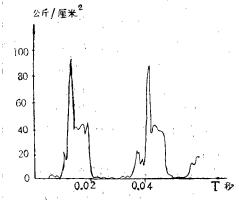
BY-60型泵压表初步试验

MMM不不不不不不可以 张宝瑜 田锡玉·不不不不不不不

(地质部勘察技术研究院)

地质部勘察技术研究院设计、浙江鄞县 地质仪表厂制造的BY — 60 型 泵 压 表,于 1980年 6 月用于冲击回转钻进试验,现将室 内外使用情况作一概略介绍。


(一)使用条件

- 1.室内试验在河北省地质局综合研究队进行。实验配用设备为. BW 250 / 50 型及BWB250型泥浆泵,XD—600型全液压钻机。BY—60型泵压表用胶管从稳压塔出口处引出,安装在操作者容易观察的部位,距水泵出口5米,距冲击器7米。钻进岩样为7级花岗岩。
- 2.生产试验在河北省地质局第五地质队 兴隆县安子岭矿区626孔进行,地层为6~7 级白云岩,配用设备为BW250/50型泥浆泵, 孔径为56毫米。
- 3.冲击器是综合队研制的 ZF—56— I—型正作用阀式冲击器,冲击频率为 1500~2400次/分,单次冲击功为0.5~1公斤/米,冲击器工作泵压为20公斤/厘米²。

在室内和野外浅孔试验时,因冲击器与表之间管路很短,冲击器产生的液压水锤反射波通过介质传至泵压表,使其在高频液压反射波作用下工作。冲击器部位最高瞬时脉动压力峰值为80~120公斤/厘米²,如图。

(二)使用情况

室内试验于1980年 6 月至1981年12月进行,总进尺139.6米,钻进时间为33.3小时, 调试和测试冲击参数等总计 500 小时左右。

冲击器部位压力变化曲线图(实测)

其工作压力为20~30公斤/厘米²,有时高至55公斤/厘米²以上。试验完毕,该泵压表仍然工作正常,另部件完好无损。

野外试验时,冲击回转钻进42个回次,进尺184.24米,纯钻时间为65.5小时,平均时效2.81米;回转钻进293.1米,纯钻进131小时。共计钻进196.5小时,进尺477.38米(也即孔深)。泵压表的一般工作压力为20~30公斤/厘米²或10~15公斤/厘米²(回转钻进),憋泵时,压力往往超过泵压表测量上限。试验表明,泵压表虽经多次憋泵超压冲击,性能保持良好。

由于BY—60型泵压表具有较好的工作性能,在冲击回转钻进中具有较长的工作寿命,有助于机场工作人员,根据表针动态及时发现孔内情况和冲击器工作情况的变化,这对预防事故,提高效率起到一定的作用。

计量瓦斯含量单位的改革

四川煤田地质研究所 刘明信:

我们在煤田地质勘探工作中,一直使用 每克可燃物质所含瓦斯的毫升数来计量瓦斯 含量。可是,矿井设计和生产矿井计量瓦斯 涌出量却是用每吨煤所含瓦斯的米³数来表 示。二者是不一致的,换句话说,瓦斯试验 数据不能直接为设计和生产服务。为此,笔 者于1979年5月提出用每克煤重所含瓦斯的 毫升数来代替过去的计量单位。此后,四川 煤田地质研究所于1980年8月正式采纳这种 作法。

经一年的使用,据四川135队和141队反映,认为以新单位填报瓦斯试验报告更切实际。并要求将筠连煤田1980年8月以前的瓦斯报告,全部改用新单位。重庆煤矿设计院有关负责同志也肯定了使用新单位比较方便。

141煤田地质勘探队于 1981 年在筠连煤 田采用原集气式煤芯采取器和正在推广的解 吸法两种采样方法,在同一钻孔,同一层煤 连续采取两个瓦斯样进行对比,原单位计量 的瓦斯含量互差大,而新单位计量的瓦斯 含量互差小,进一步证实了新单位的优点

(三)小 结

1.试验证明,此种泵压表性能良好而且 稳定,具有较好的抗震性能,在高频冲击回 转钻进的液压反射波作用下运转正常。正常 钻进时,表针虽然存在1~3公斤/厘米²的 波动,但不影响观察泵压示值的变化,由此 可见,BY—60型泵压表能够测量上 述 工作 条件下的脉动压力的平均值。

2.BY-60型泵压表能够承受较高的瞬

(见下表)

筠连维新井田 8 号煤不同 采 样 方 法 结 果 互 差 表

				<u>;</u>		
孔号及采样 深度(米)	233—4孔, 428、48					
含 量	毫升/克可燃物质			毫升/克煤		
	CH4	C ₂ °	CO ₂	CH4	Co	CO2
气罐式	26.89	0.020	0.518	16.53	0.012	0.319
解吸法	17.55	0.0042	0.074	12.07	0.0029	0.051
互 差	9.34	0.0158	0.444	4.46	0.0091	0.268
孔号及采样 深度(米)	233—7孔, 739、33					
含 量	毫升/克可燃物质			毫升/克煤		
	CH _{4.}	C ₂	CO2	CH4	C°2	CO ₂
气罐式	23.6	微	0.407	13.9	微	0.240
解吸法	17.62	微	0.186	14.52	微	0.152
互 差	5.98		0.221	0.62		0.088
孔号及采样 深度(米)	235—2孔, 590、13					
含 量	亳升/克可燃物质			毫升/克煤		
	CH	Co	CO2	CH₄	C°2	CO ₂
气罐式	12.86	0.0061	0.204	8.81	0.0042	0.139
解吸法	13.20	微量	0.095	8.48	微量	0.061
互差	0.34	0.0061	0.109	0.33	0.0042	0.078

时压力冲击。

- 3. 具有良好的耐超压能力,一旦憋泵超压,弹性元件可以得到保护,使表保持完好。
 - 4.结构简单,便于保养。
- 5.适用于冲击回转钻进,为了使其更好 地承受剧烈的机械震动和高频液压反射波, 尚须进一步改善其阻尼特性,加强表头与水 油隔离器连接处的强度,使之更好地为被动 冲击回转钻进配套。