism and objectivity. This
strategy is based on three core principles: role-based guidance, modular instructions, and quan-
titative signal definitions (detailed in Appendix A). Its highly standardized output provides an
efficient validation scaffold for the subsequent manual verification stage, significantly reducing
the review burden on experts.

Overall Trend Analysis

Trend Direction:

Downtrend (Early Oct 2023 - Early Dec 2023): The stock price continuously declined from approximately ¥9.8, forming a clear descending channel.

Bottoming Consolidation (Early Dec 2023 - Late Jan 2024): The price ceased its decline and entered a sideways consolidation phase between approximately ¥7.8 and ¥8.2, forming a base pattern.

Uptrend (Late Jan 2024 - Late Feb 2024): The stock price broke through the consolidation range with high volume, initiating a rapid rally and reaching a high of approximately ¥9.8.

High-Level Consolidation (Late Feb 2024 - End of Mar 2024): After reaching the previous high, the price entered a high-level consolidation phase, primarily fluctuating between ¥9.0 and ¥9.5.

Analysis Dimensions & Signal Library

1. Main Chart (MA5, MA20, Candlestick)

Moving Average (MA) System:

Bearish Alignment: From mid-Oct 2023 to late Dec 2023, the MA5 consistently ran below the MA20, presenting a bearish alignment.

Golden Cross: Around Jan 22, 2024, the MA5 crossed above the MA20, forming a golden cross and issuing a trend reversal signal.

Golden Cross: Around Mar 11, 2024, after a brief pullback, the MA5 once again crossed above the MA20, forming another golden cross.

Bullish Alignment: From late Jan 2024 to the end of Mar 2024, apart from brief pullbacks, the MA5 generally ran above the MA20, showing a bullish alignment.

Candlestick Patterns:

Reversal Pattern: The stock price twice tested the low near ¥7.8, in mid-Dec 2023 and mid-Jan 2024, forming a "W-Bottom" (Double Bottom) reversal pattern.

Gaps: 

Breakaway Gap: Around Jan 23, 2024, the price broke through the upper boundary of the month-long consolidation range with a strong upward gap.

Continuation Gap: On Feb 8, 2024, an upward gap appeared during the uptrend, accelerating the rally.

Exhaustion Gap: On Feb 19, 2024, an upward gap appeared near the end of the rally, but momentum subsequently weakened as the price entered consolidation, exhibiting characteristics of an 

exhaustion gap.

2. Sub-chart (MACD)

Crossovers:

Golden Cross below Zero Line: Around Dec 18, 2023, the DIF line crossed above the DEA line from below the zero line, forming a golden cross, which served as a leading signal for a bottom 

reversal.

Dead Cross above Zero Line: Around Feb 22, 2024, the DIF line crossed below the DEA line from above the zero line, forming a dead cross, indicating that upward momentum was weakening and 

a correction might be imminent.

Momentum:

Green Bar Expansion: From early Feb to mid-Feb 2024, the MACD green histogram bars (representing bullish momentum) continuously expanded, corresponding with the stock's rapid rally.

Red Bar Contraction: In early Mar 2024, the MACD red histogram bars (representing bearish momentum) gradually contracted, indicating that bearish forces were depleting and setting the stage 

for the subsequent golden cross.

Divergence:

Bullish Divergence: From early Dec 2023 to mid-Jan 2024, while the price candlesticks made new lows (or remained flat), the MACD indicator's DIF and DEA lines failed to make new lows, 

instead forming higher lows. This constituted a classic MACD bullish divergence, a strong bullish reversal signal.

Figure 1. An illustrative sample from our MMSA dataset. The sample consists of a visual stock chart enriched with
technical indicators (left), tightly coupled with a detailed and verifiable analytical text (right). In contrast to simpler
chart-text pairs in existing works, this deep alignment between visual features and semantic analysis provides a robust
foundation for training models to understand complex financial logic.

3.2. Two-Stage Human Quality Control

To guarantee the professionalism and reliability of the generated text in the MMSA dataset,
we established a rigorous two-stage human review process, executed on a specially developed
online annotation platform.

Cross-Screening and Revision by Graduate Students This stage was carried out by 10 gradu-
ate students with backgrounds in financial engineering or related fields. Each chart-text pair was
randomly assigned to three annotators for an independent back-to-back review. The review was
based on three core criteria: 1. Factual Consistency: Verifying point-by-point that all signals
described in the report were in complete agreement with the visual information in the chart. 2.
Logical and Professional Soundness: Assessing the coherence of the analytical logic and the ac-
curacy of professional terminology. 3. Objectivity: Ensuring that the text is devoid of subjective
assumptions or speculative market predictions.

We used a majority vote system (≥ 2/3 approval) to determine whether a sample advanced
to the next round. To quantify the consistency of our review criteria, we calculated the Fleiss’
Kappa coefficient, which yielded a value of 0.76, indicating substantial agreement in our annota-
tion standards.

Final Review by Experts Samples that passed the initial screening were submitted to a panel
of five senior financial analysts. Leveraging their extensive practical experience, the expert panel
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conducted a final review and refinement of the samples’ analytical depth and the precision of
key signal interpretations. Only samples that received unanimous approval from the expert panel
were ultimately included in the MMSA dataset.

Through this stringent two-stage review process, approximately 28% of the initially gener-
ated chart-text pairs were discarded for failing to meet our quality standards, which thoroughly
ensures the high professional caliber of the final data.

3.3. Dataset Analysis and Comparison
The final MMSA dataset we constructed contains 20,000 high-quality chart-text pairs. The

sample distribution of its technical indicators is shown in Table 1. Figure 1 displays a typical
MMSA sample, intuitively presenting the visual richness of our charts and the depth of our ana-
lytical texts.

Table 1. Distribution Statistics of the MMSA Dataset by Technical Indicator

Class MACD KDJ RSI BOLL

Num 4663 5258 5037 5042

As shown in Table 2, MMSA differs significantly from existing financial datasets in terms of
modality, content depth, and core objective. Unlike unimodal datasets such as FinBen, MMSA
introduces the crucial visual information of charts. When compared to other multimodal datasets
like FinVis-GPT and FinTral, MMSA’s advantages are even more pronounced:

Visual Richness MMSA’s charts integrate multiple core technical indicators, rather than the sin-
gle candlestick charts found in most datasets, providing a richer and more comprehensive visual
foundation for in-depth technical analysis.

Textual Professionalism The text in MMSA consists of professional analytical reports produced
through a process of programmatic generation and expert verification. These reports contain com-
plete logical chains, achieving a qualitative leap from superficial description to deep analysis.

Core Objective MMSA focuses on training a model’s decision support capabilities, rather than
the market prediction tasks common to existing datasets, thereby filling a market gap for high-
quality, analysis-oriented datasets.

4. Stock-R1

4.1. Challenges and Methodological Formulation
Although rule-based reinforcement learning has shown success in domains like mathemat-

ics and code generation, financial analysis presents a unique set of challenges that necessitate
significant methodological innovation. Unlike tasks with a single, clear objective, generating a
high-quality financial report requires the model to simultaneously satisfy multiple, and at times
even orthogonal, constraints such as factual accuracy, logical coherence, and structural integrity.
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Table 2. Feature Comparison of MMSA with Existing Related Datasets

Feature Finben FinVis-GPT FinTral MMSA(ours)

Data modal Text only Charts + text Charts + text Chart+Text
(Main/Sub)

Main task SA,NER,etc. Chart Desc.,
Trend Pred.

Multiple Tasks,
Trend Pred.

In-depth
Analysis Report

Visual content - K-line Chart K-line Chart K-line Chart +
Tech. Indicators

Textual content Original News/
Fin. Reports

Simple Desc. +
Pred. Labels Diverse Text Expert-Level

Analysis

Data scale 5K 100K 180K 10K

Goal-oriented Text
Understanding

Market
Prediction

Market
Prediction Decision Aid

This complexity gives rise to two fundamental challenges: 1) The complexity of Reward Defini-
tion: how to quantify these abstract, multi-dimensional quality standards into a computable single
scalar reward signal. 2) The non-stationary learning process: how to design a reward mechanism
that adapts to the model’s continuously evolving capabilities during training, thereby avoiding
reward sparsity in the early stages or capability stagnation in the later stages.

Therefore, the technical novelty of our work lies in the adaptive policy optimization frame-
work we propose to address these challenges: Stock-R1. The construction of this framework is
founded on three key design principles. First, we adopt the concept of Axiomatic Reward Con-
struction to solve the reward definition problem. Second, we introduce the high-level principle
of Curriculum Learning to handle the dynamic nature of the learning process. Third, we select
GRPO as the core algorithm, as its focus on discriminating between superior and inferior outputs
aligns perfectly with the nature of our task, which has a deterministic evaluation function. These
design principles constitute the core design principles underpinning Stock-R1, and their specific
implementations will be detailed in the subsequent sections.

4.2. The Stock-R1 Method
The specific designs of Stock-R1 are the instantiation of the aforementioned theoretical prin-

ciples within the Group Relative Policy Optimization framework. We materialize this process
through an axiomatic reward construction and a progressive curriculum reward strategy, as illus-
trated in Figure 2.

4.2.1. Preliminaries
Stock-R1 is built upon GRPO, an advanced critic-free reinforcement learning framework. The

core idea of GRPO is to guide the model’s optimization by directly comparing the relative quality
of a set of candidate outputs. Its training process and optimization objective are summarized as
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Figure 2. Overall framework of Stock-R1.An illustration of the forward pass in our training pipeline. Given a query
(e.g., a stock chart), the policy model generates a group of candidate responses. These responses are then evaluated
by our reward function, and the resulting feedback is used to update the policy model via the Group Relative Policy
Optimization (GRPO) algorithm.

follows:

1. Batch Sampling and Evaluation: Given an input sample q,an older version of the current pol-
icy πθold is first used to generate a group containing Ncandidate outputs {o1, o2, ..., oN}. Sub-
sequently, a deterministic reward function evaluates each output to obtain a set of rewards
{r1, r2, ..., rN}.

2. Relative Advantage Calculation:GRPO calculates the relative advantage value Ai for each out-
put oi by applying Z-score normalization to the rewards within the group.

3. Policy Optimization:Finally, the policy model πθ is updated by maximizing the following ob-
jective function JGRPO(θ):

JGRPO(θ) =
1
N

N∑
i=1

(
πθ(oi|q)
πθold (oi|q)

Ai − βKL
(
πθ(oi|q)|πre f (oi|q)

))
(1)

This objective function consists of two parts: the first is the policy optimization term, which,
by multiplying the importance sampling ratio with the relative advantage value Ai, incentivizes
the model to favor the generation of outputs that receive higher relative rewards within the group.
The second part is a KL-divergence regularization term, controlled by the hyperparameter β,
which ensures that the updated policy πθ does not deviate too far from a fixed reference model
πre f , thereby guaranteeing training stability.
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4.2.2. Axiomatic Reward Construction
We realize the concept of axiomatic construction into a composite reward function formulated

as a product of two components: Rtotal(oi, s). This design clearly divides the evaluation process
into two hierarchical levels: first, a determination of validity based on axioms, followed by an
exploration of optimality based on an evaluation function. To this end, our composite reward
function consists of two parts: a format reward Rformat and a textual structural similarity reward
Rsim.

Rtotal(oi, s) = Rformat(oi) × Rsim(oi, s) (2)

Here, oi is the i-th analytical report generated by the model, and s is the corresponding ground
truth, which is the expert-calibrated text from the MMSA dataset.

Enforcing the Structural Axiom We define the structured template that the report must follow
as a core axiom. This axiom is enforced through a binary format reward, Rformat. This function
checks whether the output contains the three core label pairs: <Trend Direction>, <Main Chart>,
and <Sub-chart>. Only when the output fully adheres to this axiom is it considered a valid so-
lution eligible for the next stage of evaluation; otherwise, it is rejected outright. This constitutes
the binary filtering of the solution space. It is a binary gating mechanism:

Rformat(oi) =

1, if match
0, else

(3)

Quantifying Optimality with the Content Evaluation Function For all valid solutions that
have passed the axiom verification, we activate the content evaluation function Rsim to quantify
their degree of optimality. The creation of this function presupposes the existence of a unified
cross-modal representation space. The model must comprehend the input visual chart information
within this space and generate the corresponding textual analysis. Our evaluation function, built
on this premise, uses weighted cosine similarity to calculate the semantic consistency between
the three core parts of the model’s output and the corresponding parts of the ground truth. This
essentially guides the policy toward the optimal solution most aligned with expert knowledge.
It does so by providing a continuous value signal within the valid solution space filtered by the
axiom.

Rsim = wtrendS trend + wmainS main + wsubS sub (4)

4.2.3. Progressive Curriculum Reward
Through this strategy, we transform the abstract concept of curriculum learning into a con-

crete, executable algorithmic mechanism. The strategy dynamically and structurally reshapes the
entire Incentive Landscape through two synergistic mechanisms, thereby providing the model
with the most suitable optimization objectives and gradients at different capability stages.

Non-linear Reshaping of the Incentive Landscape We first address the problem of a uniform
gradient in the original reward signal through a tiered reward shaping mechanism. A linear
similarity score Rsim cannot distinguish the essential difference between "poor" and "poorer," or
"good" and "excellent." To this end, we introduce a dynamic elimination threshold τlow(p) and an
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incentive threshold τhigh(p), deconstructing the continuous reward space into three heterogeneous
regions with distinctly different incentive gradients.

ri =


min

(
1.0 + (Rsim − τhigh(p)) · λ, rmax

)
, if Rsim ≥ τhigh(p) (incentive)

Rsim, if τlow(p) ≤ Rsim < τhigh(p) (standard)
0, if Rsim < τlow(p) (punish)

(5)

In the punish region, the reward is strictly set to 0. This creates a strong negative incentive,
theoretically establishing a clear quality baseline and efficiently pruning completely unaccept-
able, low-quality outputs from the exploration space. In the standard region, the reward remains
consistent with the original similarity score Rsim, providing a baseline, linear positive feedback.
When the output quality surpasses the incentive threshold, we introduce an excess reward mech-
anism. The reward signal here is designed to grow linearly, with the growth rate controlled by
an excess reward coefficient λ. This creates a high-return zone in the incentive region, intended
to provide a steep optimization gradient that strongly attracts the model to explore and converge
towards excellent performance.

Dynamic Difficulty Pacing of the Learning Trajectory To set the curriculum in motion, we fur-
ther designed a progressive threshold adaptation mechanism. This mechanism is a direct embodi-
ment of the curriculum learning philosophy, ensuring that the structure of the incentive landscape
is not static but matches the model’s ever-increasing capabilities. Specifically, the elimination
threshold τlow(p) and the incentive threshold τhigh(p) increase monotonically with the normalized
training progress p:

τlow(p) = τlowinit +
(
τlowfinal − τlowinit

)
· (6)

τhigh(p) = τhighinit +
(
τhighfinal − τhighinit

)
· (7)

This rising tide lifts all boats approach to difficulty adjustment transforms the training process
into a continuous, adaptive challenge. It theoretically ensures that the model receives meaning-
ful and appropriately difficult learning tasks at any stage of its development. This guides it to
transition smoothly from learning the basic format to pursuing content excellence, and effectively
prevents reward hacking that can occur when the model is satisfied with early, lower standards,
thereby promoting steady and continuous capability improvement.

5. Experiments

5.1. Experimental Setup
Dataset Split: All experiments were conducted on our constructed MMSA dataset. To en-

sure a fair and reliable evaluation, we randomly split the entire 20,000 samples according to an
8:1:1 ratio. This resulted in a training set of 16,000 samples for the model’s parameter learning;
a validation set of 2,000 samples for selecting the best model checkpoint and tuning key hyper-
parameters; and a test set of 2,000 samples. This test partition was completely held out from
the training and model selection processes, used only once at the end for the final performance
evaluation of all models.
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Implementation Details: All our reinforcement learning-based experiments were completed
within the Stock-R1 framework. To ensure fairness, we selected Qwen2.5-VL-3B as the base
model for all comparative experiments. The model was trained for a total of 2 epochs using the
AdamW optimizer with a learning rate set to 1e-6. All experiments were conducted on 4 NVIDIA
GeForce RTX 4090 GPUs.

5.2. Evaluation Metrics
Given that financial chart-and-text analysis is an emerging task, there is a lack of established

evaluation standards. To this end, we designed a comprehensive, multi-dimensional evaluation
system. The validity of this system rests on a core premise: all our automated metrics are in-
tended to quantify the consistency between the model’s output and the ground-truth reports in the
MMSA dataset. These ground-truth reports have, in turn, been rigorously validated by a panel of
financial experts and are thus representative of a high-quality, professional standard of analysis.
Therefore, achieving a higher score on our designed metrics can be considered strong evidence
that a model’s analytical capabilities are approaching an expert level.

This evaluation system is specifically centered around the following three core capabilities:
Trend Analysis, Main Analysis, and Sub Analysis. It integrates temporal localization accuracy and
the precision of multi-class technical signal recognition based on keyword matching. The specific
definitions, matching rules, and calculation methods for all metrics are provided in Appendix B.

Table 3. Overall Performance Comparison of All Models on the MMSA Test Set

Model
Trend analysis Main analysis Sub analysis

F1-Macro/Avg. IoU F1-Score Avg. F1-Macro

TBAC-VLR1-3B 0.2007/0.7592 0.3963 0.3762

InternVL2.5-4B 0.0549/0.6767 0.4546 0.4138

Qwen2VL-7B 0.0655/0.6893 0.3681 0.4340

Qwen2.5VL-7B 0.2093/0.6918 0.5235 0.4691

Qwen2.5VL-3B 0.0925/0.6991 0.3354 0.3061

+time-series-based SFT 0.1425/0.7018 0.2798 0.2554

+SFT 0.0670/0.6783 0.3326 0.3080

+Stock-R1 0.2677(↑0.1752)/0.7580(↑0.0589) 0.6423(↑0.3069) 0.5144(↑0.2083)

5.3. Main Results and Analysis
To comprehensively evaluate the effectiveness of the Stock-R1 method, we compared it against

three categories of models on the MMSA test set: 1. our proposed Stock-R1; 2. Method Baselines,

DataIntelligence 11



Decision-Oriented Multimodal Financial Analytics: Dataset and Reinforcement Learning
Approach

including SFT-only, a time-series-based SFT model, and Zero-shot versions of Qwen2.5-VL-3B,
to precisely measure the effective gains of our reinforcement learning framework; and 3. lead-
ing SOTA models, covering several industry-leading models such as TBAC-VLR1-3B-preview,
InternVL2_5-4B, and the larger-parameter Qwen2.5-VL-7B.

Our analysis begins with a fundamental validation of our choice of input modality by com-
paring the performance of the chart-based SFT model with the text-based Time-Series baseline.
As presented in Table 3, the results reveal a nuanced but clear picture.

Notably, the Time-Series model achieves a competitive F1-score and IoU in Trend Analy-
sis (0.1425 / 0.7018), demonstrating that a language model can effectively learn to infer general
trends and temporal segments directly from ordered numerical sequences. However, a signifi-
cant performance degradation is observed in tasks requiring the identification of complex visual
patterns. The F1-scores for Main Analysis and Sub Analysis dropped to 0.2798 and 0.2554, re-
spectively, underperforming the chart-based SFT model.

This divergence in performance is highly informative. It suggests that while sequential nu-
merical data is sufficient for basic trend recognition, it is a less effective modality for identifying
patterns whose definitions are inherently visual-spatial, such as chart formations (e.g., ’Double
Top’) and indicator divergences. The 2D chart representation provides a crucial visual abstraction
that makes these complex patterns more tractable for the model to recognize. This empirically val-
idates our hypothesis that for the task of generating a comprehensive, expert-level analysis report,
the visual modality is a critical component for capturing the full spectrum of technical signals.

Table 4. Detailed Results on the Trend and Main Analysis Tasks

Model
Trend analysis Main analysis

Prec. Rec. F1 Avg. IoU Prec. Rec. F1

TBAC-VLR1-3B 0.2069 0.2127 0.2007 0.7592 0.7568 0.2684 0.3963

InternVL2. 5-4B 0.0599 0.0575 0.0549 0.6767 0.6513 0.3491 0.4546

Qwen2-VL-7B 0.0693 0.0696 0.0655 0.6893 0.5273 0.2828 0.3681

Qwen2. 5-VL-7B 0.2112 0.2242 0.2093 0.6918 0.5623 0.4896 0.5235

Qwen2.5VL-3B 0.0991 0.0988 0.0925 0.6991 0.6553 0.2254 0.3354

+SFT 0.0775 0.0687 0.0670 0.6783 0.6477 0.2238 0.3326

+Stock-R1 0.2663 0.2801 0.2677
(↑0.1752) 0.7580 0.8811 0.5053 0.6423

(↑0.3069)

Overall Performance Analysis Our proposed Stock-R1 demonstrated outstanding perfor-
mance across all evaluation dimensions. Compared to the baseline, Stock-R1 achieved signifi-
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cant F1-score improvements of 0.17, 0.30, and 0.20 in trend, main, and sub analysis, respectively.
This provides compelling evidence for the substantial superiority of our proposed reinforcement
learning framework and PCR strategy. Furthermore, Stock-R1 not only performed best at the
3B parameter level but was also highly competitive against 7B-level SOTA models, surpassing
Qwen2-VL-7B-Instruct on several key metrics and achieving performance comparable to the top-
performing Qwen2.5-VL-7B. This fully demonstrates the excellent parameter efficiency and ad-
vanced nature of our method.

Trend Analysis Dimension Stock-R1 exhibited a comprehensive advantage. As shown in Table
4, it not only achieved the highest F1-score but also led in the average IoU metric, indicating that
it reached the highest precision in both semantic trend judgment and temporal localization. In
contrast, most general-purpose LVLMs, without specific optimization like Stock-R1, struggle to
independently learn reliable chart trend analysis capabilities. Their main errors manifest as an
inability to generate valid trend interval judgments or misclassifying the trend type after localiza-
tion.

Table 5. Detailed Results on the Sub-chart Analysis Task, Broken Down by Indicator. The models are abbreviated as
follows: TBAC (TBAC-VLR1-3B), IVL2 (InternVL2. 5-4B), QW2-7B (Qwen2-VL-7B), QW2.5-7B (Qwen2.5-VL-7B),
QW2.5-3B (Qwen2.5VL-3B).

Indicator Metric TBAC IVL2 QW2-7B QW2.5-7B QW2.5-3B +SFT +Stock-R1

KDJ

Prec. 0.8104 0.7414 0.7330 0.7483 0.7449 0.7455 0.9746

Rec. 0.1814 0.3274 0.2297 0.3519 0.1527 0.1726 0.3186

F1 0.2964 0.4542 0.3498 0.4787 0.2535 0.2802 0.4803 (↑0.2268)

MACD

Prec. 0.8849 0.9064 0.8434 0.8606 0.8990 0.8750 0.9648

Rec. 0.4428 0.4318 0.4921 0.4437 0.3945 0.3792 0.6131

F1 0.5903 0.5850 0.6215 0.5855 0.5484 0.5291 0.7497 (↑0.2013)

RSI

Prec. 0.7643 0.7060 0.7401 0.7184 0.6310 0.7101 0.6616

Rec. 0.2425 0.2010 0.2772 0.2977 0.1315 0.1398 0.3061

F1 0.3682 0.3129 0.4033 0.4209 0.2176 0.2336 0.4185 (↑0.2009)

BOLL

Prec. 0.6464 0.5471 0.5238 0.6163 0.6094 0.5574 0.6517

Rec. 0.1547 0.2095 0.2757 0.2865 0.1231 0.1137 0.2983

F1 0.2497 0.3030 0.3613 0.3912 0.2048 0.1889 0.4093 (↑0.2045)

Avg. F1 0.3762 0.4138 0.4340 0.4691 0.3061 0.3080 0.5144 (↑0.2083)

Main Analysis Dimension Stock-R1 achieved the best overall performance while ensuring
high reliability. As can be seen in Table 4, although its recall was slightly lower than that of
Qwen2.5-VL-7B, indicating that the model adopts a more conservative approach in signal gen-
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eration. its extremely high precision ensured the reliability of the output, ultimately resulting in
the highest F1-score among all compared methods.

Sub Analysis Dimension Stock-R1 also showed a significant advantage and presented inter-
esting trade-offs. As detailed in Table 5, its performance improved remarkably when process-
ing MACD and BOLL. For the KDJ and RSI indicators, while its F1-scores were competitive
with models like Qwen2.5-VL-7B, with each having its own strengths, the performance improve-
ment over the baseline was still substantial, proving our method is equally effective for various
oscillator-type indicators.
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Figure 3. F1-Score Comparison of All Models on Main and Sub Analysis Tasks.

In summary, despite minor trade-offs on individual sub-metrics, the substantial improvements
of Stock-R1 on key analytical tasks demonstrate its outstanding capability and immense potential
as an advanced financial analysis support tool. A performance comparison of all models across
the main dimensions is illustrated in Figure 3.

5.4. Ablation Study
To systematically validate the effectiveness of the core designs within our proposed Stock-

R1 method—namely, the Progressive Curriculum Reward strategy and the fine-grained reward
signals—we conducted a series of detailed ablation studies using the complete Stock-R1 model
as the benchmark. For this purpose, we designed three core variants to quantitatively assess the
contribution of each component: the first variant, w/o Progressive Curriculum Reward, removes
the entire Progressive Curriculum Reward module and directly uses the original composite re-
ward signal Rtotal; the second variant, w/o Progression, retains the reward/penalty region division
of Progressive Curriculum Reward but removes its progressive mechanism by using fixed reward
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thresholds; the final variant, w/o Weighted Reward, calculates the similarity reward Rsim without
applying weights to the different analytical dimensions. The performance comparison of all vari-
ant models against the full model and the SFT baseline is shown in Table 6.

Table 6. Ablation Study of the Core Components of Stock-R1

Model
Trend analysis Main analysis Sub analysis

F1-Macro/Avg. IoU F1-Score Avg. F1-Macro

SFT-only 0.067/0.6783 0.3326 0.308

w/o Progressive Curriculum Reward 0.2454/0.7511 0.5902 0.4492

w/o Progression 0.2540/0.7535 0.6080 0.4750

w/o Weighted Reward 0.2615/0.7560 0.6250 0.4980

Stock-R1 (ours) 0.2677/0.7580 0.6423 0.5144

Figure 4. Distribution of similarity scores and justification for initial threshold selection.

Overall Effectiveness of the Progressive Curriculum Reward Strategy First, the w/o Progres-
sive Curriculum Reward variant, which completely removes the PCR module, led to the most
significant performance degradation. As shown in Table 6, its Sub-chart Analysis Avg. F1-Macro
score dropped sharply from the full model’s 0.5144 to 0.4492, which directly proves that the Pro-
gressive Curriculum Reward strategy is the cornerstone of our entire method framework.
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Necessity of the Dynamic Difficulty Pacing Mechanism Second, the w/o Progression variant
isolates the contribution of the progressive mechanism by employing fixed reward thresholds.
Specifically, we set the thresholds τlow(p) and τhigh(p) to the 25th and 75th percentiles of the base
model’s Rsim score distribution (i.e., 0.4383 and 0.7737, respectively), as illustrated in Figure 4.
Although this variant’s performance was superior to that of the w/o PCR model, it still showed a
significant gap when compared to the complete model. This result precisely underscores the ne-
cessity of a dynamic difficulty curriculum for enabling continuous breakthroughs in the model’s
capability.

Value of Fine-grained Reward Signals Finally, the w/o Weighted Reward variant, which re-
moved reward weighting, achieved performance closest to the full model. This result indicates
that a fine-grained evaluation strategy that mimics human experts’ emphasis on different analyti-
cal dimensions is an effective enhancement for achieving optimal model performance.

Stock-R1：
<Trend Direction>

        October 2023 - Late November 2023: The stock price was in a gentle upward channel, climbing from approximately 6.2 yuan to a cyclical high 

near 7 yuan.

        Late November 2023 - Early February 2024: The trend reversed, entering a long and sharp downtrend, with the price falling continuously from 

the 7 yuan high to a low of approximately 3 yuan in early February.

        Early February 2024 - Late March 2024: After setting a new low, the price staged a strong rebound back above 5 yuan, followed by a period of 

high-level consolidation.

</Trend Direction>

<1. Main Chart>

MA System:

        Golden Cross: Around January 30, 2024, the MA5 (blue line) crossed above the MA20 (yellow line) at a low point, forming a golden cross and 

signaling the start of a rebound from oversold conditions.

        Death Cross: Around early December 2023, the MA5 crossed below the MA20, forming a death cross that marked the beginning of the downtrend.

Candlestick Patterns:

        Combination - Piercing Pattern: In the bottom region at the end of January 2024, a bullish Piercing Pattern was formed by a bearish and a 

subsequent bullish candle, constituting a strong reversal signal.

        Reversal Pattern - Double Top: In mid- and late-November 2023, the price formed two similar peaks, creating a Double Top pattern. The 

subsequent break below the neckline confirmed the reversal.

Gap:

        Exhaustion Gap: Around January 22, 2024, a downward gap appeared near the end of the downtrend.

</1. Main Chart>

<2. Sub-chart>

Cross:

        Death Cross Above 0-Axis: Around November 24, 2023, the DIF line (white line) crossed below the DEA line (yellow line) above the 0-axis, 

forming a death cross that confirmed the validity of the top.

        Golden Cross Below 0-Axis: Around January 29, 2024, the DIF line crossed above the DEA line deep below the 0-axis, forming a golden cross.

Momentum:

        Red/Green Bar Transition: At the end of November 2023, the green momentum bars disappeared, and red bars appeared and continuously 

expanded until late January 2024, indicating a sharp increase in bearish momentum.

Divergence:

        Bullish Divergence: During January 2024, although the price was making new lows, the corresponding lows on the MACD indicator were rising. 

The chart showed clear signs of a bullish divergence, foreshadowing the subsequent rebound.

</2. Sub-chart>

SFT：
<Trend Direction>No clear trend direction</Trend 

Direction>

<1. Main Chart>No clear trend direction

MA System:

        - The MA5 and MA20 show a tangled trend on the 

chart, with no clear golden cross or death cross signals. 

Since January 2nd, the MA20 has been above the MA5, 

but this movement is fluctuating and lacks a clear trend 

direction.

Candlestick Patterns:

        - No significant single-candlestick signals, such as 

prominent Hammer or Doji patterns.

        - No clear combination patterns, such as Three 

White Soldiers or Morning Star.

        - No clear continuation or reversal patterns.

        - No clear gap phenomena.

</1. Main Chart>

<2. Sub-chart>No clear change in bullish or bearish 

power

DIF & DEA Cross:

        - No clear golden cross or death cross signals.

DIF Crossing the 0-Axis:

        - No clear crossover above or below the 0-axis.

Momentum (MACD Histogram):

        - No clear red/green transitions or 

expansion/contraction trends.

Divergence:

        - No bearish or bullish divergence between the price 

and the DIF indicator.

</2. Sub-chart>

Figure 5. A case study comparison between the SFT-only model and our Stock-R1 model. The SFT model provides an
evasive and ineffective analysis, whereas Stock-R1 delivers a detailed, multi-faceted, and expert-level report on the same
chart, identifying specific patterns like the Double Top and Bullish Divergence.

5.5. Qualitative Analysis and Case Study
Beyond macro-level quantitative evaluations, micro-level qualitative analysis can more pro-

foundly reveal the fundamental differences in models’ analytical capabilities. Figure 5 presents a
typical case selected from the test set to illustrate the superiority of Stock-R1 over the traditional
SFT method. Although the baseline SFT model is syntactically coherent, it exhibits significant
failures in semantic interpretation. Its output is replete with non-committal phrases such as "no
clear trend direction," failing to extract any actionable, decision-relevant information from the
visual data. This is, in essence, an ineffective analysis.

In stark contrast, the report generated by Stock-R1 demonstrates a complex and logically rig-
orous analytical process. It begins by accurately dividing the overall price movement into three
macro-stages: a gentle rise, a sharp decline, and a subsequent rebound. More importantly, it show-
cases a profound ability to identify key turning points by synthesizing multidimensionalsignals.
For the market top around November 2023, it accurately identified the bearish reversal signal,
confirmed jointly by a Double Top pattern and an MACD death cross above the zero axis. Further-
more, during the bottom formation process in January 2024, it detected a confluence of bullish
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signals, which included not only a Piercing Pattern on the candlesticks and an MACD golden
cross at a low level, but also the most critical phenomenon signaling a market reversal: an MACD
Bullish Divergence.

The model’s ability to identify a complex signal like "bullish divergence," which requires
long-term associative analysis of both price and indicator trends, serves as compelling evidence
for the effectiveness of our reinforcement learning framework. Our designed Axiomatic Reward
and Progressive Curriculum Learning strategies have evidently pushed the model beyond superfi-
cial pattern matching, enabling it to develop a deeper and more holistic understanding of financial
analysis logic. This case clearly illustrates that Stock-R1 has transitioned from a simple chart de-
scriptor to a decision support tool with the capabilities of a junior analyst, validating its potential
for application in complex financial scenarios.

6. Conclusion

In this paper, we addressed the lack of professional decision support tools in the financial do-
main. We pioneered a new path for automated financial analysis through two core contributions.
First, we constructed MMSA, the first large-scale, high-quality multimodal stock analysis dataset.
Second, we proposed a novel reinforcement learning method, Stock-R1. This method efficiently
guides a model to learn complex analytical tasks by materializing axiomatic principles into a re-
ward function and implementing a Progressive Curriculum Reward strategy to dynamically shape
the incentive landscape. Experimental results demonstrate that Stock-R1 is significantly superior
to various baselines and leading SOTA models in generating high-quality analytical reports. This
not only validates the effectiveness of our method but also successfully transitions the research
paradigm. Future work will extend this approach toward broader datasets, richer modalities, and
more interactive analytical systems.

Author Contributions

Jie Sun: Conceptualized the research vision; designed the core multimodal architecture; de-
veloped key algorithm modules;

Tengxiang Luo: MMSA dataset creation; Methodology; Writing-original draft;
Huamao Gu: Optimized training pipelines; contributed to results analysis and visualization;
Jing Hua: Contributed to results/discussion sections; revised manuscript critically.
Rui Xie: Provide multimodal experimental data, as well as professional interpretation opin-

ions on K-line chart interpretation.
Zuohua Ding: Provided critical intellectual guidance; edited manuscript structure; reviewed

and approved final submission.

References

[1] Yejun Soun, Jaemin Yoo, Minyong Cho, Jihyeong Jeon, and U Kang. Accurate stock movement prediction with
self-supervised learning from sparse noisy tweets. In 2022 IEEE International Conference on Big Data (Big Data),
pages 1691–1700. IEEE, 2022.

DataIntelligence 17



Decision-Oriented Multimodal Financial Analytics: Dataset and Reinforcement Learning
Approach

[2] Yumo Xu and Shay B Cohen. Stock movement prediction from tweets and historical prices. In Proceedings of the
56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1970–1979,
2018.

[3] Huizhe Wu, Wei Zhang, Weiwei Shen, and Jun Wang. Hybrid deep sequential modeling for social text-driven stock
prediction. In Proceedings of the 27th ACM international conference on information and knowledge management,
pages 1627–1630, 2018.

[4] Julio Cesar Salinas Alvarado, Karin Verspoor, and Timothy Baldwin. Domain adaption of named entity recognition
to support credit risk assessment. In Proceedings of the australasian language technology association workshop
2015, pages 84–90, 2015.

[5] Agam Shah, Ruchit Vithani, Abhinav Gullapalli, and Sudheer Chava. Finer: Financial named entity recognition
dataset and weak-supervision model. arXiv e-prints, pages arXiv–2302, 2023.

[6] Soumya Sharma, Tapas Nayak, Arusarka Bose, Ajay Kumar Meena, Koustuv Dasgupta, Niloy Ganguly, and Pawan
Goyal. Finred: A dataset for relation extraction in financial domain. In Companion Proceedings of the Web Con-
ference 2022, pages 595–597, 2022.

[7] Dominique Mariko, Hanna Abi Akl, Estelle Labidurie, Stephane Durfort, Hugues De Mazancourt, and Mahmoud
El-Haj. Financial document causality detection shared task (fincausal 2020). arXiv preprint arXiv:2012.02505,
2020.

[8] Qianqian Xie, Weiguang Han, Zhengyu Chen, Ruoyu Xiang, Xiao Zhang, Yueru He, Mengxi Xiao, Dong Li, Yongfu
Dai, Duanyu Feng, et al. Finben: A holistic financial benchmark for large language models. Advances in Neural
Information Processing Systems, 37:95716–95743, 2024.

[9] Gagan Bhatia, El Moatez Billah Nagoudi, Hasan Cavusoglu, and Muhammad Abdul-Mageed. Fintral: A family of
gpt-4 level multimodal financial large language models. arXiv preprint arXiv:2402.10986, 2024.

[10] Ziao Wang, Yuhang Li, Junda Wu, Jaehyeon Soon, and Xiaofeng Zhang. Finvis-gpt: A multimodal large language
model for financial chart analysis. arXiv preprint arXiv:2308.01430, 2023.

[11] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren
Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, text reading, and beyond. arxiv
2023. arXiv preprint arXiv:2308.12966, 1(8), 2023.

[12] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou
Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 24185–24198, 2024.

[13] Liangyu Chen, Sijia Chen, Siyuan Huang, Chen-Hsin Lee, Yixuan Wang, Jindong Chen, Xin-Yu Zhang, Zheyang Li,
He-Yen Hsieh, Celina Han, Hong-Xin Chen, Siran Chen, Shiyu Hu, Xi Chen, Yu Kang, E Chen, Dahua Lin, C.-C. Jay
Kuo, and Fengbo Zheng. Mimicit: Multi-modal In-Context Instruction Tuning. arXiv preprint arXiv:2306.05425,
jun 2023.

[14] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 26296–26306, 2024.

[15] Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha Akula,
Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully open, vision-centric
exploration of multimodal llms. Advances in Neural Information Processing Systems, 37:87310–87356, 2024.

[16] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in neural infor-
mation processing systems, 36:34892–34916, 2023.

[17] Jianfeng Dong, Xianke Chen, Minsong Zhang, Xun Yang, Shujie Chen, Xirong Li, and Xun Wang. Partially relevant
video retrieval. In Proceedings of the 30th ACM International Conference on Multimedia, pages 246–257, 2022.

[18] Jianfeng Dong, Yabing Wang, Xianke Chen, Xiaoye Qu, Xirong Li, Yuan He, and Xun Wang. Reading-strategy
inspired visual representation learning for text-to-video retrieval. IEEE transactions on circuits and systems for
video technology, 32(8):5680–5694, 2022.

[19] Haiyang Mei, Yuanyuan Liu, Ziqi Wei, Dongsheng Zhou, Xiaopeng Wei, Qiang Zhang, and Xin Yang. Explor-
ing dense context for salient object detection. IEEE Transactions on Circuits and Systems for Video Technology,
32(3):1378–1389, 2021.

[20] Dan Guo, Kun Li, Bin Hu, Yan Zhang, and Meng Wang. Benchmarking micro-action recognition: Dataset, method,
and application. IEEE Transactions on Circuits and Systems for Video Technology, 34(7):6238–6252, 2024.

[21] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning converts weak
language models to strong language models. arXiv preprint arXiv:2401.01335, 2024.

[22] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini
Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730–27744, 2022.

[23] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Di-
rect preference optimization: Your language model is secretly a reward model. Advances in Neural Information
Processing Systems, 36:53728–53741, 2023.

18 DataIntelligence



Decision-Oriented Multimodal Financial Analytics: Dataset and Reinforcement Learning
Approach

[24] Yuhao Dong, Zuyan Liu, Hai-Long Sun, Jingkang Yang, Winston Hu, Yongming Rao, and Ziwei Liu. Insight-v:
Exploring long-chain visual reasoning with multimodal large language models. In Proceedings of the Computer
Vision and Pattern Recognition Conference, pages 9062–9072, 2025.

[25] Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan, Liang-Yan Gui,
Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with factually augmented rlhf. arXiv
preprint arXiv:2309.14525, 2023.

[26] Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu, Heng Huang, and Chunyuan Li.
Llava-critic: Learning to evaluate multimodal models. In Proceedings of the Computer Vision and Pattern Recog-
nition Conference, pages 13618–13628, 2025.

[27] Yi-Fan Zhang, Tao Yu, Haochen Tian, Chaoyou Fu, Peiyan Li, Jianshu Zeng, Wulin Xie, Yang Shi, Huanyu Zhang,
Junkang Wu, et al. Mm-rlhf: The next step forward in multimodal llm alignment. arXiv preprint arXiv:2502.10391,
2025.

[28] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948, 2025.

[29] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi, Yu Wu,
YK Li, et al. Deepseek-coder: When the large language model meets programming–the rise of code intelligence.
arXiv preprint arXiv:2401.14196, 2024.

[30] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300, 2024.

[31] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila
Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv preprint arXiv:2410.21276, 2024.

[32] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings of
the 26th annual international conference on machine learning, pages 41–48, 2009.

[33] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

[34] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng,
Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

[35] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models.
arXiv preprint arXiv:2307.09288, 2023.

[36] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei
Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint arXiv:2408.03326, 2024.

[37] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian,
Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models with model, data, and
test-time scaling. arXiv preprint arXiv:2412.05271, 2024.

[38] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun
Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923, 2025.

[39] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weim-
ing Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding and reasoning bench-
mark for expert agi. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 9556–9567, 2024.

[40] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[41] Qianqian Xie, Weiguang Han, Xiao Zhang, Yanzhao Lai, Min Peng, Alejandro Lopez-Lira, and Jimin Huang. Pixiu:
A large language model, instruction data and evaluation benchmark for finance. arXiv preprint arXiv:2306.05443,
2023.

[42] Shu Liu, Shangqing Zhao, Chenghao Jia, Xinlin Zhuang, Zhaoguang Long, Jie Zhou, Aimin Zhou, Man Lan,
Qingquan Wu, and Chong Yang. Findabench: Benchmarking financial data analysis ability of large language models.
arXiv preprint arXiv:2401.02982, 2024.

[43] Jialin Chen, Aosong Feng, Ziyu Zhao, Juan Garza, Gaukhar Nurbek, Cheng Qin, Ali Maatouk, Leandros Tassiulas,
Yifeng Gao, and Rex Ying. Mtbench: A multimodal time series benchmark for temporal reasoning and question
answering. arXiv preprint arXiv:2503.16858, 2025.

DataIntelligence 19



Decision-Oriented Multimodal Financial Analytics: Dataset and Reinforcement Learning
Approach

Author Biography

Jie Sun Ph.D. at Zhejiang Sci-Tech University, with research interests in
computer vision and multimodal large models.
ORCID: 0000-0002-5196-7268
Email: sunjie@zjgsu.edu.cn

Tengxiang Luo is a master’s student of School of Computer Science and
Technology, Zhejiang Gongshang University, with research interests in Mul-
timodal model.
ORCID: 0009-0006-0568-2874
Email: 23020100041@pop.zjgsu.edu.cn

Huamao Gu Professor and Ph.D. at Zhejiang Gongshang University, with
research expertise in natural language processing and large language models.
Email: ghmsjq@zjgsu.edu.cn

Jing Hua Professor, Ph.D., and Ph.D. supervisor at Zhejiang Gongshang
University, with research expertise in computer vision and large language
models.
Email: jhua@zjgsu.edu.cn

Rui Xie Master’s degree holder, engineer, General Manager of Zhejiang
Zheshiyou Comprehensive Energy Sales Co., Ltd., engaged in research and
development in the field of energy management.
Email: 13867111766@139.com

Zuohua Ding Professor, Ph.D., and Ph.D. supervisor at Zhejiang Sci-Tech
University, with research expertise in software engineering, requirements
modeling & analysis, and intelligent software systems & service robotics.
Email: zouhuading@hotmail.com

20 DataIntelligence


