A 辑

关于稠密语言的析取结构*

郭聿琦 李 廉 许光午 (兰州大学数学力学系)

摘 要

本文利用析取语言来刻画稠密语言,得到如下结论:

- 1. 关于字母表 $\Sigma = \{a\}$,其上任一稠密语言可表为 Σ 上无限多个析取语言的无交并。
- 2. 关于任意字母表 Σ , 其上任一稠密语言可表为 Σ 上一离散析取语言与一析取语言的无交并。

一、引言与结果陈述

令 Σ 为一有限集合, Σ * 为由 Σ 生成的自由么半群(free monoid)。 Σ 的元素称为字母, Σ 称为字母表。 Σ * 的元素和子集分别称为 Σ 上的字和语言。关于 Σ 上任一字x,用|x|表示x含 Σ 中字母的个数,称为x的长度。

若 L 为 Σ 上一语言,则称其为 Σ 上的 Φ 稠密语言, Φ 离散语言和 Φ 断取语言,如果它依次分别满足下述条件:

- ① 关于 $w \in \Sigma^*$, 常有 $L \cap \Sigma^* w \Sigma^* \neq \phi$;
- ② $x, y \in L$, 且 |x| = |y| 意味着 x = y;
- ③ Σ^* 上的同余 P_L 为 Σ^* 上的恒等,其中 P_L 为:

 $x = y(P_L)$, 当且仅当关于 $u, z \in \Sigma^*$, 常有 $xz \in L \iff yz \in L_{\bullet}$

关于上述三概念的关系的讨论,就 $|\Sigma| \ge 2$ 的情形,已有如下事实:

- (i) 若L为 Σ 上的离散语言,则L在 Σ 上稠密,当且仅当L在 Σ 上析取 $^{\Box}$.
- (ii) L为 Σ 上的稠密语言,当且仅当L包含 Σ 上一析取语言 \Box .
- (iii) Σ^* 的单侧理想 $I(I = \Sigma^*I)$ 或 $I\Sigma^*$. 这是一类稠密语言)可表为 Σ 上无限个析取语言的无交并^[2,3].

更一般地,我们与 Shyr 同时得到了

(iv) Σ 上任一稠密语言可表为 Σ 无上限个析取语言的无交并[4,5]。

另外,我们还曾得到

- (v) Σ 上任一稠密语言可表为 Σ 上二(从而任意有限个)析取语言的无交并 15 。
- 由(v)的证明^[5]可知,任一稠密语言事实上可表为一半离散析取语言与一析取语言的无

本文 1983 年 10 月 25 日收到.

^{*} 中国科学院科学基金资助的课题.

交并。所谓 Σ 上的语言L是半离散的,指的是存在自然数k,使得L所含任何长度的字都不超过k个 $^{[6]}$ 。显然,半离散性是离散性的推广 $^{[6]}$ 。

本文的主要结果是下述二定理。

定理 1. 事实 (iv) (从而事实 (iii)) 关于 $|\Sigma| = 1$ 也是对的.

于是,事实(iv)(包括(iii))由 $|\Sigma| \ge 2$ 的情形推广到了任意 Σ .

定理 2. 关于任意字母表 Σ , Σ 上任一稠密语言可表为 Σ 上一离散析取语言与一析取语言之无交并.

于是,一方面,事实 (v) 由 $|\Sigma| \ge 2$ 的情形推广到了任意 Σ ; 另一方面,事实 (v) 的结论由一析取并因子的 k-离散改进为离散。

由定理 1, 2, 事实 (ii) 随之也由 $|\Sigma| \ge 2$ 的情形推广到了任意 Σ .

但事实(i)不能得到事实(ii)——(v) 那样的推广,因为当 $|\Sigma|=1$ 时,语言的稠密性与无限性是一致的,而这一情形的无限语言却分为析取与正则两类.

二、定理1的证明

引理 $\mathbf{1}^{[r]}$. 设 $\Sigma = \{a\}$,L 为 Σ 上的语言。 若关于任意整数 m > 0,存在 a'_1 , $a'_2 \in L$,使得 $\iota_2 - \iota_1 > m$,且 L 中不再含有长度介于 ι_1 与 ι_2 之间的字,则 L 不是正则的(从而是析取的).

下面给出定理 1 的证明. 令 D 为 $\Sigma = \{a\}$ 上的稠密语言. 由 D 稠密,知 $|D| = \infty$,因此可取到 D 的一个无限子集 $\{y_1, y_2, y_3, \cdots\}$, y_1 为 D 中的最短字,且 $|y_i| - |y_{i-1}| > i$, $i = 2, 3, \cdots$. 关于每个 y_i ,作

$$T_i = \{ y \in D | |y_{i-1}| \leq |y| < |y_i| \}, i = 2, 3, \cdots$$

令N为自然数的集合,且

 $M_i = \{n \in N \mid n \text{ 恰有 } j \text{ 个素因子}\}, j = 1, 2, \cdots$

对每个 M_i ,作

$$D_{i} = \bigcup_{k \in M_{i}} T_{k}.$$

显然关于任何 $k_1, k_2 \in N$, $k_1 = k_2$ 时, $T_{k_1} \cap T_{k_2} = \phi$,因此当 $j_1 = j_2$ 时, $D_{i_1} \cap D_{i_2} = \phi$. 由上面的作法可知,关于每一 $x \in D$,必有 $k \in N$,使得 $x \in T_k$,所以

$$D = \bigcup_{i=1}^{\infty} D_i.$$

下证每个 D_i 都是 $\Sigma = \{a\}$ 上的析取语言, $j = 1, 2, \cdots$ 。 关于任何整数 m > 0,当 然可取到整数 n > m,且

 1° , $n \in M_i$,

 2° . 存在 $n_0 \in M_i$, 使得 $n_0 < n_{\bullet}$

于是, $T_n \cap D_i = \phi$. 令 $r_1 = \min\{r \in M_i | r > n\}$, $r_2 = \max\{r \in M_i | r < n\}$,显然, $T_{r_1} \subseteq D_i$, $T_{r_2} \subseteq D_i$ 。 设 a^{s_1} 为 T_{r_1} 中的最短字, a^{s_2} 为 T_{r_2} 中的最长字,由 D_i 的作法,知 D_i 中不再含有长度介于 s_1 与 s_2 之间的字。但由 $a^{s_1} \in T_{r_1}$,知 $s_1 \ge |y_n|$,由 $a^{s_2} \in T_{r_2}$,知 $s_2 < |y_{n-1}|$,因此, $s_1 - s_2 > |y_n| - |y_{n-1}| > n > m$ 。 据引理 $1, D_i$ 是析取的。

三、定理2的证明

引理 $2^{(1)}$. 设 $|\Sigma| \ge 2$, L 为 Σ 上的语言。则 L 是析取的,当且仅当关于 |u| = |v| 的 u, v,常有, $u = v(P_L)$ 意味着 u = v.

易知,还有如下的

(*) **事实**. 令 S_1 , S_2 , \cdots , S_m 为集合 S 的 $m \ge 2$ 个子集,且 $|S_m| \ge m$ (即 S_m 含元素个数不小于 m),则有 $a \in S_m$,使 $S_m \setminus \{a\}$ 与 S_1 , S_2 , \cdots , S_{m-1} 都不相同.

这是因为,如果不然,令 $\{a_1, a_2, \dots, a_m\}\subseteq S_m$,则有 $S_m\setminus \{a_i\}\in \{S_k|k=1, 2, \dots, m-1\}$, $i=1,2,\dots,m$,但

$$S_m \setminus \{a_i\} \neq S_m \setminus \{a_i\}, \quad i, j = 1, 2, \dots, m, \quad i \neq j,$$

这是一个矛盾。

下面给出定理2的证明。

令D为一稠密语言,我们将从D中取出一个离散析取子集 D_1 ,且使 $D_2 = D \setminus D_1$ 析取,以完成定理的证明。

先考虑 $|\Sigma| \ge 2$ 的情形. 令 \le 为 Σ^* 上一严格序,即 \le 为 Σ^* 上的一个全序,且 |x| < |y| 时,常有 x < y. 例如, \le 可取为词汇序。记

$$\Sigma^* = \{x_1, x_2, \cdots, x_n, \cdots\},\$$

其中, i < j 时 $x_i < x_j$. 又令

$$A_i = \{(u, v) \in \Sigma^* \times \Sigma^* | ux_i v \in D\}, \quad i = 1, 2, \cdots.$$

由D稠密,知 $|A_i| = \infty^{[1]}$,即 A_i 含有无穷多个元素, $i = 1, 2, \cdots$

为构造 D_1 ,我们先从 A_1 中任取 (u_1, v_1) ; 令 $T_1 = \{(u, v)||u| + |v| \leq |u_1| + |v_1|\}$,再从 $A_2 \setminus T_1$ 中取一 (u_2', v_2') ,使得

$$A_2 \setminus (T_1 \cup \{(u_2', v_2')\}) \neq A_1 \setminus T_1. \tag{1}$$

这是可以作到的,因为 $|A_1| = \infty$, $|A_2 \setminus T_1| = \infty$,而且有上面的事实(*). 由 (1) 式,知有 (u_{21}, v_{21}) 属于且只属于 $A_2 \setminus (T_1 \cup \{(u'_2, v'_2)\})$ 与 $A_1 \setminus T_1$ 中的一个,这样的元称为 $A_2 \setminus (T_1 \cup \{(u'_2, v'_2)\})$ 与 $A_1 \setminus T_1$ 的**示差元**. 如果 $(u_{11}, v_{21}) = (u'_2, v'_2)$,那么我们令 $(u_2, v_2) = (u'_2, v'_2)$; 否则,据事实(*),可取到 $(u_2, v_2) \in A_2 \setminus T_1$,使得

$$|u_2| + |v_2| > \max\{|u_2'| + |v_2'|, |u_{21}| + |v_{21}|\},\$$

 $A_2 \setminus (T_1 \cup \{(u_2, v_2)\}) \neq A_1 \setminus T_1.$

且易知, (u_2, v_2) 也是 $A_1 \setminus (T_1 \cup \{(u_2, v_2)\})$ 与 $A_1 \setminus T_1$ 的示差元.

今若关于某一 $k \ge 2$, $A_k \setminus T_{k-1}$ 中的 (u_k, v_k) 已经取出,使得

$$A_k \setminus (T_{k-1} \cup \{(u_k, v_k)\}) \neq A_i \setminus T_{k-1}, i = 1, 2, \dots, k-1,$$

其中 $T_{k-1} = \{(u,v)||u| + |v| \leq |u_{k-1}| + |v_{k-1}|\}$. 同时也已取出 $A_k \setminus (T_{k-1} \cup \{(u_k, v_k)\})$ 与 $A_i \setminus T_{k-1}$ 的示差元 (u_{ki}, v_{ki}) , $i = 1, 2, \cdots, k-1$, 使得关于任一 $i \leq k-1$, 或者

$$(u_{ki}, v_{ki}) = (u_k, v_k),$$

或者

$$|u_{ki}| + |v_{ki}| < |u_k| + |v_k|$$

令 $T_k = \{(u, v) | |u| + |v| \leq |u_k| + |v_k| \}$. 由 $|A_{k+1} \setminus T_k| = \infty$, 据事实(*),可取到 $(u'_{k+1}, v'_{k+1}) \in A_{k+1} \setminus T_k$, 使得

$$A_{k+1}\setminus (T_k\cup\{(u'_{k+1},v'_{k+1})\}) \neq A_i\setminus T_k, \quad i=1,2,\cdots,k.$$

如果关于 $i_0 \leq k$, $A_{k+1} \setminus T_k = A_{i_0} \setminus T_k$, 那么 $A_{k+1} \setminus T_k$ 中任何元 (u,v) 都是 $A_{k+1} \setminus (T_k \cup \{(u,v)\})$ 与 $A_{i_0} \setminus T_k$ 的示差元。关于使 $A_{k+1} \setminus T_k \neq A_{i_1} \setminus T_k$ 的 i_i , $i_i \leq k$, $i=1,2,\cdots,h$, 可取到 $(u_{k+1},i_i,v_{k+1},i_i)$ 作为 $A_{k+1} \setminus (T_k \cup \{(u'_{k+1},v'_{k+1})\})$ 与 $A_{i_1} \setminus T_k$ 的示差元, 使得 $(u_{k+1},i_i,v_{k+1},i_i) \neq (u'_{k+1},v'_{k+1})$. 据事实(*),可取到 $(u_{k+1},v_{k+1}) \in A_{k+1} \setminus T_k$,使得

 $|u_{k+1}| + |v_{k+1}| > \max\{\{|u_{k+1,i_t}| + |v_{k+1,i_t}| | t = 1, 2, \dots, h\} \cup \{|u'_{k+1}| + |v'_{k+1}|\}\},$ $A_{k+1} \setminus \{T_k \cup \{(u_{k+1}, v_{k+1})\}\} \neq A_i \setminus T_k, \quad i = 1, 2, \dots, k.$

易知, $(u_{k+1,i_t}, v_{k+1,i_t})$ 也是 $A_{k+1}\setminus (T_k\cup\{(u_{k+1},v_{k+1})\})$ 与 $A_{i_t}\setminus T_k$ 的示差元, $t=1,2,\cdots$, h. 而关于 $i\leq k$, $i\neq i_t$, $t=1,\cdots$, h, 令 $(u_{k+1,i_t},v_{k+1,i_t})=(u_{k+1,v_{k+1}})$,它为 $A_{k+1}\setminus (T_k\cup\{(u_{k+1},v_{k+1})\})$ 与 $A_i\setminus T_k$ 的唯一示差元.

于是,由归纳法得到 $\Sigma^* \times \Sigma^*$ 的无限子集

$$T = \{(u_i, v_i) | i = 1, 2, \cdots \}.$$

作Σ上语言

$$D_i = \{u_i x_i v_i | i = 1, 2, \cdots \},$$

由 A_i 的意义及 $(u_i, v_i) \in A_i$,显然 D_i 为 D 的子集。由 (u_i, v_i) 的取法,有 $|u_{i,i}| + |v_{i,i}| > |u_{i,i}| + |v_{i,i}|$, $i_2 > i_1$.

由≤的严格性,有

$$|x_{i_2}| \geqslant |x_{i_1}|, i_2 > i_1.$$

因此,

$$|u_{i_2}x_{i_2}v_{i_2}| > |u_{i_1}x_{i_1}v_{i_1}|, \quad i_2 > i_1.$$

从而, D_1 离散。 D_1 的稠密性由其构作立得。于是,据事实(i), D_1 为(离散)析取语言。

下证 $D \setminus D_1$ 的析取性. 关于任意 $x_i, x_j, 1 \le i < j, |x_i| = |x_j|, 由 <math>(u_{ii}, v_{ii})$ 为 $A_i \setminus (T_{i-1} \cup \{(u_i, v_i)\}) = A'_i$

与

$$A_i \backslash T_{i-1} = A'_i$$

的示差元,知 (u_{ii}, v_{ii}) 属于且仅属于 A'_i 与 A'_i 中的一个。

$$(a)$$
 当 $(u_{ii}, v_{ii}) \in A'_i$, $(u_{ii}, v_{ii}) \in A'_i$ 时,有

$$u_{ji}x_{j}v_{ji} \in D \setminus D_1^{(j-1)},$$

 $u_{ii}x_{i}v_{ji} \in D \setminus D_1^{(j-1)},$

其中

$$D_1^{(j-1)} = \{ w \in D_1 | |w| \leq |u_{j-1}x_{j-1}v_{j-1}| \},$$

从而有

$$u_{ii}x_{i}v_{ii}\in D\backslash D_{i}, \qquad (2)$$

$$u_{ii}x_iv_{ji} \in D\backslash D_1. \tag{3}$$

事实上,由 $D_1 \supseteq D_1^{(j-1)}$ 显然 (3) 式成立; (2) 式成立是因为, r < j 时, $|u_{ii}| + |v_{ii}| > |u_r| + |v_r|$, r > j 时, $|u_r| + |v_r| > |u_{ii}| + |v_{ii}|$, 因此, 在这些情形, 必有 $u_{ii}x_iv_{ii} \neq u_rx_rv_r$;

而 r = j 时,若 $u_{ii}x_iv_{ii} = u_ix_iv_i$,则有 $|u_{ii}| + |v_{ii}| = |u_i| + |v_i|$,但 $(u_{ii}, v_{ii}) \in A'_i$,这 与 $|u_i| + |v_i| > |u_{ii}| + |v_{ii}|$ 矛盾.

(b) 当 $(u_{ii}, v_{ii}) \bar{\epsilon} A'_{i}$, $(u_{ii}, v_{ii}) \epsilon A'_{i}$ 时,有

$$u_{ii}x_iv_{ii} \in D\backslash D_i,$$
 (2')

$$u_{ii}x_iv_{ii} \in D \backslash D_{1}. \tag{3'}$$

事实上, $(u_{ii}, v_{ii}) \in A_i$ 时,当然(2')式成立;而 $(u_{ii}, v_{ii}) \in A_i$ 时,由 $(u_{ii}, v_{li}) \in A_i'$,必有 $(u_{ii}, v_{ii}) \in (T_{i-1} \cup \{(u_i, v_i)\})$,但由 $(u_{ii}, v_{ii}) \in A_i'$,知 $(u_{ii}, v_{ii}) \in T_{i-1}$,因此, $(u_{ii}, v_{ii}) = (u_{ii}, v_{ii})$,从而 $u_{ii}x_iv_{ii} = u_{i}x_iv_i \in D_1$,即也有(2')式成立。要证(3')式成立,由 $(u_{ii}, v_{ii}) \in A_i'$,知 $u_{ii}x_iv_{ii} \in D$,只须再证得 $u_{ii}x_iv_{ii} \in D_1$ 好了。若 $u_{ii}x_iv_{ii} \in D_1$,则有 $u_{ii}x_iv_{ii} = u_{i}x_iv_{ii}$,同(2)式的讨论,必有 r = j,即 $u_{ii}x_iv_{ii} = u_{i}x_iv_{ii}$,但 $|x_i| = |x_i|$,因此有 $|u_{ii}| + |v_{ii}| = |u_{i}| + |v_{ii}|$,又由 (u_i, v_i) 的取法,必有 $(u_{ii}, v_{ii}) = (u_i, v_i)$,即 $u_{ii}x_iv_{ii} = u_{i}x_iv_{ii}$,从而 $x_i = x_i$,这与 $x_i \neq x_i$ 矛盾,于是 $u_{ii}x_iv_{ii} \in D_1$.

(2),(3)式和(2'),(3')式证明

$$x_i \not\equiv x_i \quad (P_{D/D1}),$$

由 i,j 的任意性,据引理 2 知, $P_{N\setminus D_i}$ 为恒等关系。故 $D\setminus D_i$ 为析取语言。

再考虑 $|\Sigma|=1$ 的情形。设 $\Sigma=\{a\}$ 。由D稠密,知D为无限语言,令 $D=\{a^{i_1},a^{i_2},\cdots\}$, $i_1< i_2<\cdots$ 。

作

$$P_k = \{a^{i_2k}, a^{i_2k+1}, \cdots, a^{i_2k+1} - 1\}, k = 0, 1, 2, \cdots, n\}$$

显然D为这些 P_k 的无交并。

$$\diamondsuit \quad D_1 = \bigcup_{l=0}^{\infty} P_{2l}, \quad \textcircled{I} D_2 = D \backslash D_1 = \bigcup_{l=0}^{\infty} P_{2l+1}.$$

下证 D_1 , D_2 析取.

关于任一自然数 m,存在自然数 t,使得 2' > m. 因为 $a^{i_2^{2t+1}-1}$, $a^{i_2^{2t+2}} \in D_1$,并且 D_1 中没有长度介于 $i_2^{2t+1}-1$ 与 i_2^{2t+2} 之间的字,又因为 $i_2^{2t+2}-i_2^{2t+1}-1 \ge 2^{2t+2}-2^{2t+1}+1=2^{2t+1}+1>2^t>m$,所以,据引理1,知 D_1 是析取的. 同样可证, D_2 析取。此时,显然, D_1 与 D_2 都是离散的。

参 考 文 献

- [1] Reis, C. M. and Shyr, H. J., Some Properties of Disjunctive Languages on a Free Monoid, Inform. Contr., 37 (1978), 334—344.
- [2] Shyr, H. J. Disjunctiv Languages on a Free Monoid, Inform. Contr., 34(1977), 123-129.
- [3] Shyr, H. J. and Thierrin, G. Disjunctive Languages and Codes, Fundamentals of Computation Theory, Proceedings of the 1977 Inter. ECT-Conference, Poznan, Poland, Lecture Notes in Computer Science N. 56, Springer-Verlag, 1977, 171—176.
- [4] Thierrin, G., Private Communication, 1983.
- [5] 许光午、郭聿琦、李廉、稠密语言关于析取语言的并分解(待发表)
- [6] Kunze, M., Shyr, H. J. and Thierrin, G., H-Bounded and Semi-discrete Languages, Inform. Contr., 51 (1981), 2: 174—187.
- [7] Eilenberg, S., Automata, Languages, and Machines, Academic Press, New York and London. 1974.