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Abstract 

Event argument extraction for communication faults involves automatically identifying key 

elements of fault events from a large number of communication fault documents. This process is 

crucial for network operation, maintenance, and intelligent fault diagnosis. To tackle the challenges 

of event co-occurrence and recognizing domain-specific terms in communication fault event 

argument extraction, this paper proposes an event-focused and terminology-enhanced method. First, 

a large language model (LLM) is fine-tuned to extract specific event and domain-specific 

terminology information. Next, an Event Boundary-aware Encoding Module is designed; by 

embedding the extracted event information into a prompt template and using non-autoregressive 

encoding, the module helps the model focus on specific event content and improves its ability to 

distinguish event boundaries. Finally, to better recognize domain-specific terms, a Domain-specific 

Term Recognition Module facilitates hierarchical semantic interaction between the terms extracted 

by the LLM and the text, enhancing the model's understanding of these terms. Experiments 

conducted on the Huawei communication fault dataset and a telecommunication fault dataset show 

that the proposed method achieves significant improvements over other event argument extraction 

techniques. 
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     1. Introduction 

With the rapid development of information technology, the scale of communication networks has 

grown significantly, leading to a corresponding rise in the frequency and impact of faults. Timely and 

accurate detection and management of fault events are essential for maintaining the stable operation of 

communication networks. However, when dealing with large volumes of textual data, such as network 

logs and alarm reports, traditional manual fault analysis methods become inefficient and cannot meet the 

demands of modern communication systems. Event Extraction (EE), an important area of research in 

Natural Language Processing (NLP), focuses on identifying and extracting events and their related 

participants from text [1], offering new possibilities for automated communication fault analysis. The 

Event Extraction (EE) task mainly involves two sub-tasks: Event Detection (ED) and Event Argument 

Extraction (EAE) [2]. ED aims to locate trigger words within a sentence and classify their corresponding 

event types. EAE, meanwhile, concentrates on finding the positions of arguments in the sentence and 

classifying their roles. Figure 1 shows an example sentence with one trigger word and three arguments. 

The ED task is to identify the trigger word "is adjusted" and categorize it as the "Machine Adjustment" 

event type. The task of EAE is to identify the spans of arguments in a sentence and classify them into 

specific argument roles, such as "FinalState" and "Object". 

HC Middle School's east side green space HLF1HZ base 

station's all cells' inter-frequency handover strategy

FinalState

Machine Adjustment

is adjusted A2+A4 to A2+A3

InitialStateObject

from

HC中学东侧绿地HLF1HZ基站所有小区异频切换策略 被调整

调整机器类
 

Figure 1. Example of event extraction for the sentence: HC Middle School’s east side green space HLF1HZ base 

station’s all cells’ inter-frequency handover strategy is adjusted from A2+A4 to A2+A3. 

In recent years, research on EAE has made significant progress, mainly due to advances in deep 

learning. However, most of these studies tend to ignore the issue of event co-occurrence, where multiple 

events appear within the text. This oversight often results in models having a weaker ability to identify 

event boundaries. At the same time, regarding the challenge of accurately recognizing domain-specific 

terminology in the communication field, existing methods generally lack focused processing strategies. 

As a result, argument content related to these domain-specific terms is often hard to identify accurately, 

which negatively impacts the performance of Event Argument Extraction.  

To address these limitations, this paper proposes an EFTE (Event Boundary-aware Encoding and 

Semantically-enhanced Domain-specific Term Recognition) model, a novel method capable of enhancing 

inter-event boundary perception in multi-event contexts while simultaneously improving the recognition 

accuracy of terminological arguments. The contributions of this paper are summarized as follows: 

(1) To address the issue of event co-occurrence, EFTE differs from current methods that extract all 

events in the text at once. Instead, it concentrates on extracting arguments for only one event type 

at a time. Afterwards, it improves its understanding of event boundaries during extraction by 

designing an Event Boundary-aware Encoding Module and a Term Recognition Module. 

(2) We designed an Event Boundary-aware Encoding Module. By directing the model's attention to 

specific events within the text during the encoding phase, this module enhances its ability to 

discriminate between event boundaries, thereby addressing the issue of event co-occurrence. 

(3) We propose a Semantically-enhanced Domain-specific Term Recognition Module. This module 

enhances its recognition of domain-specific terms by interactively fusing the terms extracted by 

an LLM at multiple levels. 
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 2.  Related Work 

Since Liu et al. [3] formally introduced prompt learning to the broader research community, EAE methods 

based on prompt templates emerged. Owing to their superior performance and generalization capabilities, these 

methods have become one of the mainstream techniques in this field [4][5]. According to the different ways 

arguments are extracted, current prompt-template-based EAE methods are primarily categorized into prompt-

learning-based classification methods and prompt-learning-based generative methods. Within prompt-learning-

based classification, researchers have pursued optimizations across multiple dimensions. For instance, in terms 

of template design and interaction, Ma et al. [6] captured interactions between argument roles via multi-role 

prompts and employed joint optimization for global assignment. Meanwhile, Xue et al. [8] explored automatic 

template generation to alleviate the burden of manual construction. As for model efficiency, Huang et al. [7] 

boosted inference speed by optimizing the pre-trained model's hierarchical structure. To compensate for the 

limitations of the aforementioned methods in semantic understanding, Yang et al. [9] integrated entity type 

information of argument roles into templates. By employing deep encoding, they deepened the model's 

understanding of argument role semantics, thereby improving the model's ultimate performance. These works 

have significantly advanced the development of classification-based EAE methods, boosting their performance 

in various scenarios. Concurrently, generative methods have also made progress on specific challenges, such as 

achieving cross-sentence extraction [10], cross-lingual transfer [11], and performance improvements in low-

resource settings [12]. 

Although the methods above excel in template design, semantic understanding, and scenario-specific 

adaptation, they typically lack a specialized mechanism for handling event co-occurrence. The common practice 

is implicitly linking an event to its trigger word for localization [13], an approach that introduces considerable 

uncertainty and struggles to define event boundaries precisely. Recognizing this limitation, subsequent research 

has focused on leveraging inter-event correlations to delineate these boundaries better. For instance, Hu et al. 

[14] and Liu et al. [15] utilized structure-aware attention mechanisms to connect multiple events, enhancing the 

model's ability to discern semantic scopes. To this end, Peng et al. [15] also proposed a prefix module that 

integrates features from co-occurring events into a pre-trained model's attention calculations to process inter-

event relationships better. By focusing on these relationships, such methods have progressed in addressing the 

challenges of event co-occurrence. 

However, in communication fault data, different events often show relative independence, their 

relationships are relatively simple, and there is a high use of domain-specific terminology, which causes 

semantic ambiguity in the text, as shown in Figure 2. Two events may share the same trigger word but lack 

complex relationships between them, and their arguments may not overlap. As a result, accurately 

distinguishing such events using only trigger words or relationships becomes difficult. At the same time, 

current methods often lack specialized strategies and solutions for processing data with domain-specific 

terminology, limiting the effectiveness of event extraction in the communication domain. Therefore, better 

handling of domain-specific terminology and improving the model's ability to identify event boundaries 

remain key challenges for event extraction tasks in the communication domain. 

In recent years, with the rapid development of artificial intelligence technology, LLM have increasingly 

become a key focus of research and application [16]. Due to their powerful computational abilities and 

training on large datasets, LLM have made significant progress across various tasks [17][18], opening new 

opportunities to solve challenges in EAE within the communication domain. In this paper, we propose an 

event boundary-aware event argument extraction method by integrating LLM, which significantly 

enhances the model's ability to perceive event boundaries and recognize domain-specific terms. 

The decline in ERAB establishment success is more pronounced during RRC decline

Trigger: decline(下降)

(Event Type,Indicator Deterioration)
Results Trigger: decline(下降)

(Event Type,Indicator Deterioration)

(word: ERAB establishment success，role: Index)
ERAB建立成功率

在RRC下降时ERAB建立成功率下降更为明显

(word: RRC，role: Owner)

 
Figure 2. The process of extracting event arguments from a text that contains multiple events. In this example, the two 

events have the same event type and trigger word. Relying only on trigger words and event types, traditional argument 
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extraction methods find it difficult to identify the boundaries of each event. 

3. Method  

The EFTE method includes a Large Language Model Fine-tuning Module, an Event Boundary-aware 

Encoding Module, a Semantically-enhanced Domain-specific Term Recognition Module, and an 

Attention-Guided Argument Extraction Module. The model architecture is shown in Figure 3. Each 

module will be explained in detail in the following subsections. 

RRU工作制式设置不当导致小区CPRI压缩为增强压缩时小区建立失败
Improperly setting the RRU operating mode caused the cell to fail to establish when its CPRI compression 

was switched to enhanced compression

            

Context
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Figure 3. The architecture of EFTE. The model is shown processing a target event (highlighted in blue) to extract its 

corresponding arguments. 

3.1  Large Language Model Fine-tuning Module 

Applying an LLM pre-trained on general corpora directly to specific domains often produces 

unsatisfactory results [19]. Fine-tuning can improve the LLM's adaptability to particular domains and 

enhance task performance. For the fine-tuning process, the Low-Rank Adaptation (LoRA) [20] method is 

used to adjust the LLM. Regarding the prompting strategy, the Chain-of-Thought (CoT) [21] approach is 

adopted, allowing the LLM to extract events and their corresponding domain-specific terminology 

simultaneously. The Qwen2.5-instruct-14B [22] model was chosen as the LLM.  

The fine-tuning tasks are primarily divided into event span extraction and domain-specific terminology 

extraction. To fine-tune for these tasks, we need to annotate training data for both parts. For the annotation 

of the event span extraction task, we identify event boundaries by finding the highest and lowest indices 

of all argument spans within each event. The text within these boundaries is then used as labels for the 

event span extraction task. For the annotation of the domain-specific terminology extraction task, we 

conducted statistical analysis and summarization of the argument content and role types in the dataset. 

Ultimately, different argument roles from the original dataset were categorized into three major types of 

domain-specific terms. These categories become the labels for the domain-specific terminology extraction 

task. As shown in Figure 4, "Owner", "Subject", etc., represent the original argument roles in the dataset, 

while "Fault Name", "Fault Status", etc., are the grouped domain-specific terminology types. Because the 

label annotation for both tasks builds upon existing annotations in the original dataset, we were able to 

streamline the annotation process without requiring extensive, separate consistency checks to ensure 

quality. 
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Owner Subject

Object Source

Data

Setting

Reference

Network

State

InitialState

FinalState Index

Fault Name Fault Status
Fault Indicator 

Rate

 
Figure 4. The proposed labeling scheme for fine-tuning Large Language Models on the domain-specific term extraction 

task. To support the fine-tuning process, the original argument roles are recategorized into three distinct classes. 

After preparing the training labels needed for the fine-tuning tasks, a prompt template based on the 

CoT method is designed to fine-tune the LLM. This prompt template, as shown in Figure 5, can extract 

event spans while also identifying the domain-specific terminology within them. The prompt template 

performs event span extraction by combining the event type and trigger word. After successfully extracting 

the event span linked to the trigger word, it further adds prompt statements to continue extracting domain-

specific terminology from the event span. 

You are an expert in the field of event extraction. Below are some examples of event extraction. You need to follow the 

process outlined to extract events from the given text.

First, you need to determine if one or more events exist in the text (e.g., "Unreasonable configuration of 3G-side 

reselection threshold leads to an increase in L2U coverage redirection"). Then, for the event types and trigger word pairs 

I provide, such as: [Event Type:Configuration-related Fault-Trigger Word:configuration, Event Type:Software/

Hardware Anomaly-Trigger Word:redirection], you are to extract the corresponding events.

For example, based on the text above and the two provided pairs, two events can be obtained: [{'Event 

Content':'Unreasonable configuration of 3G-side reselection threshold','Event Type':'Configuration-related 

Fault'},{'Event Content':'increase in L2U coverage redirection','Event Type':'Software/Hardware Anomaly'}] (Note: The 

extracted event must be a continuous span of text from the original passage and cannot be arbitrarily generated.)

Next, you also need to extract the fault entities from the extracted event texts. There are three types of fault entities: 

Fault Name, Fault Status, and Fault Index Rate. For instance, the fault entities that can be extracted from the two events 

above are: [[{'word':'3G-side reselection threshold','type':'Fault Name'},{'word':'unreasonable','type':'Fault 

Status'}],[{'Fault Name':'L2U coverage','Fault Status':'increase'}]]

Based on the event extraction examples above, extract the events from the following text: "Pushing a low-version 

license item directly to a high-version one caused the license application to fail." The event type and trigger word pairs 

involved in the text are: [Event Type:Software/Hardware Anomaly-Trigger Word:application, Event Type:Machine 

Adjustment-Trigger Word:pushing]

 
Figure 5. The prompt template is created for fine-tuning large language models on a two-step extraction task. This 

template uses a CoT approach, guiding the model first to identify event spans and then to extract the related domain-

specific terms. 

3.2  Event Boundary-aware Encoding Module 

In contrast to approaches that tackle event co-occurrence through inter-event correlations, the Event 

Boundary-aware Encoding module fuses non-autoregressive encoding with event embeddings. This fusion 

preserves the integrity and independence of each event, leading to a strengthened perception of their 

boundaries. Specifically, this method first embeds event information generated by a fine-tuned LLM into 

a prompt template, which is then processed by a non-autoregressive encoder. During the encoding stage, 

the model uses the "<s>" marker and a self-attention mechanism to accurately locate the target event for 

the argument being extracted. Afterward, in the cross-attention calculation during the decoding stage, the 

model employs the "<s>" token as a central anchor. This anchor dynamically guides the attention of 

features toward the indicated target event, such as the attention of argument roles like 'Owner' (as shown 

in Figure 3) being focused on the "<s> Improperly setting the … mode <s>" event. This design ultimately 

achieves efficient aggregation of specific event-related information, thereby significantly enhancing the 

model's understanding of event boundaries. 

When constructing the prompt template focused on a specific event, first, the event span generated by 

the LLM is precisely located within the text and explicitly marked with a specific tag "<s>" (the annotation 

effect is illustrated in the "LLM-guided Event Focusing Prompt Template Module" section of Figure 3). 

Building on this, and drawing inspiration from the method of Yang et al. [9], who embedded argument 

entity types into prompt templates, corresponding prompt templates were designed for the seven major 

categories of fault events in the dataset (as shown in Table 1), with domain-specific terminology types 
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embedded within them. Finally, the event text (with explicit event span annotation) is concatenated with 

the prompt template text of the respective event type to create the final prompt template content for input 

to the encoder. The prompt template is formulated as follows: 
[< 𝑠 > 𝐸1 < 𝑠 > 𝐸2, … 𝑃; 𝐽; 𝑊]                               (1) 

Here, 𝐸𝑖 represents the i-th event span contained in the text, 𝑃  denotes the remaining string 

information from the source text, 𝐽 is the event type prompt prefix constructed for different training 

samples, which is primarily composed of the event type and trigger word corresponding to the given data. 

𝑊 is the template for the specific event type detailed in Table 1. 

Table 1. Event Category Template Table 

Event Category Template 

Indicator Deterioration Owner (Fault Name) has an Index (Fault Indicator Rate) that produces a 

State (Fault Status). 

Software/Hardware 

Anomaly 

Subject (Fault Name) or Owner (Fault Name) causes State (Fault Status) 

on Object (Fault Name). 

Data Collection Source (Fault Name) collects Data (Fault Name). 

Verification Owner (Fault Name) checks Object (Fault Name). 

Configuration Fault Setting (Fault Name) or Owner (Fault Name) configuration is incorrect, reference 

object is Reference (Fault Name). 

Machine Adjustment Network (Fault Name) adjusts the machine Object (Fault Name) state 

from InitialState (Fault Status) to FinalState (Fault Status). 

Machine Operation Owner (Fault Name) operates on Object (Fault Name). 

Since domain-specific terminology in communication datasets often appears in English, this paper 

chooses the multilingual version of the T5 model (Multilingual T5, MT5) [23] as the encoder, allowing it 

to understand the semantics of both English and Chinese words fully. EFTE improves the interaction 

between event text and the template by non-autoregressively encoding the constructed prompt template 

text with MT5, as shown below: 

[𝐶, 𝑇] = 𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒𝑀𝑇5𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑋) , 𝐶 ∈ 𝑅𝑁×𝑑𝑡 , 𝑇 ∈ 𝑅𝑀×𝑑𝑡                (2)       

This describes a composite encoding architecture. Let 𝑋 be the input that is simultaneously fed into 

the MT5 encoder and a non-autoregressive decoder, ultimately yielding the encoded textual features 𝐶 

and 𝑇. Here, 𝐶 represents the encoded features of the original text, and 𝑇 represents the encoded features 

of the prompt template. 𝑁 and 𝑀 are the lengths of the original text and the prompt template, respectively, 

and 𝑑𝑡 is the encoding dimension of the vectors.  

3.3  Semantically-enhanced Domain-specific Term Recognition Module 

Addressing the prevalence of domain-specific terminology in communication fault datasets, EFTE 

incorporates an LLM to design a semantically-enhanced domain-specific terminology module. The 

prediction of terminology is essentially a sequence labeling task. Yang et al. [9], in their effort to achieve 

a deeper understanding of argument semantics, integrated the entity types of arguments into the EAE 

process. Drawing inspiration from this approach, an embedding matrix for domain-specific terminology 

types is constructed based on the event types found in communication domain data, as shown below: 

𝐵 = 𝐵𝐼𝑂𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝐿 ∙ 3, 𝑑𝑡), 𝐵 ∈ 𝑅(𝐿×3)×𝑑𝑡                       (3) 

Here, 𝐿 represents the number of event types in the dataset, and 3 signifies the token taggin

g types, which can be B (Beginning), I (Inside), or O (Outside) tags. 

After creating the BIO embedding layer, the embedding matrix 𝐵 and the textual features 𝐶 and 𝑇 

(obtained from the encoder, as previously described) are interactively fused using a multi-head attention 

mechanism. This process aligns the terminology tagging features in the embedding matrix 𝐵 with the 

terminology-related features in 𝐶 and 𝑇. The calculation is performed as follows: 
  𝑄 = [𝐶, 𝑇]𝑊𝑞 ,  𝑊𝑞 ∈ 𝑅𝑑𝑡×𝑑𝑡                               (4) 

𝐾 = 𝐵′𝑊𝑘 , 𝑊𝑘 ∈ 𝑅𝑑𝑡×𝑑𝑡                                (5) 

𝑉 = 𝐵′𝑊𝑣,  𝑊𝑣 ∈ 𝑅𝑑𝑡×𝑑𝑡                                (6) 



 

 

Argument Extraction from Communication Failures via Event Focusing and Terminology 

Enhancement with a Hybrid Large Language Model Framework 

Data Intelligence 7 

𝑂1 = 𝐶𝑀𝐴(𝑄, 𝐾, 𝑉), 𝑂1 ∈ 𝑅𝑁×𝑑𝑡                             (7) 

Here, 𝐵′ is the feature vector derived from 𝐵 after reshaping or expanding its dimensions to match 

the batch size of other features, preparing it for subsequent fusion. 𝑊𝑞 , 𝑊𝑘 , and 𝑊𝑣  are linear 

transformation weight matrices, and the function H represents a multi-head cross-attention network layer. 

After the first layer of the attention mechanism, the BIO embedding layer has achieved an initial 

perception and alignment of terminology within the 𝐶 (original text features) and 𝑇 (template features) 

vectors. To further enhance the perception of domain-specific terminology, a dual-layer attention fusion 

mechanism is designed. The second layer of the attention mechanism strengthens the semantic 

representation of domain-specific terminology in the fused feature vectors by incorporating the domain-

specific terminology generated by the LLM, as shown below: 
𝑄 = [𝐶, 𝑇]𝑊𝑞 ,  𝑊𝑞 ∈ 𝑅𝑑𝑡×𝑑𝑡                                  (8) 

𝐾 = 𝑍𝑊𝑘 ,  𝑊𝑘 ∈ 𝑅𝑑𝑡×𝑑𝑡                                    (9) 

𝑉 = 𝑍𝑊𝑣 ,  𝑊𝑣 ∈ 𝑅𝑑𝑡×𝑑𝑡                                    (10) 

𝑂2 = 𝐶𝑀𝐴(𝑄, 𝐾, 𝑉),  𝑂2 ∈ 𝑅𝑁×𝑑𝑡                               (11) 

Here, 𝑍  represents the domain-specific terminology generated by the LLM, after its features have 

undergone shape expansion. Finally, the features resulting from the dual-layer attention mechanism fusion 

are concatenated with 𝐶 (original text features) and 𝑇 (template features) to obtain the final semantic 

vector used for domain-specific terminology prediction, as shown in the following equation:  
𝑂 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑂1, 𝑂2, 𝑂2 ∙ [𝐶, 𝑇], 𝑂1 ∙ [𝐶, 𝑇]), 𝑂 ∈ 𝑅𝑁×5×𝑑𝑡                  (12) 

                         𝑂 = 𝐿𝑖𝑛𝑒𝑎𝑟_𝑜𝑛𝑒(𝑂), 𝑂 ∈ 𝑅𝑁×𝑑𝑡                               (13) 

                    𝑂 = 𝐿𝑖𝑛𝑒𝑎𝑟_𝑠𝑒𝑐𝑜𝑛𝑑(𝑂), 𝑂 ∈ 𝑅𝑁×3×𝐿                             (14) 

Finally, Conditional Random Fields (CRF) [24] are used for sequence labeling, and the log-likelihood 

function is taken as the loss function for the technical term prediction module. The loss is denoted 

as  𝐿𝑜𝑠𝑠𝑛𝑒𝑟. 

3.4  Attention-Guided Argument Extraction Module 

For the argument extraction module, we propose an attention-focused argument extraction scheme. 

By deeply coupling the argument extraction module with the Event Boundary-aware Encoding Module, 

we ensure that the semantic information of argument roles is concentrated on the specific target event 

during the encoding stage, thereby achieving focused attention throughout the argument extraction process. 

As shown in Figure 3, when extracting arguments for the event "Improperly setting the RRU operating 

mode caused the cell to fail to establish when its CPRI compression was switched to enhanced 

compression", the argument roles (e.g., Owner, Setting) focus their attention on "Improperly setting the 

RRU operating mode" during the encoding stage. Furthermore, to further enhance the accuracy of 

argument selection, we draw inspiration from the work of Yang et al. [9]. They significantly optimized 

decoding results by making joint decisions from a dual perspective of "argument role" and "entity type". 

Inspired by this approach, we also incorporate a dual-view optimization mechanism, leveraging domain 

knowledge (specifically, specialized terminology) to aid the decision-making process and achieve more 

precise decoding results. The overall algorithm is shown in Algorithm 1. 

The encoded event type template feature vector 𝑇 contains all the argument roles for a specific event 

type, as detailed in Table 1. The features corresponding to different roles within 𝑇 are extracted, and span 

selectors, 𝑆𝑟𝑜𝑙𝑒𝑖 and 𝐸𝑟𝑜𝑙𝑒𝑖, are constructed for each role to identify the start and end positions of that 

argument role in the text, as shown below: 
𝑆𝑟𝑜𝑙𝑒𝑖 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑇(𝑟𝑜𝑙𝑒𝑖) ∗ 𝑊𝑠𝑡𝑎𝑟𝑡,  𝑊𝑠𝑡𝑎𝑟𝑡 ∈ 𝑅1×𝑑𝑡                 (15) 

𝐸𝑟𝑜𝑙𝑒𝑖 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑇(𝑟𝑜𝑙𝑒𝑖) ∗ 𝑊𝑒𝑛𝑑 ,  𝑊𝑒𝑛𝑑 ∈ 𝑅1×𝑑𝑡                      (16) 

Here, 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑇(𝑟𝑜𝑙𝑒𝑖)  represents the encoded feature corresponding to the i-th argument 

role in 𝑇. 𝑊𝑠𝑡𝑎𝑟𝑡 and 𝑊𝑒𝑛𝑑 are learnable weight matrices shared across all argument roles. ∗ represents 

element-wise multiplication. 

The encoded features 𝐶 of the event text to be extracted and the final features 𝑂 from the domain-

specific terminology prediction module undergo a linear dimensionality transformation to obtain the final 

hidden features 𝐹, as shown in Equations (17-18): 

𝐹 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑂, 𝐶), 𝐹 ∈ 𝑅𝑁×(𝑑𝑡×𝑑𝑡)                           (17) 
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                        𝐹 = 𝐹𝑊𝑓 ,  𝑊𝑓 ∈ 𝑅(𝑑𝑡+𝑑𝑡)×𝑑𝑡                              (18) 

Based on the aforementioned features, the probability distributions for the start and end positions of 

each argument role are calculated, as shown below: 
 𝑆𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑆𝑟𝑜𝑙𝑒𝑖 ∙ 𝐹)                            (19) 

                  𝐸𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐸𝑟𝑜𝑙𝑒𝑖 ∙ 𝐹)                            (20) 

After obtaining the probability distributions for different argument roles, to facilitate joint dec

ision-making for argument selection using the dual-perspective semantic understanding mechanism

 (considering both argument roles and domain-specific terminology), it is first necessary to acqui

re the probability distributions for the start (𝑆𝐿𝑜𝑔𝑖𝑡𝑡𝑒𝑟𝑚𝑖) and end (𝐸𝐿𝑜𝑔𝑖𝑡𝑡𝑒𝑟𝑚𝑖) positions of the d

omain-specific terminology. Analogous to the method for obtaining argument role probability dist

ributions, these probability distributions for domain-specific terminology are then multiplied by th

e argument role probability distributions. This product serves as the final probability distribution 

for EAE, as shown below: 
 𝐹𝑆𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖 = 𝑆𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖 ∙ 𝑆𝐿𝑜𝑔𝑖𝑡𝑡𝑒𝑟𝑚𝑖                        (21) 

𝐹𝐸𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖 = 𝐸𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖 ∙ 𝐸𝐿𝑜𝑔𝑖𝑡𝑡𝑒𝑟𝑚𝑖                        (22) 

The final loss for EAE is calculated using the cross-entropy loss function between the predicted 

probability distributions 𝐹𝑆𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖  and 𝐹𝐸𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖  and the ground-truth distributions 𝑦𝑟𝑜𝑙𝑒𝑖
𝑠𝑡𝑎𝑟𝑡  and 

𝑦𝑟𝑜𝑙𝑒𝑖
𝑒𝑛𝑑 , as shown in Equations (23-24): 

𝐿𝑒𝑎𝑒 = ∑ ∑ 𝐿𝑏𝑐𝑒(𝐹𝑆𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖(𝑘), 𝑦(𝑘)𝑖
𝑠𝑡𝑎𝑟𝑡)𝑅

𝑖=1
𝐷
𝑘=1 + 𝐿𝑏𝑐𝑒(𝐹𝐸𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖(𝑘), 𝑦(𝑘)𝑖

𝑒𝑛𝑑)     (23) 

𝐿𝑏𝑐𝑒(𝑥, 𝑦) = −(𝑦𝑙𝑜𝑔𝑥 + (1 − 𝑦) log(1 − 𝑥))                        (24) 

Where 𝐷 is the dataset, and 𝑅 is the set of argument roles in the current data. 

The loss for EAE and the loss for domain-specific terminology prediction are combined to form a joint 

loss. This joint loss is then backpropagated at each training step to update the model parameters, as shown 

below: 
𝐿𝑙𝑜𝑠𝑠 = 𝐿𝑒𝑎𝑒 + 𝐿𝑛𝑒𝑟                                     (25) 

 

Algorithm 1 Argument Extraction 

Input: 𝑇, 𝐶, 𝑂 // Template features, original text features, terminology features 

Output: 𝐹𝑆𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒, 𝐹𝐸𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒  // Extract the feature distribution of argument start and end positions 

1: for each 𝑟𝑜𝑙𝑒𝑖 in 𝑇 do 

2:    𝑆𝑟𝑜𝑙𝑒𝑖 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑇(𝑟𝑜𝑙𝑒𝑖) ∗ 𝑊𝑠𝑡𝑎𝑟𝑡 

3:    𝐸𝑟𝑜𝑙𝑒𝑖 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑇(𝑟𝑜𝑙𝑒𝑖) ∗ 𝑊𝑒𝑛𝑑  

4: end for 

5: Fusion Operation: 

6: 𝐹 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑂, 𝐶), 𝐹 ∈ 𝑅𝑁×(𝑑𝑡×𝑑𝑡) 

7: 𝐹 = 𝐹𝑊𝑓 ,  𝑊𝑓 ∈ 𝑅(𝑑𝑡+𝑑𝑡)×𝑑𝑡 

8: for each 𝑟𝑜𝑙𝑒𝑖 in 𝑇 do 

9:   𝑆𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑆𝑟𝑜𝑙𝑒𝑖 ∙ 𝐹) 

10:  𝐸𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒𝑖 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐸𝑟𝑜𝑙𝑒𝑖 ∙ 𝐹) 

11: end for 

12: 𝑇 → 𝑂, Re-Executing 1-11, → 𝑆𝐿𝑜𝑔𝑖𝑡𝑡𝑒𝑟𝑚, 𝐸𝐿𝑜𝑔𝑖𝑡𝑡𝑒𝑟𝑚 // Replace 𝑇 with 𝑂 and re-execute 

steps 1-11 to obtain the feature distribution of the extracted term start and end positions. 

13: Fusion Operation: 

14: 𝐹𝑆𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒 = 𝑆𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒 ∙ 𝑆𝐿𝑜𝑔𝑖𝑡𝑡𝑒𝑟𝑚 

15: 𝐹𝐸𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒 = 𝐸𝐿𝑜𝑔𝑖𝑡𝑟𝑜𝑙𝑒 ∙ 𝐸𝐿𝑜𝑔𝑖𝑡𝑡𝑒𝑟𝑚 

16: end for 
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4.  Experiments 

4.1  Datasets 

To verify the practical effectiveness of the EFTE method in the communication fault domain, 

experiments were performed on the publicly available Huawei communication fault dataset and 

a telecommunication fault dataset. Table 2 presents the partitioning of these two datasets into training and 

testing sets.  

The datasets are introduced as follows: 

(1) Huawei Communication Fault Dataset: This dataset comes from the "CCKS-2021 Huawei Process-

oriented Event Extraction for the Communication Domain" task. It is a publicly available event extraction 

dataset in the communication fault domain. Fault events in this dataset were defined by Huawei experts 

based on various types of process-oriented knowledge within the communication domain, and they play a 

crucial role in analyzing critical errors that happen during network operation and maintenance processes. 

(2) Telecommunication Fault Dataset: This dataset is based on real fault data generated during internal 

network operation and maintenance processes within a telecommunication company. Building on this, we 

created a high-quality dataset designed explicitly for the EAE task. 

Table 2. Statistics of the Datasets 

Dataset Split Huawei Communication Fault Dataset Telecommunication Fault Dataset 

Training Set 11000 5500 

Validation Set 2000 1000 

Test Set 2000 1000 

Total 15000 7500 

4.2  Implementation Details 

To ensure the reproducibility of our model, this paper provides a detailed description of the 

experimental environment setup and model parameter settings. 

We implement EFTE with Pytorch and run the experiments with a Nvidia Tesla V100 GPU. We set 

the maximum input length of the encoder to 220 tokens. Sentences exceeding this maximum are truncated 

to the first 220 tokens, while shorter sentences are padded with the <PAD> token. The detailed parameter 

settings for the EFTE model are provided in Table 3. Additionally, specific experimental environment 

parameter settings are detailed in Appendix A. 
Table 3 Model Parameter Settings 

Hyperparameter Value 

Learning Rate 4e-5 

Train Batch Size 

Eval Batch Size 

Epochs 

8.0 

16.0 

50.0 

Dropout 

Gradient Accumulation Steps 

Max Grad Norm 

0.1 

1.0 

5.0 

Seed 42.0 

4.3  Evaluation Metrics 

The model's performance is evaluated using two standard metrics for Event Argument Extraction 

(EAE). For each of these metrics, precision, recall, and F1 score [25] are used to assess performance: 

(1) Argument Identification (AI): An argument is correctly identified when its predicted span matches 

the ground-truth span.  

(2) Argument Classification (AC): An argument is correctly classified when its predicted span matches 

the ground-truth span and its predicted argument role is also correct. 
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4.4  Experimental Results and Analysis 

In this experimental section, the EFTE method is compared with EAE methods from the past five years 

on both the telecommunication fault dataset and the Huawei communication fault dataset. Specifically, to 

demonstrate the superiority of the proposed method, comparisons were made against representative 

classification-based and generative-based EAE approaches. The performance of the models on 

the Huawei communication fault dataset and the telecommunication fault dataset is shown in Tables 4 and 

5. In these tables, bold values indicate the best result in each respective column of the experimental data. 

The baseline methods used for comparison are listed below: 

EEQA [26]: This method proposes transforming the event extraction task into a question-answering 

task. By designing question templates, it converts ED and EAE into processes of asking questions about 

the input sentence and returning the event extraction results as answers. 

BartGen [10]: This is a document-level EAE model based on conditional generation. The method first 

encodes event templates (with unfilled argument parameters) and the context text. It then fills the argument 

parameters in the templates through conditional generation, ultimately achieving the parsing and 

extraction of event arguments. 

XGear [11]: This method proposes an approach based on multilingual pre-trained models by designing 

language-agnostic event templates for argument parameter filling. By transforming the EAE task into a 

language generation task, it achieves zero-shot cross-lingual extraction of event argument parameters. 

PAIE [6]: This method adds argument roles to prompt templates and captures interactions between 

parameters through multi-role prompts. It employs joint optimization with a bipartite matching loss to 

achieve optimal argument span assignment, enabling the model to achieve better learning and 

generalization with limited training data. 

DEGREE [12]: This method formulates the EAE task as a conditional generation problem. Given 

context text and a designed prompt template, the model summarizes events in the text into natural 

sentences conforming to a predefined pattern. Finally, it extracts argument parameters by parsing these 

sentences. By utilizing label semantics and weak supervision signals, it improves the model's learning 

efficiency in low-resource scenarios. 

TagPrime [7]: This method provides a unified processing framework for tasks such as event extraction 

and relation extraction. For the EAE task, it enhances the input text by adding event types and trigger 

words. It leverages the self-attention mechanism of pre-trained models, enabling the model to better 

capture relational structures under specific conditions, and accelerates the EAE inference process through 

parallel encoding. 

TabEAE [14]: This method proposes an EAE approach that uses an attention mechanism to strengthen 

connections between different events. Unlike previous research that only considered single events, this 

model simultaneously extracts all argument parameters for each event during training. This definition 

considers all co-occurring events within the same context, enabling the model to better capture the 

semantic boundaries of events and improve its multi-event processing capabilities. 

DEEIA [5]: Similar to TabEAE, the DEEIA method is an event extraction approach that addresses the 

multi-event problem. It first utilizes an attention mechanism to strengthen both intra-event and inter-event 

connections, and then employs a specific-event information aggregation module to enhance its capability 

for extracting specific events. 

Scented [9]: This model customizes the integration of argument entity type information into EAE by 

incorporating argument roles, argument entity types, and their correspondences into prompt templates. 

This effectively addresses issues present in existing methods, such as weak semantic relevance, 

compromised semantic integrity, and one-sided semantic understanding. 

Among the methods mentioned earlier, the performance of the EEQA model was relatively below 

expectations. This is mainly due to its design that extracts arguments using a question-answering approach, 

which requires strong semantic understanding from the model. However, data in the communication fault 

domain is known for its strong domain-specificity and semantic ambiguity. Compared to datasets from 

other areas, understanding these data proves much more difficult, which directly limits the effectiveness 

of Event EAE. In contrast, the proposed EFTE model achieved better results in both Recall and F1-score. 

Specifically, on the publicly available Huawei communication fault dataset, compared to BartGen, the 

best-performing generative method, EFTE achieved improvements of 9.76 and 8.64 percentage points in 
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Recall, and 11.51 and 10.30 percentage points in F1-score, for the AI and AC metrics, respectively. On 

the telecommunication fault dataset, EFTE improved Recall by 4.90 and 4.97 percentage points, and F1-

score by 7.64 and 7.58 percentage points, for the AI and AC metrics, respectively. 

Compared to Scented, the best-performing classification-based method, on the publicly available 

Huawei communication fault dataset, EFTE improved Recall by 6.64 and 6.29 percentage points, and F1-

score by 2.92 and 2.71 percentage points, for AI and AC, respectively. On the telecommunication fault 

dataset, EFTE improved Recall by 4.88 and 5.56 percentage points, and F1-score by 2.01 and 2.80 

percentage points, for AI and AC, respectively. This demonstrates that the EFTE method achieves 

excellent performance in EAE. 

This significant performance improvement is primarily attributed to two key designs of the model: 

firstly, the event-focusing module effectively enhanced the model's ability to distinguish boundaries when 

processing multi-event samples; secondly, the domain-specific terminology prediction module, by 

accurately predicting domain-specific terms within events, improved the model's accuracy in domain-

specific terminology recognition. These innovative designs collectively contributed to the significant 

improvement in the model's performance on the evaluation metrics. 

 
Table 4. Performance Metrics of Different Algorithm Models on the Huawei Dataset 

Model AI-P AI-R AI-F1 AC-P AC-R AC-F1 Type 

BartGen 70.91 73.95 72.40 68.40 71.33 69.83 Generative 

XGear 84.58 62.03 71.57 81.47 59.74 68.93 Generative 

DEGREE 61.73 68.59 64.98 54.28 60.32 57.15 Generative 

EEQA 44.92 53.35 48.77 41.73 49.56 45.31 Classification 

PAIE 78.79 78.36 78.58 74.96 74.74 74.85 Classification 

TabEAE 65.05 65.92 66.82 63.66 62.19 62.92 Classification 

DEEIA 68.22 66.22 67.21 64.79 63.09 63.93 Classification 

 TagPrime 78.04 78.79 78.41 73.97 74.68 74.32 Classification 

Scented 84.51 78.46 81.38 80.78 75.02 77.80 Classification 

EFTE 84.12 83.71 83.91 80.29 79.97 80.13 Classification 

 

Table 5. Performance Metrics of Different Algorithm Models on the Telecommunication Dataset 

Model AI-P AI-R AI-F1 AC-P AC-R AC-F1 Type 

BartGen 73.73 77.05 75.36 71.08 74.27 72.64 Generative 

XGear 85.63 61.40 71.52 82.23 59.67 69.50 Generative 

DEGREE 54.58 61.73 57.94 51.23 57.94 54.38 Generative 

EEQA 44.64 54.03 48.89 42.22 51.10 46.24 Classification 

PAIE 80.10 77.81 78.93 76.70 75.02 75.85 Classification 

TabEAE 66.20 67.32 66.76 64.53 62.80 63.64 Classification 

DEEIA 70.32 69.82 70.08 64.92 65.30 65.10 Classification 

TagPrime 80.61 78.84 79.71 77.41 75.72 76.56 Classification 

Scented 85.33 77.07 80.99 81.57 73.68 77.42 Classification 

EFTE 84.06 81.95 83.00 81.22 79.24 80.22 Classification 

4.5  Ablation Study 

The core architecture of the EFTE method includes two main modules: the Event Boundary-aware 

Encoding Module and the Semantically-enhanced Domain-specific Terminology Recognition Module. To 

assess the effectiveness of each module and its contribution to overall performance, they were individually 

evaluated and analyzed through ablation studies. The outcomes of these ablation experiments on the 

publicly available Huawei communication fault dataset and the telecommunication fault dataset are shown 

in Tables 6 and 7. 
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The ablation settings are described as follows: 

w/o-Terminology-LLM-Fusion: This indicates the model's performance after removing the domain-

specific terminology module (which includes the LLM-based terminology extraction and fusion) from the 

full EFTE model.  

w/o-Event-Aware-Encoder: This shows the model's performance after removing the Event Boundary-

aware Encoding Module from the complete EFTE model. (To demonstrate the effectiveness of the event 

boundary-aware encoder, the specially designed event-focusing prompt template within the encoding 

module was replaced with a generic prompt template, thereby systematically removing the model's ability 

to recognize specific event boundaries.) 

Table 6. Ablation Study Results of the EFTE Method on the Huawei Dataset 

No. Model AI-F1/% AC-F1/% 

1 w/o-Terminology-LLM-fusion 83.25 79.53 

2 w/o-Event-Aware-Encode 82.34 78.73 

3 EFTE 83.91 80.13 

 

Table 7. Ablation Study Results of the EFTE Method on the Telecommunication Dataset 

No. Model AI-F1/% AC-F1/% 

1 w/o-Terminology-LLM-fusion 82.52 79.63 

2 w/o-Event-Aware-Encode 81.65 78.90 

3 EFTE 83.00 80.22 

The results from Experiment 1 (w/o-Terminology-LLM-Fusion) reveal that after removing the domain-

specific terminology prediction module, the AI-F1 and AC-F1 scores of EFTE decreased by 0.66 and 0.60 

percentage points on the Huawei dataset, and by 0.48 and 0.59 percentage points on the telecommunication 

dataset, respectively. This indicates that the proposed domain-specific terminology module, which 

incorporates an LLM and a dual-layer attention mechanism, positively improves the performance of EAE. 

 

Figure 6. Distribution of Error Types in Technical Term Extraction 

In Experiment 2 (w/o-Event-Aware-Encoder), removing the event-focusing prompt template 

component from the Event Boundary-aware Encoding Module led to a decrease in AI-F1 and AC-F1 scores 

by 1.57 and 1.40 percentage points on the Huawei dataset, and by 1.35 and 1.32 percentage points on the 

telecommunication dataset. This notable performance drop confirms the importance of the Event 

Boundary-aware Encoding Module.  
To investigate the effectiveness of the proposed modules further, we conducted an in-depth 

comparative analysis of each. Specifically, in the Domain-specific Term Recognition Module analysis, the 

focus was on comparing the distribution and count of technical term extraction errors after integrating the 

EFTE module, as shown in Figure 6. We observe a significant reduction in the overall number of term 

extraction errors (TotalFaults) with the application of this module. Among the three term types, "Fault 
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Name" accounts for a relatively higher number of errors, which can be attributed to the prevalence of this 

term type within the primary communication terminology. Nevertheless, EFTE significantly reduced 

extraction errors across all three categories. This demonstrates the module's exceptional effectiveness in 

mitigating term extraction errors. 

In the comparative analysis of the Event Boundary-Aware Encoding Module, we focused on errors 

caused by arguments crossing event boundaries. Table 8 details the distribution of multi-event samples, 

and Figure 7 presents the results on the Huawei test set. After integrating this module, we observed 

significant improvements. The number of cross-boundary errors decreased from 309 to 130, reducing the 

proportion of total errors from 58.9% to 38.0%. Furthermore, the total count of extraction errors was 

reduced from 525 to 342. These results validate that our proposed module enhances the model's sensitivity 

to event boundaries while improving its overall extraction performance. 

(a) w/o-Event-Aware-Encode (b) EFTE

 

Figure 7. Statistical results of argument extraction for the EFTE model. Figure (a) presents the results without the Event 

Boundary-Aware Encoding Module, while Figure (b) shows the results for the complete model. The pie chart's inner 

circle details the overall argument identification performance. The outer circle provides a statistical breakdown of the 

error proportion, specifically highlighting errors caused by arguments crossing event boundaries. 

 

Table 8. Data Distribution Results for the Huawei Communication Fault Dataset 

Data Distribution Details Total data Train data Valid data Test data 

Total Data Volume 15000 11000 2000 2000 

 Number of Multi-Event Samples 11615 10110 724 781 

5.  Effectiveness Analysis 

To evaluate the advanced performance of the EFTE method in communication fault analysis, we 

performed a comparative study against recent state-of-the-art techniques. (Note: Because of the 

confidentiality of the telecommunication dataset, we used a publicly available dataset from Huawei for this 

validation.) 

5.1  Analysis of Boundary Discrimination Ability 

To evaluate the effectiveness of the EFTE model in identifying event boundaries during event co-

occurrence, we thoroughly analysed multi-event samples from two perspectives: (1) Argument Extraction 

Performance and (2) Internal Encoding Mechanism. 

5.1.1  Analysis of Argument Extraction Performance 

This subsection aims to demonstrate that the EFTE model can effectively identify the boundaries of 

different events by examining its superior argument extraction performance on multi-event samples. 

Specifically, EFTE is compared to high-performing methods like TagPrime and Scented, as well as 
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TabEAE and DEEIA, which are specifically designed to handle event co-occurrence. The results are shown 

in Figures 8 and 9. 

 

 

Figure 8. Statistical Chart of Argument Prediction Errors in Multi-Event Samples 

 

Figure 9. Statistical Chart of Argument Extraction Performance on Multi-Event Samples 

Table 8 shows the statistics for the number of multi-event data samples in the dataset. It can be seen 

that multi-event samples make up 77.43% of the Huawei communication fault dataset, indicating that 

addressing the event co-occurrence problem in communication datasets is highly important and valuable. 

Figure 8 displays the distribution of argument prediction errors made by different methods on multi-event 

samples from the test set. In this figure, Sum-Count is the total number of argument prediction errors. 

Bound-Count is the number of instances within Sum-Count where the predicted argument content belongs 

to information from another event; that is, the expected argument failed to correctly identify the event 

boundary and crossed it. Su-Bo-Percent refers to the proportion of Bound-Count within Sum-Count. 

Likewise, Figure 9 shows the EAE performance of different methods on multi-event samples from the test 
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set. 

Analyzing the results in Figure 8, it is clear that the number of argument prediction errors made by the 

TabEAE and DEEIA methods on multi-event samples is significantly higher than that of EFTE. In terms 

of the Su-Bo-Percent error ratio, the error rates for TabEAE and DEEIA are 35.31 and 42.78 percentage 

points greater than EFTE, respectively. Their error rates are also notably higher compared to the TagPrime 

and Scented baseline methods. This indicates that although TabEAE and DEEIA provide targeted solutions 

for the event co-occurrence problem and have achieved good results on datasets in related domains, they 

still have limitations in the communication domain—particularly in their ability to discriminate event 

boundaries, which needs improvement. This is because their approach to addressing event co-occurrence 

mainly involves associating prompt templates of different events and text information through attention 

mechanisms, using inter-event correlations to highlight event boundary information. This method of 

associating events via attention places high demands on prompt template design [27]; creating a high-

quality prompt template requires considering many factors [28][29][30]. Additionally, because events are 

relatively independent and the communication domain often uses domain-specific terminology, 

overemphasizing inter-event correlations can sometimes blur the boundaries between events. 

In contrast, our EFTE method mainly depends on the LLM to find specific events when solving multi-

event problems. This improves event extraction while keeping event independence and requires fewer 

prompts for template creation, making it more transferable and reliable. As shown in the figures, the 

comparison of multi-event samples clearly shows that the EFTE approach has a strong edge in identifying 

event boundaries, effectively solving the event co-occurrence issue and performing superbly on the EAE 

task. 

 5.1.2  Analysis of the Internal Encoding Mechanism 

To show that our proposed Boundary-aware Encoding Module can focus its attention on specific events 

during encoding, we performed a visual analysis of its internal mechanism. We chose the current state-of-

the-art (SOTA) baseline model, Scented, for comparison. Using heatmaps, we visualized and compared 

the cross-attention distributions generated by the two models during argument extraction, as shown in 

Figure 10. 

The decline in ERAB establishment success is more pronounced during RRC 

decline

在 RR C 下降 时 ERA B 建立 成功 率 下降 更为 明显 :

Owner

Index

State

ERAB成功率下降(The decline in ERAB establishment success) RRC下降(RRC decline)

Sented

EFTE

Owner

Index

State

The decline in ERAB establishment success is more pronounced during RRC 

decline

在 RR C 下降 时 ERA B 建立 成功 率 下降 更为 明显 :

 

Figure 10. Visualizing the event boundary differentiation capabilities of the EFTE and Scented models via attention 

distributions. The left and right plots show how each model allocates attention differently across two events in a text, 

reflecting its capacity to distinguish between them. 

Figure 10 uses the complex text, "The decline in ERAB establishment success is more pronounced 

during RRC decline", which contains two distinct events, as an illustrative example. We observe that when 

the Scented model processes this text, the cross-attention distributions for different argument roles (Owner, 

Index, State) exhibit a high degree of similarity when extracting different events. This indicates that the 

model fails to effectively distinguish the contextual information of the two separate events, leading to a 

confused attentional focus. This indicates that the model fails to effectively distinguish the contextual 

information of the two separate events, leading to a confusion of attention focus. This issue primarily arises 

because both events in this complex text belong to the same "Indicator Deterioration" category and share 

the same trigger word. Consequently, Scented cannot accurately locate event boundaries by relying solely 

on event type and trigger words, making it difficult to precisely focus on the context of the target argument's 

event. 

In stark contrast, the EFTE model demonstrates precise boundary-aware capabilities. When extracting 
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the "The decline in ERAB establishment success" event, the argument roles adaptively focus their attention 

on relevant tokens such as "ERAB", "establishment", "success", and "decline". Similarly, when processing 

the "RRC decline" event, the attention accurately shifts and concentrates on the "RRC" and "decline" tokens. 

This result compellingly demonstrates that EFTE's boundary-aware module can dynamically allocate and 

isolate attention for different events, thereby significantly enhancing argument extraction performance in 

complex scenarios. This finding provides both a theoretical explanation and empirical support, at the level 

of the attention mechanism, for the superior performance exhibited by EFTE in handling multi-event 

samples. 

The final experimental results show that EFTE, with its unique event boundary-aware mechanism, can 

better identify and differentiate the boundary features of various events, greatly enhancing the model's ability 

to handle complex multi-event samples. 

5.2  Analysis of Domain-specific Terminology Recognition Ability 

To evaluate the accuracy of the EFTE method in recognizing domain-specific terminology, the top-

performing TagPrime and Scented methods from the comparative experiments were selected for analysis 

alongside EFTE specifically for this task. The results of domain-specific terminology recognition are shown 

in Table 9. 

Table 9. Statistical Results of Domain-specific Terminology Recognition Performance on the Huawei Communication 

Fault Dataset 

Model EI-P EI-R EI-F1 EC-P EC-R EC-F1 

TagPrime 78.04 78.79 78.42 77.27 78.01 77.64 

Scented 81.23 82.33 81.77 80.10 81.11 80.60 

EFTE 83.24 84.10 83.67 82.48 83.34 82.91 

The experimental results in Table 9 show that the EFTE method outperforms both TagPrime and Scented. 

Specifically, for Term Identification metrics, EFTE achieved increases of 5.25 percent in Precision (EI-P) 

and 5.27 percent in Recall (EI-R). For Term Classification metrics, it showed improvements of 1.90 percent 

in Precision (EC-P) and 2.01 percent in Recall (EC-R). By attaining the best results across all performance 

metrics for domain-specific terminology prediction, the EFTE method confirms the effectiveness of its 

domain-specific terminology module in enhancing term recognition. Through the domain-specific 

terminology recognition module, the EFTE method improves the model's ability to identify terms in the 

communication domain and enhances overall model performance along with other modules. 

5.3  Case Study 

To better demonstrate the EFTE method's ability to distinguish event boundaries and accurately predict 

domain-specific terminology, EFTE is experimentally compared and analyzed against the more advanced 

TagPrime and Scented methods on a typical multi-event data example, as shown in Figure 11. 
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 RRUCHAIN链环号中的配置信息定义错误导致XX局点LTE-FDD的Lampsite站点BBU CPRI线速率协商异常告警处理案例
RRUCHAIN Chain Link Number's Configuration Information Definition Error Leads to XX Site LTE-FDD Lampsite BBU CPRI 

Line Rate Negotiation Abnormal Alarm Troubleshooting Case

[<Configuration Fault> Groud Truth]

Word:RRUCHAIN链环号中的配置信息
(RRUCHAIN Chain Link Number's Configuration Information)

Role:Setting

Word:错误(Error )

Role:State

[<Configuration Fault> EFTE Prediction]

Word: RRUCHAIN链环号中的配置信息
(RRUCHAIN Chain Link Number's Configuration Information)

Role:Setting

Word:错误(Error )

Role:State         

[<Configuration Fault> Scented Prediction]

Word:错误(Error )

Role:State   

[<Configuration Fault> TagPrime Prediction]

Word:错误(Error )

Role:State

Word:RRUCHAIN链环号中的配置信息
(RRUCHAIN Chain Link Number's Configuration Information)

Role:Setting       

[<Software/Hardware Anomaly> Scented Prediction]

Word:Lampsite站点BBU CPRI线速率(LTE-FDD Lampsite 

BBU CPRI Line Rate)

Role:Subject 

Word:异常(Abnormal)

Role:State

[<Software/Hardware Anomaly> TagPrime Prediction]

Word:BBU CPRI线速率(BBU CPRI Line Rate)

Role:Subject

Word:异常(Abnormal)

Role:State          

[<Software/Hardware Anomaly> Groud Truth]

Word:LTE-FDD的Lampsite站点BBU CPRI线速率BBU CPRI

线速率
(LTE-FDD Lampsite BBU CPRI Line Rate)

Role:Subject

Word:异常(Abnormal)

Role:State

[<Software/Hardware Anomaly> EFTE Prediction]

Word:LTE-FDD的Lampsite站点BBU CPRI线速率(LTE-FDD 

Lampsite BBU CPRI Line Rate)

Role:Subject

Word:异常(Abnormal)

Role:State          
 

Figure 11. A comparison of argument extraction results from different models. The source text contains two distinct 

events, which are highlighted in yellow and blue, respectively. 

Figure 11 shows the EAE results for the Scented, TagPrime, and EFTE methods on a text with multiple 

events. The yellow and blue sections represent the argument extraction results for events described by text 

of corresponding colours. Analysis reveals that the Scented method failed to extract the argument 

"RRUCHAIN Chain Link Number's Configuration Information" when extracting the event described by 

the blue text. While the TagPrime method successfully extracted this argument, it made an incomplete 

extraction error for the argument "LTE-FDD Lampsite BBU CPRI Line Rate" when extracting the blue 

event. This is mainly because these two methods, when processing multi-event samples, do not adequately 

focus on the model's ability for event discrimination and domain-specific terminology extraction, leading 

to some arguments being incorrectly extracted or not extracted at all. In contrast, EFTE, aided by its event-

focusing prompt template and the domain-specific terminology prediction module, successfully and 

accurately extracted the event arguments, thereby enhancing the effectiveness of EAE. 

The previous analysis shows that EFTE performs well on datasets that include multiple events and 

specialized communication domain terminology. Specifically, guided by the Event Boundary-aware 

Encoding Module, EFTE can thoroughly understand the boundary information between different events in 

the text. This enables it to filter out irrelevant information from other events during the extraction process 

for a particular event, focusing accurately on the semantic details of that event. Additionally, after securing 

a semantic representation focused on the specific event, EFTE, through its domain-specific terminology 

recognition module, improves its ability to extract domain-related terms within the event. It more precisely 

extracts arguments containing domain-specific terminology, resulting in strong overall performance in 

EAE. 

6.  Conclusion 

This paper proposes an event-focused and terminology-enhanced EAE method for communication 

faults, based on LLM, to address the challenges of event co-occurrence and the difficulty in recognizing 

domain-specific terminology in communication domain data. To handle event co-occurrence, unlike 

current methods that use attention mechanisms to extract all event arguments simultaneously, this work 

leverages an LLM to design an Event Boundary-aware Encoding Module. This module guides the model 

to focus on specific event content during encoding, improving its ability to distinguish event boundaries. 
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Additionally, to enhance recognition of domain-specific terminology, a Semantically-enhanced Domain-

specific Term Recognition Module was proposed, also using an LLM, which increased the accuracy of 

identifying arguments related to communication terms. To validate the method's effectiveness, experiments 

were conducted on the publicly available Huawei communication fault dataset and a constructed 

telecommunication fault dataset. The results demonstrate that the proposed method effectively addresses 

the issues of event co-occurrence and the challenge of recognizing domain-specific terminology. Finally, 

the effectiveness analysis further confirms the efficacy of the EFTE method for the EAE task. 

It is worth noting that in the fine-tuning of the LLM, this study did not perform a detailed analysis of 

the performance improvements achievable through different prompt engineering techniques. Additionally, 

fine-tuning requires certain computational resources. Therefore, future research should explore other 

prompt engineering approaches and consider how to modify the model to reduce computational demands, 

further improving the accuracy and robustness of the extraction task. 
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A:  Experimental Environment Parameter Settings 

As the experiments involve both the fine-tuning of the LLM and the training of the EAE model, two 

distinct experimental environments are utilized. During the fine-tuning of the LLM, the batch size for fine-

tuning training is set to 4, and the model is trained for a total of 5 epochs. The fine-tuning experiments are 

conducted on a server with the Ubuntu 20.04 operating system. Specific details of this experimental 

environment are provided in Table 10. 

Table 10. Experimental Environment Information (LLM) 

Operating System Linux 

CPU Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz 

GPU NVIDIA-SMI RTX A6000 

Python 3.11.0 

Pytorch 2.3.0 

CUDA 12.2 

During the experiments for training the EAE model, 50 epochs are run. After each epoch, the 

performance on the test and validation sets, along with the current model state, is saved. The model that 

produces the best decoding results is chosen as the outcome of the experiment. The EAE experiments are 

performed on a server with Ubuntu 20.04 as the operating system. Specific details of this experimental 

environment are provided in Table 11. 

Table 11. Experimental Environment Information (EFTE) 

Operating System Linux 

CPU Intel(R) Xeon(R) Gold 5115 CPU @ 2.40GHz 

GPU Tesla V100-PCIE-16GB 

Python 3.8.0 

Pytorch 2.1.2 

CUDA 12.3 

 


