

新疆北部乡村道路实例分割图像数据集

希仁娜 1,2,3, 张太红 1,2,3*, 姚芷馨 1,2,3*

ISSN 2096-2223

文献 CSTR:

32001.14.11-6035.csd.2023.0180.zh

文献 DOI:

10.11922/11-6035.csd.2023.0180.zh 数据 DOI:

10.57760/sciencedb.13909

文献分类: 信息科学

收稿日期: 2023-12-04 开放同评: 2024-03-12 录用日期: 2024-09-06 出版日期: 2024-11-11

- 1. 新疆农业大学计算机与信息工程学院, 乌鲁木齐 830052
- 2. 智能农业教育部工程研究中心, 乌鲁木齐 830052
- 3. 新疆农业信息化工程技术研究中心, 乌鲁木齐 830052

摘要:基于深度学习的乡村道路自动识别可助力于智能农机技术的发展,通过对道路及周边物体的识别,农机可实现自动导航,从而缓解农村劳动力短缺问题。目前实现机动车无人驾驶主要是依靠城市道路尤其是结构化道路数据集的支持,而针对乡村道路尤其是非结构化道路的数据集尚未发表。本数据集聚焦新疆北部地区,涵盖不同时间、不同场景的1285张高清乡村道路图像。对图像预处理后,设定了40种类别,包含20种实例类别,利用CVAT标注工具进行了细致的像素级别人工标注,共标注了10062个实例对象,通过多重检查保证标注数据的可靠性、完整性和统一性。随后与主流的道路数据集在静态属性上进行了对比,选取3个经典的实例分割模型进行训练与验证,利用多个评估指标进行了评估。本数据集由乡村道路高清图像文件、与原图一一对应的掩膜二值图像(掩码MASK图)和MS COCO格式的标注文件构成,可为研究乡村道路实例分割和其他深度学习下的任务提供数据支持。

关键词: 乡村道路; 图像数据集; 深度学习; 实例分割

数据库(集)基本信息简介

数据库(集)名称	新疆北部乡村道路实例分割图像数据集		
数据通信作者	张太红(zth@xjau.edu.cn),姚芷馨(320192868@xjau.edu.cn)		
数据作者	希仁娜,张太红,姚芷馨		
数据时间范围	2021-2023 年		
地理区域	新疆昌吉回族自治州奇台县,呼图壁县;新疆石河子市142、143团		
数据量	11.45 GB		
数据格式	*.PNG		
数据服务系统网址	https://doi.org/10.57760/sciencedb.13909		
基金项目	科技创新 2030—"新一代人工智能"重大项目(2022ZD0115805);新		
本 並	疆维吾尔自治区重大科技专项(2022A02011)。		
	本数据集由乡村道路原图、用于实例分割任务的掩码图像,以及标注信		
	息3个文件夹构成,并将它们压缩为RAR格式文件以便于存储和传		
	输。(1) images.rar: 包含高清的新疆北部地区乡村道路图片,每张图		
数据库(集)组成	片均以 PNG 格式保存,总计 1285 张。(2)mask-images.rar:该压缩文		
	件包含了与原图一一对应的掩码图像文件,同样以 PNG 格式保存,总		
	计 1285 张。(3)annotations.rar:该文件包含了所有原图的 JSON 格式		
	标注文件,其中详细记录了图像中每个对象的位置信息。		

* 论文通信作者

张太红: zth@xjau.edu.cn

姚芷馨: 320192868@xjau.edu.cn

引言

智能农机是转变农业发展方式、提高农业综合生产能力的重要基础,是加快建设农业强国的重要支撑^[1]。智能农机装备在大田作物耕、种、管、收中的应用日益广泛。以新疆为例,截至 2019 年底,已有 3500 多台机车安装了北斗导航自动驾驶系统。目前,新疆安装自动驾驶系统的机车已突破 6000 台^[2]。随着深度学习技术的不断提高,无人驾驶技术不仅依赖卫星导航,还逐渐融合了视觉识别技术,使得农机能够自主识别道路及其周围的动态与静态障碍。确保在行进中精准避障,这是实现安全高效作业的核心前提。正确且即时地检测与分割障碍物,对于农机无人驾驶至关重要,它是达成自动化精准导航的基础,并构成了智能农机技术体系的关键要素。因此,高效避让机制不仅是农业机械自动化导航的基本要求,也是实现智能农机的基本条件之一。

实践反复验证,在基于深度学习的研究中,数据扮演着至关重要的角色,尽管模型架构与算法设计常占据研究焦点。实际上,数据已成为视觉任务成效的决定性力量。启动任何涉及图像识别或目标检测的 AI 项目时,首要步骤便是构建数据集,这是一切有效模型训练的基石。简而言之,数据集的优良直接关联到模型性能的优劣,卓越的数据集是提升模型训练效能与预测精度的首要因素。因此,高质量数据集的构建是进行深度学习研究的关键路径。

要实现高效的无人驾驶技术,离不开高质量的道路数据集。这些数据需具备清晰度高、标注精确及多样性特征,以全面支持车辆的自主导航与决策能力。目前常用于自动驾驶研究的数据集主要有 Cityscapes 数据集^[3]是一个大规模城市场景数据集; Mapillary Vistas 数据集^[4]是一个新建立的,大场景的街景数据集; BDD100K 数据集^[5]是具有地理、环境和天气的多样性的数据集,但还是针对结构化场景; AutoMine 数据集^[6]是首个专为矿山环境设计的自动驾驶数据集。然而,可供用于深度学习研究的、公开的乡村道路数据集相对缺乏,尤其是尚未见发表适用于中国乡村的非结构化和结构化相结合的乡村道路公开数据集,这在一定程度上制约着我国农业机械智能化发展的应用和研究。

本研究文利用高分辨率图像采集设备,在新疆建北部地区(新疆昌吉回族自治州奇台县,呼图壁县;新疆石河子市142团,143团)采集乡村道路图像,构建了用于乡村道路实例分割的数据集。本数据集聚焦新疆北部地区乡村道路建设特点,为构建乡村道路数据集提供坚实基础,以期推进农机无人驾驶技术的深入研究。

1 数据采集和处理方法

1.1 数据集构建技术路线

本数据集以新疆北部地区乡村道路为图像采集目标,包括图像采集与预处理、图像标注、交叉 验证以及掩码图像生成,旨在创建一个用于实例分割任务的高质量乡村道路数据集,促进该领域研 究的进展。数据集构建技术路线如图 1 所示。

1.2 数据采集

本研究旨在为农业生产基地智慧农机技术的发展奠定数据基础,因此数据采集地点聚焦于新疆 北部地区(新疆昌吉回族自治州奇台县,呼图壁县;新疆石河子市142团,143团)乡村、田间、

城乡道路。采集工作依据农机的主要作业时段与行驶路径,涵盖了柏油路、水泥路、砂石路、土路等多种路面类型,并选取了日间与黄昏这两个时间段进行拍摄。图像识别的目标类别主要有:车辆(农机、小汽车、卡车、三轮车、自行车等等)、行人、牲畜,以及树木、交通标志、路灯、栅栏、墙等静态设施。图像采集情况如图 2 所示。

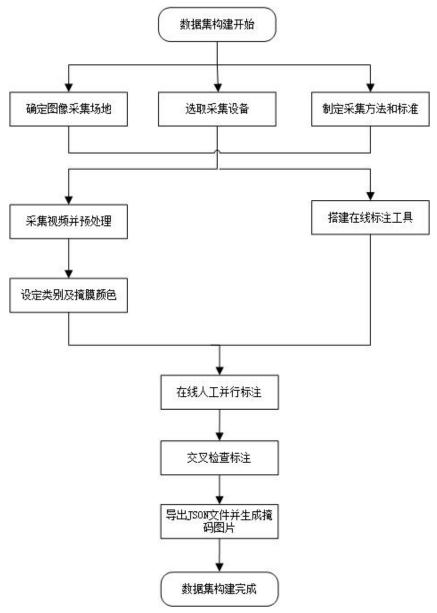


图 1 图像处理技术路线图

Figure 1 Technology roadmap of image processing

1.3 采集设备

本研究主要使用的数据采集设备为单目运动视频相机 GoPro HERO9,其像素为 3840×2160、帧速率为 30 帧/秒,该相机具有支持 5K 视频和 2000 万像素、超强防抖 3.0 视频稳定功能、摄像机内置地平线修正功能及超长续航时间等优点,保证可采集到连续清晰的图像。辅助采集设备为具有4K/30fps 高清摄像头的智能手机。

图 2 图像采集情况

Figure 2 Image acquisition

1.4 采集标准

本研究参考深度学习已公开的 Cityscapes^[3]、MS COCO^[7]等数据集,通过对这些数据集分析可知,理想训练结果的获取需拍摄不同光线和环境的图片,并尽可能保持各条件下图像数量的均衡。因此,制定了采集标准(图像尺寸、光照强度、环境多样性等),采集了不同天气及路面构造的乡村道路图像,并尽可能确保每个实例的数量大致相同且个体种类具有多样性,以此建立一个符合乡村道路特点,类别数量均衡的数据集。

本项目中将拍摄光线划分为日间和黄昏两类,其中日间又分为晴天、多云天、阴天、下雨天 4种情况。根据道路构造划分为柏油路、水泥路、砂石路、土路 4 种道路。此外还需注意拍摄路段实例种类和数量,所以尽可能选择道路环境较为复杂多样的路段进行拍摄。为取得更宽的道路景象,本研究将图像采集设备固定到汽车车内后视镜上,以 30 km/h 速度匀速驾驶汽车,共采集 6 小时时长视频,使用抽帧技术选取图像,经预处理之后对 1285 张图像进行纯人工标注,为基于深度学习的各类实验构建良好的数据集。

1.5 数据处理

1.5.1 数据预处理

图像预处理旨在优化图像数据,使之更适合深度学习下的各个任务,从而提升整个系统的性能

和效率。本研究对采集好的图片做了以下预处理。

(1) 图片筛选处理

对采集的图片进行人工筛选,剔除掉模糊、光线过暗的图片,并用 Python 代码将图片格式转 化为 PNG 格式的 RGB 三通道图片。

(2) 图片裁剪处理

利用 Python 中的 OpenCV 图片剪裁技术对图片进行裁剪,保证所有图片尺寸大小统一。

(3) 图片数量均衡处理

对所有图片再次筛选,确定实例类别和名称,同时尽可能使每种类别的图片数量均衡,并对所 有图片进行编号。

1.5.2 类别设定与数据标注

本研究通过对 Cityscapes^[3]、Mapillary Vistas^[4]、BDD100K^[5]等数据集的研究,同时根据图像中 包含的对象, 共分40种类别, 其中20种为实例类别。实例类别中英文名称如表1所示。

表 1 实例类别中英文名称对应表

Table 1 Table of Chinese-English names of instance objects

序号	实例对象英文名称	实例对象中文名称	
1	animal	动物	
2	barrier	路障	
3	person	人	
4	banner	广告牌	
5	CCTV camera	摄像头	
6	street light	路灯	
7	pole	杆子	
8	traffic frame	交通框架	
9	traffic light	交通灯	
10	traffic sign	交通标志	
11	trash can	垃圾桶	
12	car	小汽车	
13	bus	公交车	
14	motorcycle	摩托车	
15	truck	卡车	
16	rickshaw	人力车	
17	agricultural implements	农具	
18	agricultural machinery	农机	
19	tricycle	三轮车	
20	tower	塔	

数据标注是把需要计算机识别和分辨的对象事先打上标签,让计算机不断地识别这些图像特征, 最终实现计算机能够自主识别[8]。在标注过程中为更好地区别每个实例类别,就要设定不同颜色的 掩码。本数据集各实例类别掩码颜色如表 2 所示。

表 2 实例类别掩码颜色对应表

中文名称	代码颜色	中文名称	代码颜色	
动物	A52A2A	垃圾桶	8C8C14	
路障(路锥、路桩、石墩)	5A7896	小汽车	00008E	
人	DC143C	公交车	003C64	
横幅、广告牌	FFFF80	摩托车	0000E6	
摄像头	DE2828	卡车	000046	
街灯、路灯	D2AA64	人力车(自行车、手推车、架	0000C0	
但八、町八	D2AA04	子车)	00000	
杆子、柱子	999999	农具	780A0A	
交通框架	808080	农机	202020	
交通灯	FAAA1E	三轮车	770B20	
	DCDC00	塔	96785A	

在选择数据标注工具时,需要考虑标注对象(如图像、视频、文本等)、标注需求(如画框、描点、分类等)和不同的数据集格式^[9](比如 COCO、PASCAL VOC、JSON等)。为了快速高质量完成图像标注,本研究选择了开源的标注工具 CVAT,在本地服务器搭建了在线图像标注平台,该平台分为服务端和客户端。为方便数据管理,本研究在本地服务器利用 Django 框架搭建了服务端,客户端只需要通过 Google 浏览器访问服务器即可,而不需要安装其他标注工具。系统结构如图 3 所示。

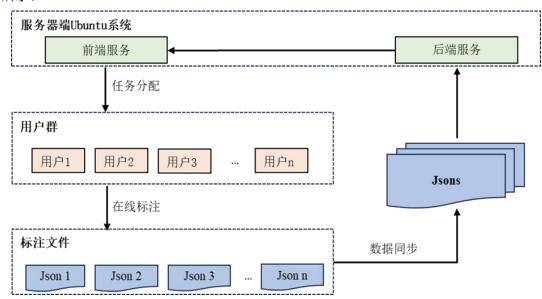


图 3 CVAT 系统结构图

Figure 3 Structure of CVAT system

机器学习中图像识别的训练是根据像素点进行的,因此图像标注的质量好坏取决于像素点的判定准确性^[10]。CVAT 提供了多种标注方式,其中多边形标注是指在静态图片中使用多边形框标注出

不规则的目标物体,相对于其他标注方式能够更精准地框定目标,同时对于不规则物体也更具针对 性。本研究为了获得更准确的对象位置信息,采用了多边形标注工具对全部图像进行细致的像素级 别并行标注,以提高标注效率,同时开展交叉检查保证标注质量,最终形成初始样本集。本数据集 图像人工标注示例如图 4 所示。

图 4 人工标注示例图

Figure 4 Sample of manual labeling

2 数据样本描述

2.1 实例类别数量

本数据集中分有 20 种实例类别,这 20 类如图 4 又可归纳为 animal(animal)、block(barrier、banner)、person(person)、objects(CCTV camera、street light、trash can、tower、pole)、traffic signaling device(traffic frame、traffic light、traffic sign)、vehicle(car、bus、motorcycle、truck、rickshaw、agricultural implements、agricultural machinery、tricycle)6 大类。对所有的实例对象进行了细致的无重复边界的标注,共标注了 10062 个实例对象。其中 objects 类别的数量最多,共 3973个,平均而言每张图片约 3 个;其次是 vehicle 类别,共 3126 个,平均每张图片约 2 个;最少的是 animal 类,共 256 个。各类别数量如图 5 所示。

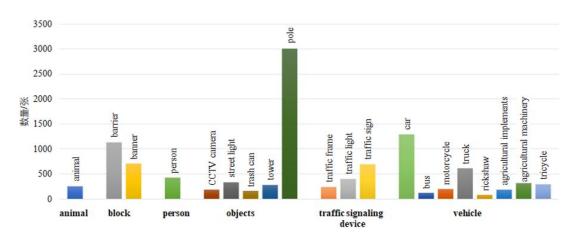


图 5 实例类别数量图

Figure 5 Number of instance categories

2.2 天气、道路构造和时间

本数据集图像采集分为天气、道路构造和时间。根据天气情况可分为晴天、多云、阴天、雨天 4种天气,其中以晴天为主。根据道路构造可分为柏油路、水泥路、砂石路、土路 4 种道路,柏油 路最多。根据时间可分为日间、黄昏 2 个时间段,其中日间最多。各种情况图像数量如图 6 所示。

2.3 数据存储方式

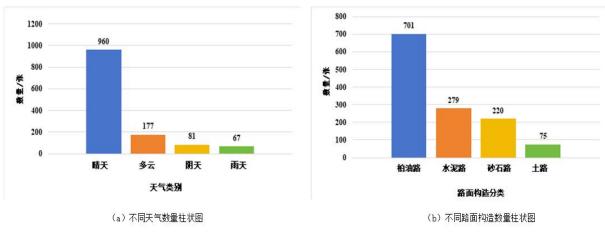

本数据集以"图像+数据标注文件"的形式组织存储,分别存储原始图像、用于实例分割任务 训练的掩模图像和所有对象的对应轮廓标注信息。数据集文件组织形式如表 3 所示。

表 3 数据集文件组织形式

Table 3 Dataset file organization

文件夹名称	文件内容	文件说明
images	PNG/*.png	原图像文件
mask-images	PNG/*.png	掩模图像文件
annotations	instances_default.json	图像标注文件

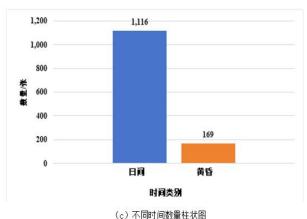


图 6 各情况图像数量图

Figure 6 Number of images across dimensions

2.3.1 JSON文件格式

在 JSON 文件中主要包括 4 个方面的信息: info、categories、images 和 annotations。其中,info 记录的是数据集的基本信息如制作年份、制作人、版本、描述等; categories 记录的是类别信息,主要是类别名称和类别编号; images 记录了数据集原图像的基本信息,编号、大小等; annotations则记录了标注信息,标注编号、标注对应的影像编号、类别编号,标注对象的轮廓点坐标等标注信息[11]。JSON 文件的组织形式如图 7 所示。

2.3.2 生成掩码图像

训练实例分割模型时通常需要对图像进行标注,并生成相应的掩码图(mask)。实例分割是一种像素级别的分割任务,它要求模型能够区分图像中的每一个物体实例,为每个实例生成一个独立的掩码。本研究采用 Python 程序通过 JSON 文件中每个实例的标注信息生成了与每张原图一一对应的掩码图,并将所有的掩码图保存到了 mask-images 文件夹中。生成的掩码图示例如图 8 所示。

3 数据质量控制和评估

3.1 数据集质量控制

本研究采用 OSCE (Objective Standard Cycle Evaluate) 方法构建数据集,具体步骤如下: 首先

明确目标并划定研究边界; 其次,确定标准并量化指标,同时制定相应的规范; 然后,进行循环迭代标注; 最后,进行评估。

为保证数据集质量,本数据集分图像采集预处理、人工标注和交互检查三个阶段进行,通过多重检查保证标注数据的可靠性、完整性和统一性。在图像的预处理阶段,人工剔除了失真、畸变、模糊等图像,以减少原始图像引入的噪声。在标注阶段采用 CVAT 具有的标注更为精准的多边形标注工具实现在线多人并行标注,保证标注工作的效率。为了确保最高质量水平,每张图片的标注和质量控制平均需要超过 1.5 小时。在最后的交叉检查阶段,检查标注结果并修正发现的问题,检查内容包括标注方式错误、标注轮廓不完整、类别标注遗漏以及类别标注错误等。

```
"info": {
                   # 数据集基本信息
    "contributor": "",
    "date_created": "",
    "description": "",
    "arl": "",
    "version": "",
    "year": ""
},
"categories": [
                   # 类别信息
    1
        "id": 1,
        "name": "animal",
                              # 类别名称
        "supercategory": ""
    },
 1.
 "images": [
                 # 教据集包含图片信息
    1
        "id": 1, # 图片编号
        "width": 3840,
                         # 图片宽度
        "height": 2160,
                         # 图片高度
        "file_name": "10.png", # 原文件名
        "license": 0,
        "flickr url": "",
        "coco url": "",
        "date captured": 0
    1.
   1.
    "annotations": [
                        # 标注信息
    1
        "id": 1,
                     # 标注编号
        "image_id": 1,
                         # 标注对应图片编号
                           # 标注对应类别编号
        "category_id": 1,
                             # 标注对象的轮廓坐标
        "segmentation": [
            I
                2815.9, 1545.2, 2822.02, 1543.17, 2831.82, 1543.17, 2835.44, 1549.36,
              1
        "area": 574857,
                           # 轮廓面积
                        # 标注对应目标框范围
        "bbox": [
            1795.43, 1518, 2044.57, 642
        1,
        },
      l,
     1
```

图 7 JSON 文件组织形式

Figure 7 JSON file organization

(a) 原图

(b) 掩码图

图 8 原图与掩码图对照示例图

Figure 8 Sample comparison of the original image and the mask image

3.2 数据集静态评估

本研究从以下方面将所构建的数据集与其他数据集进行了比较: (1)图片选取的时间维度, (2) 道路特征, (3) 标注类别, (4) 场景的复杂性, (5) 图片像素。比较情况如表 4 所示。本 数据集与其他数据集最大差别首先在于道路特征上,主要是没有严格车道和交通标志的砂石路、土 路,这是其他数据集中没有的。其次是场景复杂性,本数据集包括乡村生活区域人流较多、交通标 志较多的道路场景;农业生产区域各类农机、牲畜较多的道路场景;以及村镇之间人流、车辆、交 通标志稀少道路场景。最后图片像素上,本数据的像素是最高的。在时间维度上,本数据集覆盖了 农机工作的时间,在标注类别上本数据集也高于目前主流的道路街景数据集 Cityscapes。

表 4 数据集对比表

时间维度 道路特征 标注类别 数据集名称 场景复杂性 图片像素 白天 骨黄 规则 不规则 (实例/类别) $\sqrt{}$ $\sqrt{}$ 10/30 1024×2048 Cityscapes BDD100K $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ 10 1280×720 $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ 不统一 Mapillary Vistas 37/66 本数据集 20/40 3840×2160

Table 4 Comparison table of datasets

3.3 数据集动态评估

为了动态验证本数据集的性能,本研究选取了经典且主流的实例分割模型 Mask R-CNN、 SOLOv2 以及 YOLOv8n 进行了实验。本研究将数据集按 8: 2 比例分成了训练集和验证集,在训集 上进行训练,然后在验证集上进行测试。训练集包含 1028 个样本对,验证集包含 257 个样本对。

本研究主要采用针对实例分割模型的数据评价指标如: 平均交并比 (Mean Intersection over Union, mIoU) 、精确率(Precision)、召回率(Recall)、平均精度(Average Precision, AP)等 指标,共同构成了全面评价算法性能的框架,以确保其能够满足模型训练的需求并提供高质量的数 据支撑。训练结果分别如表 5、表 6 所示。

表 5 检测框与实例分割 mAP 指标表

Table 5 Table of detection box and instance segmentation mAP indexes

算法	mAP50 (B)	mAP50 (M)	mAP50-95 (B)	mAP50-95 (M)	说明
Mask R-CNN	54.92	54.92 49.26 38.79 28.60	40.26	B: 最佳检测框,	
Mask R-CNN			36.79	28.00	M: 多个检测对象
SOLOv2	78.56	71.53	60.08	43.59	IoU 阈值 0.5 时的平均精度
YOLOv8n	84.13	77.12	68.64	49.40	IoU 阈值 0.5 到 0.95 的平均精度

表 6 精度和召回率对比情况表

Table 6 Comparison table of precision and recall rate

算法	精度 (B)	精度(M)	召回率(B)	召回率(M)	说明
Mask R- CNN	69.15	65.04	49.81	44.89	B: 最佳检测框; M: 多个检测对象
SOLOv2	88.96	84.42	70.63	65.78	精度: 预测正确的正例的比例
YOLOv8n	92.86	87.76	77.81	71.61	召回率:预测正确的正例占所有正例的 比例

由实验结果可知,本数据集在模型上均能取得良好的任务性能。同时也从侧面表明了本数据集可以有效地作用于实例分割模型的训练。

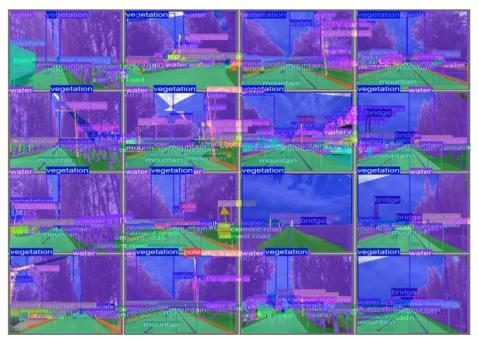


图 9 数据集验证效果图

Figure 9 Rendering for the dataset validation

3.4 应用实例验证

为更直观地看到效果^[12],使用训练精度最高的 YOLOv8n 实例分割模型进行推演,可视化效果如图 9 所示,可见场景中的实例能够较好地被分割和识别,产生误检和漏检的情况较少。这一结果显示,利用本数据集训练的实例分割模型较为有效地达到了本研究预期应用标准,有力证明了本数

据集对于促进智能农机技术研究与发展具有一定潜力,为该领域提供了坚实的数据基础与技术支持。

4 数据价值

本数据集是首个公开取材于新疆北部的高分辨率用于深度学习实例分割的乡村道路图像数据集,从一定程度上反映了该地区乡村道路建设规模和分布情况,可为新疆的农业机械智能化发展提供数据支撑。本数据集的组织和标注方式与常用实例分割数据集一致,可以很方便地服务于深度学习下不同任务模型的训练。

数据作者分工职责

希仁娜(1977—),女,新疆乌鲁木齐人,硕士,讲师,研究方向为人工智能及计算机视觉。主要承担工作:数据采集、人工标注、模型训练及论文撰写。

张太红(1965—),男,甘肃静宁人,博士,教授,研究方向为人工智能及计算机视觉。主要承担工作:总体方案设计、论文方向指导与质量把关。

姚芷馨(1997—),女,江苏常州人,在读博士研究生,研究方向为人工智能及计算机视觉。主要承担工作:数据采集、标注平台搭建、人工标注及模型训练指导。

参考文献

- [1] 赵春江,李瑾, 冯献,等. 关于我国智能农机装备发展的几点思考[J]. 农业经济问题, 2023, 44(10): 4–12. DOI: 10.13246/j.cnki.iae.2023.10.005. [ZHAO C J, LI J, FENG X, et al. Reflections on the development of intelligent agricultural machinery and equipment[J]. Issues in Agricultural Economy, 2023, 44(10): 4–12. DOI: 10.13246/j.cnki.iae.2023.10.005.]
- [2] 曹冰雪,李瑾, 冯献,等. 我国智慧农业的发展现状、路径与对策建议[J]. 农业现代化研究, 2021, 42(5): 785–794. DOI:10.13872/j.1000-0275.2021.0091. [CAO B X, LI J, FENG X, et al. Development status, path, and countermeasures of smart agriculture in China[J]. Research of Agricultural Modernization, 2021, 42(5): 785–794. DOI:10.13872/j.1000-0275.2021.0091.]
- [3] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016.
- [4] NEUHOLD G, OLLMANN T, BULÒ S R, et al. The mapillary vistas dataset for semantic understanding of street scenes[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017.
- [5] YU F, CHEN H F, WANG X, et al. BDD100K: a diverse driving dataset for heterogeneous multitask learning[EB/OL]. (2018–05–12) [2023–12–01]. http://arxiv.org/abs/1805.04687.
- [6] LI Y C, LI Z X, TENG S Y, et al. AutoMine: an unmanned mine dataset[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022.
- [7] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[M]. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2014: 740–755. DOI: 10.1007/978-

- 3-319-10602-1 48.
- [8] ALONSO O. Challenges with label quality for supervised learning[J]. Journal of Data and Information Quality, 2015, 6(1): 1–3. DOI: 10.1145/2724721.
- [9] ZHOU H Y, GAO B B, WU J X. Adaptive feeding: achieving fast and accurate detections by adaptively combining object detectors[C]. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017.
- [10] 蔡莉, 王淑婷, 刘俊晖, 等. 数据标注研究综述[J]. 软件学报, 2020, 31(2): 302–320. DOI: 10.13328/j.cnki.jos.005977. [CAI L, WANG S T, LIU J H, et al. Survey of data annotation[J]. Journal of Software, 2020, 31(2): 302–320. DOI: 10.13328/j.cnki.jos.005977.]
- [11] 方芳, 吴开顺, 郑道远, 等. 中国典型城市建筑物实例数据集[J/OL]. 中国科学数据. 2021, 6(1). (2021-03-19). DOI:10.11922/noda.2021.0013.zh.[FANG F, WU K S, ZHENG D Y, et al. A dataset of building instances of typical cities in China[J/OL]. China Science Data, 2021, 6(1). (2021-03-19). DOI:10.11922/noda.2021.0013.zh.]
- [12] 王丰仪, 饶元, 罗庆, 等. 毛桃多模态图像目标检测数据集[DS/OL]. Science Data Bank, 2022. (2022-07-19). DOI: 10.57760/sciencedb.j00001.00470. [WANG F, RAO Y, LUO Q, et al. A dataset of multi-modal peach images for object detection[DS/OL]. China Science Data, 2022. (2022-07-19). DOI: 10.57760/sciencedb.j00001.00470.]

论文引用格式

希仁娜, 张太红, 姚芷馨. 新疆北部乡村道路实例分割图像数据集[J/OL]. 中国科学数据, 2024, 9(3). (2024-11-11). DOI: 10.11922/11-6035.csd.2023.0180.zh.

数据引用格式

希仁娜, 张太红, 姚芷馨. 新疆北部乡村道路实例分割图像数据集[DS/OL]. V1. Science Data Bank, 2023. (2023-12-05). DOI:10.57760/sciencedb.13909.

An dataset of rural roadway images of instance segmentation in Northern Xinjiang

XI Renna^{1,2,3}, ZHANG Taihong^{1,2,3*}, YAO Zhixin^{1,2,3*}

- 1. Xinjiang Agricultural University, Urumqi 830052, P.R. China
- 2. Ministry of Education Engineering Research Center for Intelligent Agriculture , Urumqi 830052, P.R. China
- 3. Xinjiang Agricultural Informatization Engineering and Technology Research Center, Urumqi 830052, P.R. China
- * Email: zth@xjau.edu.cn (ZHANG Taihong); 320192868@xjau.edu.cn (YAO Zhixin)

Abstract: The automated identification of rural roadways based on deep learning methodologies

contributes to the advancement of sophisticated agricultural machinery technologies. By discerning road networks and surrounding topographical features, agricultural equipment can seamlessly navigate rural landscapes, effectively mitigating the challenges posed by labor scarcity in these regions. This dataset, centered around Northern Xinjiang, encompasses 1,285 high-resolution images capturing various temporal and contextual dimensions of rural thoroughfares. Following meticulous image preprocessing, a taxonomy of 40 distinct categories, including 20 specific instance classifications, was established. Using the CVAT annotation tool, we meticulously performed pixel-level manual annotations, yielding a comprehensive dataset of 10,062 annotated instances. Rigorous quality assurance measures implemented to ensure the accuracy, completeness, and consistency of the annotated data. Subsequently, comparative analyses against prevailing road datasets were conducted, alongside training and validation using three seminal instance segmentation models, complemented by a battery of evaluative metrics. Featuring high-definition rural roadway images, corresponding binary mask images, and annotation files adhering to the MS COCO format, this dataset serves as a cornerstone for advancing research endeavors in rural road instance segmentation and related deep learning undertakings.

Keywords: rural road; image dataset; deep learning; instance segmentation

Dataset Profile

Title	A dataset of rural roadway images of instance segmentation in Northern Xinjiang		
Data corresponding authors	ZHANG Taihong (zth@xjau.edu.cn); YAO Zhixin (320192868@xjau.edu.cn)		
Data authors	XI Renna, ZHANG Taihong, YAO Zhixin		
Time range	2021 - 2023		
	Qitai County and Hutubi County of Changji Hui Autonomous Prefecture, as well as the		
Geographical scope	farms of Corps 142 and Corps 143 in Shihezi City, Xinjiang		
Data volume	11.45 GB		
Data format	*.PNG		
Data service system	https://doi.org/10.57760/sciencedb.13909		
C 66 1	National Key R&D Program of China (2022ZD0115805); Provincial Key S&T Program of		
Sources of funding	Xinjiang (2022A02011).		
	This dataset consists of three folders: the original image of the country road folder, the mask		
	image folder for the instance segmentation task, and the annotated information folder. The		
	folders are compressed into RAR format files for easy storage and transmission. Here are		
	the details of the three RAR files: (1) images.rar, containing high-definition images of rural		
Dataset composition	roads in Northern Xinjiang, saved in PNG format, totaling 1,285 entries, (2) mask-		
	images.rar, containing the mask image files corresponding to the original image, also saved		
	in PNG format, with a total of 1,285 entries, and (3) annotations.rar, containing a JSON		
	format annotation file of all the original images, recording the location information of each		
	object in the image in detail.		