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Abstract

Data-driven language models often perform poorly on out-of-distribution data due to the inter-
nalization of spurious correlations. Existing mitigation strategies focus on data preprocessing
or model regularization, which do not sufficiently correct the spurious correlation and require
high costs. We propose a novel plug-and-play method, MacU, a machine unlearning strategy for
mitigating the spurious correlation. Firstly, we accurately locate neurons encoding correlation
information based on the gradient responses of the proximity. Then, we analyze the model’s
neuron storage mechanism of causal or spurious correlation information, and identify overlap
between these two types of neurons. Based on the above findings, we develop a neuron editing
method based on Particle Swarm Optimization, ensuring that the model forgets spurious cor-
relations while retaining the best memory of causal correlations. Experiments on 5 language
models and 11 datasets show that MacU significantly improves generalization, surpassing the
fine-tuning baseline by 3.13% and 2.05% in sentiment analysis and natural language inference
tasks, respectively. To the best of our knowledge, this is the first work to design a machine
unlearning technique to mitigate spurious correlation, which has achieved superior correction
capability without requiring retraining the model.

Keywords: Spurious correlation, Generalization, Machine unlearning, Neuron localization,
Neuron editing

1. Introduction

Data-driven language models (LM), especially large language models (LLM), have achieved
outstanding performance in various natural language processing (NLP) tasks. However, recent
studies show that these models lack out-of-distribution (OOD) generalization ability [9, 26].
A major contributing factor is that these LMs often learn spurious correlations between the
training data and corresponding labels [16, 20, 25]. These spurious correlations can lead to
unreliable predictions made by the model in practical applications, which may result in serious
consequences [29].

At present, there are three main approaches to alleviate spurious correlations: pre-processing,
in-processing, and post-processing [16]. Pre-processing approaches aim to retrain the models by
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removing or reducing the proportion of spurious correlation data in the training set. In-processing
approaches adjust the training strategy and mitigate the spurious correlations during training.
Post-processing approaches correct the model’s outputs by removing the effects of spurious cor-
relations at the prediction stage. Although these approaches have achieved certain results, they
still face two major bottlenecks: (1) Insufficient correction caused by training mechanism defects.
These mitigation approaches, based on data augmentation or training strategy optimization, fine-
tune the model parameters by retraining the model to achieve spurious correlation correction.
However, due to the inherent confirmation bias [25] in the model and deficiencies in the training
mechanism (such as optimization mechanisms) [21], this correction process is often hindered.
(2) High costs. Many of these approaches require the construction of spurious correlation-free
datasets (the datasets without spurious correlations) or retraining models, which incur significant
computational and resource costs.

Methods Parameter
fine-tuning

Parameter
editing

No ad-
justment

Pre-processing × X ×

In-processing × X ×

Post-processing × × X
Machine unlearn-
ing based on
locate-then-edit

X X ×

(a) Parameter adjustment method of different mit-
igation approaches.

Methods Additional
data

Retraining
the model

Pre-processing X X
In-processing X X
Post-processing × ×

Machine unlearn-
ing based on
locate-then-edit

× ×

(b) Dataset and training requirements of different ap-
proaches.

Table 1: Comparative analysis of various mitigation approaches. In the tables, X indicates that
the approaches need to meet the corresponding conditions, while × indicates that the approaches
do not meet the corresponding conditions.

Motivated by these limitations, our research goal is to design a spurious correlations mitiga-
tion approach with strong correction and low-cost characteristics, which can better improve the
generalization of language models.

Machine unlearning [17] [36] is a widely used technology in fields such as privacy protection
[35], fairness [4], etc. It deletes or modifies the model’s memory of specific data or information
through particular methods. Especially, machine unlearning based on the locate-then-edit method
can accurately remove target information without retraining the model. This method achieves
forgetting by locating and editing neurons relevant to the content to be forgotten. Inspired by
[35] and [4], which suggest that privacy information or specific knowledge is stored in specific
privacy neurons or knowledge neurons, we hypothesize that spurious correlation information
may also exist in specific neurons. This suggests that we could alter the model’s memorization of
spurious correlation information by detecting and editing these neurons, which we term spurious
correlation neurons.

This study proposes MacU, an innovative methodology based on machine unlearning tech-
nology for spurious correlation mitigation. It achieves efficient calibration by locating and editing
these “spurious correlation neurons” without the need to retrain the model, combining the advan-
tages of low cost and strong calibration, as follows the Tables 1a and 1b. The core technological
innovation of MacU includes:

(1) Neuron localization guided by the gradient of proximity. Typically, neuron localiza-
2 Data Intelligence
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tion methods rely on the gradient of the model’s performance on the specific dataset to neu-
ron changes. However, for the spurious correlation mitigation task, constructing such datasets
(spurious correlation-free datasets) is challenging due to the limitations of spurious correlation
cognition. Regarding this problem, we innovatively propose a specific-dataset-free method that
locates spurious correlation neurons by analyzing the gradient of the proximity metric to neuron
changes. The proximity metric is defined as the alignment degree between the correlation tokens
identified by the model and the golden correlation tokens. Among these, correlation tokens are
markers automatically identified by the model during prediction that exhibit strong associations
with the output. In contrast, golden correlation tokens represent pre-defined standard tokens that
have either causal or spurious correlations with the ground-truth labels. Significant fluctuations
in the proximity metric resulting from adjustments to specific neuronal parameters suggest that
the corresponding neuron encodes certain causal or spurious correlations.

(2) Spurious correlation unlearning with causal preservation. Our localization results
reveal that neurons storing spurious correlations often overlap with those storing causal corre-
lations. Adjusting these neurons’ parameters can inadvertently affect both causal and spurious
correlation memories. To mitigate this problem, we propose a new neuron parameter editing
method based on the Particle Swarm Optimization (PSO) algorithm [31]. This new method aims
to optimize the model parameters, ensuring the model forgets spurious correlations while retain-
ing causal correlations optimally.

In the experiment section, we perform a wide range of tests on two different tasks (Sentiment
Analysis (SA) and Natural Language Inference (NLI)) using multiple datasets, demonstrating
that MacU substantially improves the model’s performance and generalization. Specifically, we
first validate the dual advantages of the MacU method on the BERT model: 1) The MacU demon-
strates good generalization ability, surpassing the Fine-tuning baseline by 3.13% and 2.05% on
SA and NLI, respectively. 2) The MacU exhibits better spurious correlation correction charac-
teristics than all other spurious correlation mitigation strategies. Then, to verify the universality
of the MacU, we extend the MacU to LLMs with different parameter scales (such as GPT-2,
LLaMA-2-7B , Qwen-2-1.5B, and GLM-4-9B), and the experimental results show that the MacU
maintains stable effectiveness. Besides, we verify the core hypothesis of “spurious correlation
and causal correlation information are encoded in specific neurons” through analysis of neuron
activation patterns. Furthermore, we analyze the results of neuron localization, and find that there
is a significant overlap between the neurons encoding spurious correlations and causal correla-
tions. This discovery provides a theoretical basis for neuron parameter adjustments to achieve
spurious correlation forgetting.

The key contributions of our work are outlined below:
(1) We propose a new plug-and-play method, MacU, which is the first work to utilize machine

unlearning techniques to alleviate spurious correlations in models and improve their generaliza-
tion without the need to build external datasets and retrain the model, offering both low costs and
substantial correction capability.

(2) We implement the MacU method through an efficient neuron localization module guid-
ed by the proximity, and a neuron editing module based on the PSO algorithm. This method
allows that the model forgets spurious correlations while retaining the best memory of causal
correlations as much as possible.

(3) We discover the overlap phenomenon between neurons encoding spurious correlations
and causal correlations, which is the theoretical basis of the neurons editing method proposed
in this paper and a supplement to the current research on how LMs encode the knowledge of
correlation type, contributing to a understanding of knowledge representation in neural networks.
Data Intelligence 3
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2. Related works

Spurious correlation mitigation methods. Many studies have been conducted to alleviate
spurious correlations in existing research [16]. Some researchers attempt to reduce spurious
correlations at the data level through counterfactual or adversarial data augmentation. For ex-
ample, [33] proposes a counterfactual data augmentation method to reduce the model’s reliance
on potentially spurious correlations present in the original data. [25] proposes a smart data
augmentation method that generates adversarial examples without spurious correlations using
LLMs and employs a two-phase learning strategy to train the model for spurious correlation mit-
igation. However, these approaches are costly due to the need to construct external datasets.
Other researchers reduce spurious correlations by intervening in the model’s training process.
For example, [24] uses an ensemble of multiple adversaries to avoid the hypothesis-only bias,
significantly reducing the spurious correlation or bias stored within a model’s representation-
s. [6] propose a causal contrastive learning approach, which first generates the counterfactual
pairs and the factual pairs by masking the identified causal and non-causal terms separately, and
then employs contrastive learning on these constructed samples to reduce the model’s sensitivity
to spurious correlations. [5] proposes a regularization method, NFL, which constrains changes
in language model parameters or outputs to prevent capturing spurious correlations from mis-
alignment. These approaches typically require detailed algorithm design and model retrain-
ing. Still other researchers propose a post-processing method to alleviate spurious correlations
by adjusting model outputs, which overcomes the aforementioned shortcomings. For example,
[14] proposes an end-to-end unbiased method, PoE, that adjusts the cross-entropy loss based on
predictions from a hypothesis-only biases model, reducing spurious correlations learned during
training.

Although these strategies offer some benefits, they are insufficient in correcting spurious cor-
relations and often result in limited generalization. This paper introduces a spurious correlation
mitigation method based on machine unlearning, which effectively removes spurious correlations
without retraining the model or using external datasets.

Machine unlearning. Machine unlearning allows models to forget specific data, informa-
tion, or learned knowledge [17] [36]. It includes exact unlearning and approximate unlearning
[4]. The goal of exact unlearning is to ensure that the forgotten data has no impact on the final
model, as if it had never been used for training the model [2]. This method typically requires
high computational costs as it involves retraining the model. Approximate unlearning does not
aim to completely eliminate the impact of forgotten data, but rather reduces this impact as much
as possible by adjusting model parameters, which is usually more efficient [13].

Model parameter adjustment based on the locate-then-edit is an important approximate un-
learning method for achieving machine unlearning, which achieves forgetting by locating and
editing neurons that are relevant to the content to be forgotten. This method can accurately re-
move target information without retraining the model, and has been widely applied in privacy
protection [35], fairness [38], and more. For example, [35] proposes the DEPN framework,
which identifies neurons linked to private information based on the performance gradient re-
sponses, and edits them by setting their activations to zero to achieve privacy forgetting. [38]
proposes an interpretable neuron editing method that combines logit-based and causal-based
strategies to target biased neurons selectively. Inspired by this, we hypothesize that spurious cor-
relation information may be encoded in specific neurons, similar to factual or privacy neurons.
And we propose a spurious correlations mitigation method based on machine unlearning.

In contrast to [35], (1) we use a neuron localization method driven by the proximity gradient
4 Data Intelligence
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response, instead of performance gradient responses on the specific dataset, to achieve more
efficient localization. (2) Instead of simply setting the recognized neurons to zero, we introduce a
neuron parameter editing method based on PSO, which can edit neuron parameters to an optimal
state, in which the model forgets spurious correlations while preserving causal correlations.

3. Methods

We introduce our proposed MacU method, as shown in Figure 1. The method consists of two
modules: (1) The neuron localization module, which identifies neurons involved in encoding
causal (or spurious) correlation information, and (2) The neuron parameter editing module,
which forgets spurious correlation by adjusting the parameters of the identified neurons.

Figure 1: Framework diagram of the MacU. Red circles represent neurons encoding causal cor-
relations, blue circles represent neurons encoding spurious correlations, and green circles repre-
sent neurons encoding both causal and spurious correlation information simultaneously.

3.1. Neuron localization guided by the gradient responses of proximity

We propose a novel neuron localization strategy guided by the gradient responses of proximi-
ty between the correlation tokens identified by the model and golden spurious correlation tokens.
Specifically, for spurious correlation neuron localization, this strategy first identifies tokens that
play a critical role in model prediction, which we refer to as “correlation tokens”, reflecting the
behavioral patterns of the model during decision-making. Then we compute the proximity be-
tween these correlation tokens and golden spurious correlation tokens that conform to human
prior knowledge, and monitor how this proximity changes with the variation of neurons, i.e., the
gradient responses of proximity. The higher the gradient response is, the higher the degree of
internalization of these spurious correlations by neurons, indicating that the neurons encode the
Data Intelligence 5
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corresponding spurious correlations. The localization method of causal correlation neurons is
similar to spurious correlation neurons.

The main steps of this module include constructing the golden correlation token set, identi-
fying the correlation token set, and performing neuron localization.

3.1.1. Golden correlation token set construction
The golden correlation token set is divided into two subsets: the golden causal correlation

token set and the golden spurious correlation token set, used to localize causal or spurious cor-
relation neurons, respectively.

Golden causal correlation token set. We construct the golden causal correlation token set,
Gcau, by extracting tokens with strong causal relationships to specific labels, across multiple
training sets for the same task. Specifically, we leverage the LLM (ChatGPT) to aid in construct-
ing the golden causal correlation token sets.

1) Automatic discovery: LLM is employed to analyze the given datasets and identify the
golden causal tokens which are causally correlated to the specific label. Specifically, we input
the following prompt to the ChatGPT: “This is an XXX task with the labels of XXX. Extract tokens
that are causally correlated to the different labels from the text in the data”.

2) Manual verification: We manually review the identified tokens and remove any erroneous
tokens that do not match human understanding of causality. This process is carried out by t-
wo master’s students and one doctoral student, using double-blind annotation and third-party
verification methods. Firstly, two individuals independently annotate the incorrect tokens. If
the annotations are consistent, these tokens are deleted. If the annotations are inconsistent, a
third party shall conduct an inspection 1. Finally, the golden causal correlation token set Gcau is
obtained.

Gcau = (Glabel1
cau ,Glabel2

cau , ...,Glabel j
cau ) (1)

where label j is the jth label in this task, and Glabel j
cau is the token set causally related to the label j.

Golden spurious correlation token set. According to experience, tokens that are not clas-
sified as having a causal correlation with the label are spurious correlation tokens. However, due
to the limitations of human cognition of causal correlation, treating all non-causal tokens as spu-
rious correlation tokens and deleting them may damage the model’s performance. In this paper,
the golden spurious correlation token set is defined to include both misclassified and irrelevant
tokens.

1) Misclassified tokens: For a given label, misclassified tokens are those that have causal
relationships with other labels. For example, the token “fail” has a stronger causal correlation
with the label “negative”, so it is considered a misclassified token when associated with the label
“positive”. The misclassified token set, GspuM

, can be derived from the causal token set Gcau as
follows:

Glabel j
spuM

= Glabel− j
cau (2)

1It is worth pointing out that due to the involvement of LLMs, the labor cost required to construct the golden causal
correlation token set is not high. The annotators are only responsible for verification work, which is not difficult. In the
end, we built approximately 8000 golden correlation tokens on the SA task, and nearly 7000 golden correlation tokens
on the NLI task.
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Golden correlation token set

Golden causal correlation token set Golden spurious correlation token set
- Misclassified tokens Irrelevant tokens

Positive Negative Positive Negative -

Yes, Happy, Char-
m, Award, Beauti-
ful...

Abnormal, Abol-
ish, Fail, Absurdly,
Paradoxical...

Abnormal, Abol-
ish, Fail, Absurdly,
Paradoxical...

Yes, Happy, Char-
m, Award, Beauti-
ful...

Where, A, Is,
When, He, She,
Boy, Men, Woman,
Girl...

Table 2: The examples of golden correlation token set in SA.

Golden correlation token set

Golden causal correlation token set Golden spurious correlation token set

- Misclassified tokens Irrelevant
tokens

En- Con- Neu- En- Con- Neu- -

Necessity,
Consisten-
cy, Indis-
pensable,
Sufficient,
Resultant,
...

No, Not,
Incon-
sistency,
Dispute,
Con-
fliction,
...

Balance,
Objectivity,
Impartiality,
Moderation,
Equi-
librium,
Neutrality,
Nonalign-
ment ...

Balance, Objec-
tivity, Impartial-
ity, Moderation,
Equilibrium,
Neutrality,...,
No, Not, In-
consistency,
Dispute, Con-
fliction, ...

Necessity, Con-
sistency, Indis-
pensable, Suffi-
cient, Resultan-
t, ... , Balance,
Objectivity, Im-
partiality, Mod-
eration, Equilib-
rium, Neutrality,
Nonalignment ...

Necessity,
Consisten-
cy, Indis-
pensable,
Sufficient,
Resultant,
... , No, Not,
Inconsisten-
cy, Dispute,
Confliction,
...

Where,
When,
What,
How,
Whether,
A, Is,
When,
He, She,
Boy,
Men,
Woman,
Girl...

Table 3: The examples of golden correlation token set in NLI. En- is the label of Entailment,
Con- is the label of Contradiction, and Neu- is the label of Neutral.

where label− j represents all labels except the jth label. Glabel j
spuM

is the set of misclassified tokens
associated with the jth label, while Glabel− j

cau refers to the causal token set related to the label− j,
i.e., the tokens that are causally related to labels other than jth label.

2) Irrelevant tokens. Tokens that are maximally or entirely unrelated to the labels are con-
sidered irrelevant, such as common words like where, is, a, etc. These tokens are collected to
form the irrelevant token set, GspuI

. The entire golden spurious correlation token set, Gspu, is
represented as:

Gspu = (Glabel1
spu ,Glabel2

spu , ...,Glabel j
spu )

Glabel j
spu = Glabel j

spuM
∪ GspuI

(3)

Tables 2 and 3 are examples of Gcau and Gspu in SA and NLI tasks.
Data Intelligence 7
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3.1.2. Identification of correlation token set
We obtain the correlation tokens through attention attribution analysis [7], which provides

an important observation perspective for the correlation analysis between the model’s internal
representations and external decisions. Specifically, we analyze the behavior of LMs at the token
level by computing and outputting the attention scores. We require our model to output attention
scores for each token when predicting labels. Tokens with higher scores contribute more to
the predicted label. From these, we extract the Top-K tokens to form the correlation token set
associated with the label. This process is formalized as follows.

Define f as a model trained on specific task. For each input example ei in the corpus D, we
obtain the attention scores a1

i , a2
i ,..., am

i corresponding to each token t1
i , t2

i ,..., tm
i in ei, where m

represents the token quantity in ei. We identify the Top-K tokens associated with the prediction
labels by analyzing the attention scores, forming a correlation set C = (Clabel1 ,Clabel2 , ...,Clabel j ),
where Clabel j is the correlation tokens set related to the jth label.

3.1.3. Neuron localization
We utilize an integrated gradient attribution strategy for neuron localization. We further

define the C, which represents the correlation set extracted by the language model f trained on
the corpus D.

C(D,wk
l ) = C(D,wk

l =ŵk
l ) (4)

Here, wk
l represents the kth neuron in the lth layer of the model f, and ŵk

l is its value. To compute
the gradient attribution score Attr(wk

l ) for the neuron, we gradually change wk
l from 0 to its

original value w̄k
l obtained from the language model, while integrating the gradient:

Attr(wk
l , predict)=

∫ 1

α=0

∂proximity(C(D,wk
l =αw̄k

l ),Glabel=predict)

∂wk
l

dα (5)

proximity(C(D,αw̄k
l ),G

label=predict) =
|C(D,αw̄k

l ) ∩ Glabel=predict|

|C(D,αw̄k
l )|

+

∑
token∈(C(D,αw̄k

l )∩Glabel=predict) attentiontoken

|C(D,αw̄k
l ) ∩ Glabel=predict|

(6)

Here, the “predict” refers to the output of the model with parameters wk
l .

∂proximity(C(D,wk
l =αw̄k

l ),G
label=predict)

∂wk
l

computes the gradient of proximity with respect to wk
l . Glabel=predict ∈ {Glabel=predict

cau ,Glabel=predict
spu }.

If Glabel=predict=Glabel=predict
cau , Formula 5 is used to locate causal correlation neurons, otherwise, it

is used to locate spurious correlation neurons. In Formula 6, the term proximity(C(D,αw̄k
l ),Glabel=predict)

represents the alignment degree between C(D,αw̄k
l ) and Glabel=predict. Specifically, it consists of two

parts. The first part
|C(D,αw̄k

l )∩Glabel=predict |

|C(D,αw̄k
l ) |

is used to calculate token-level alignment degree, which

measures the extent to which the elements in the set C(D,αw̄k
l ) also belong to the set Glabel=predict.

And the second part

∑
token∈(C

(D,αw̄k
l )
∩Glabel=predict) attentiontoken

|C(D,αw̄k
l )∩Glabel=predict |

is used to calculate the attention-level align-

ment degree, which measures the average attention score of tokens belonging to the Glabel=predict

∩ C(D,αw̄k
l ). An example of the proximity calculation process is shown in Figure 2.

8 Data Intelligence
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As α varies from 0 to 1, the integration of gradients accumulates the changes in proximity
due to the shift in wk

l . If a neuron significantly affects proximity, Attr(wk
l , predict) will be large,

indicating that the neuron encodes relevant causal or spurious correlation information.

Figure 2: An example of the proximity calculation process. The light gray part contains the
tokens along with their corresponding attention scores assigned during the model’s prediction.
The dark gray part is the model’s predicted output. The blue part lists the tokens ranked by
their attention scores. The green part represents the golden correlation tokens set Glabel=predict.
In this figure, the Glabel=predict=Glabel=predict

cau . The yellow part indicates the intersection between
C(D,αw̄k

l ) and Glabel=predict
cau , and the pink part is the sum of attention values for the elements in the

intersection.

3.2. Neuron parameter editing

After locating the neurons, we observe an overlap between neurons storing spurious corre-
lations and those encoding causal correlations. Adjusting the parameters of spurious correlation
neurons would inadvertently erase both types of information. To improve forgetting, we first set
the parameters of neurons encoding only spurious correlation information to zero. At the same
time, for neurons encoding both spurious and causal correlations, we adopt a neuron parameter
editing method based on the PSO, which can dynamically adjust the parameters of neurons to an
optimal combination based on the loss function, making the model forget spurious correlations
while maintaining the memory of causal correlations as much as possible.

The PSO algorithm is widely applied in parameter optimization, which is capable of iter-
atively searching for the optimal solution in a specified search space. The PSO algorithm has
the characteristics of low algorithm complexity, fast convergence speed, and strong robustness,
and has strong applicability in large-scale optimization problems. These characteristics meet our
low computational cost requirements for mitigation strategies. Its core components include the
particles, populations, fitness function, iterative process, and stopping criteria. In the context of
neuron editing, we formalize the problem as follows:
Data Intelligence 9
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• Particles and populations: Assuming there are n neurons that need to be edited by PSO.
We define x = (x1, x2, . . . , xi, . . . , xn), where xi is the ith neuron, and x is the value set of a group
of neurons, treated as a particle in the optimization process. Multiple particles together form a
population, denoted as X.

Each particle consists of two elements: position (x) and velocity (v). The position represents
the parameter values of the particle, while the velocity indicates the magnitude and direction
of changes in these values within the search space. Together, these components determine the
particle’s update during each iteration.
• Fitness function: The fitness function f evaluates the quality of a particle’s position. The

higher the fitness value, the higher the particle position quality, and the closer the particle is to
the optimal solution. The fitness function is:

f (x) = proximity(C(D,x),Gcau) − proximity(C(D,x),Gspu) (7)

where C(D, x) is the correlation set derived from dataset D when the model’s neuron parameters
are set to x.
• Iteration mechanism: The iterative mechanism combines individual learning and group

learning. Each particle updates its position and velocity based on its own best position, pi,
and the global best position, g. The particle’s best position is the position corresponding to the
highest fitness it finds during the search process, while the global best position is the position
corresponding to the highest fitness found by the entire population. The iterative mechanism is
as follows:

vi,t+1 =wvi,t + c1r1
(
pi,t − xi,t

)
+ c2r2

(
gt − xi,t

)
xi,t+1 =xi,t + vi,t+1

(8)

where vi,t is the velocity of the ith particle at the tth iteration, and w is the inertia weight balancing
the current and past velocities. c1 and c2 are learning factors adjusting the learning speed, while
r1 and r2 are random numbers introducing variability. xi,t represents the position of the ith particle
at the tth iteration. Through continuous iterations, the particle position x∗ that maximizes f is
obtained, which corresponds to the optimal combination of neuron parameters.

x∗ = argmaxx f (x) (9)

• Stop criteria: We set the maximum iteration number, with the optimization algorithm halt-
ing once this limit is reached.

4. Experiments and Analysis

In our experiments, we aim to answer the following research questions: RQ1: Can MacU
effectively enhance the model’s generalization capability? RQ2: Can MacU effectively correct
spurious correlation? RQ3: Is MacU scalable on models with different sizes? RQ4: Is spuri-
ous correlation information encoded in specific neurons? RQ5: Are neurons encoding causal
correlations and spurious correlations independent?
10 Data Intelligence
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4.1. Experimental setup

4.1.1. Tasks and benchmark datasets
In this paper, we conduct experiments on SA and NLI tasks. This is because they are fun-

damental tasks that can effectively evaluate the linguistic comprehension and reasoning abilities
of models. And many complex tasks, such as question answering and machine reading compre-
hension, can often be reformulated into forms similar to NLI or SA for resolution. Furthermore,
these tasks are widely used in research on spurious correlations [33, 1, 32, 5], and experiments
conducted on them facilitate fair comparisons among different methods. Specifically, we select
the following datasets.

(1) For the SA task, we use SST-2 [23] as the training and validation dataset, and then evaluate
the model’s generalization on different test datasets. Specifically, the test datasets are divided
into in-domain, out-of-domain, and challenge test sets. In this paper, we use the SST-2 as the
in-domain test set, and Yelp and IMDB [18] as the out-of-domain test sets. Human-CAD [15]
and Contrast [10] are employed as the challenging test sets. The dataset size is shown in Table
4, and the dataset information is as follows.

SST-2 [23]. It is an important benchmark dataset in the sentiment analysis task proposed by
Stanford University. This dataset includes approximately 67000 samples, and this paper uses a
subset of this dataset for training and validation.

IMDB [18]. It is a commonly used dataset in the field of NLP, mainly used for sentiment
analysis tasks. IMDB data mainly comes from information related to movies and TV programs.

Yelp. It is a dataset that contains rich user reviews and merchant information and is widely
used for sentiment analysis tasks. It is one of the important datasets for evaluating the perfor-
mance of NLP models.

Human-CAD [15]. It is a counterfactual dataset obtained by manually modifying existing
NLP datasets such as the IMDB and SNLI datasets. This dataset has been used by many stud-
ies as a challenging benchmark for spurious correlation mitigation research due to its unique
construction method.

Contrast [10]. It is created by Allen AI to evaluate whether a model truly understands
semantic logic, rather than relying on spurious correlations.

(2) For the NLI, we use the subset of SNLI [3] as the training and validation datasets, and
then evaluate the model’s generalization on different test sets. In this paper, we use the SNLI as
the in-domain test set, while MNLI [34] is used for the out-of-domain test set. The challenging
test sets include Human-CAD, Diagnostic [30], Stress [19], and Break [12]. The dataset size is
shown in Table 5, and the dataset information is as follows.

SNLI [3]. It is a large-scale NLI dataset developed by Stanford University, widely used for
evaluating models’ performance in understanding and inferring language abilities, and is one of
the important benchmark datasets in NLP.

MNLI [34]. It is a natural language inference dataset released by Stanford University and
New York University. Compared to SNLI, this dataset provides a wider range of contexts and
styles, making model training more challenging.

Diagnostic [30]. It is a manually constructed test set designed to evaluate the performance
of models on challenging language phenomena such as lexical semantics and logical abilities.

Stress [19]. It is constructed by conducting error analysis on the MNLI and designing adver-
sarial examples, providing a more comprehensive and rigorous standard for model evaluation.
And it is used to evaluate the antonyms and number reasoning ability of the model, as well as its
dependence on false vocabulary features.
Data Intelligence 11
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Split Train Validation Test

Dataset SST-2 SST-2 SST-2 IMDB Yelp Human-CAD Contrast

Number of samples 8544 1101 1818 487 5166 487 487

Table 4: Datasets size on SA task.

Split Train Validation Test

Dataset SNLI SNLI SNLI MNLI Human-CAD Diagnostic Stress Break

Number of samples 20000 2400 4801 9909 1000 1104 9822 8193

Table 5: Datasets size on NLI task.

Break [12]. It is an adversarial test set used to evaluate the model’s vocabulary reasoning
ability, which is constructed by replacing a single word in the premise of the SNLI dataset to
generate hypotheses.

4.1.2. Baseline methods
In addition to comparing with the Fine-tuning method that did not use any spurious correla-

tion mitigation operation, we also compare MacU with three types of approaches.
(1) Pre-processing: - AutoCAD [33] generates counterfactual data by modifying causal fea-

tures, and reduces the language model’s reliance on spurious features through retraining the
model, and achieves state-of-the-art (SOTA) performance. - Sentiment-CAD [37] automatically
generates counterfactual SA data and retrains the model to mitigate spurious correlations.

(2) In-processing: - NFL [5] is a regularization method that constrains changes in language
model parameters or outputs to prevent capturing spurious correlations from misalignment. -
C2L [6] makes the model more focused on robust features in the data through contrastive learning
method.

(3) Post-processing: - PoE [14] is an end-to-end unbiased method that adjusts the cross-
entropy loss based on predictions from a hypothesis-only biases model, reducing spurious corre-
lations learned during training.

4.1.3. Baseline models
In this paper, we select the baseline models based on a comprehensive consideration of their

popularity, architectural diversity, parameter scale, and open-source availability. The baseline
models are as follows:

BERT [8]: It is a typical model of the auto-encoding architecture, which provides powerful
contextual understanding capabilities through its bidirectional encoding mechanism. Evaluating
this model helps assess the applicability of our method on small models.

GPT-2[22]: It is a representative model of auto-regressive generative models. Evaluating it
helps us analyze the applicability of our method to the generative tasks.

LLaMA-2-7B[28]: It is a medium-sized model with roughly 7B parameters. It enjoys con-
siderable influence and widespread adoption within the open-source community.

Qwen-2-1.5B[27]: It is a small-scale open-source large language model with approximately
1B parameters. It holds significant influence in the open-source community and allows us to
validate the performance of our method on LLM with relatively limited parameters.
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Accuracy on the SA task

Methods In-Domain Out-of-Domain Challenge Avg.
SST-2 IMDB Yelp Human-CAD Contrast

BERT-base

Fine-tuning 90.30 84.01 86.51 74.13 70.94 81.17
AutoCAD 89.29 82.93 85.11 78.44 73.50 81.85
Sentiment-CAD 88.73 83.93 84.73 78.16 73.09 81.73
NFL 88.24 84.02 87.10 81.81 73.86 83.01
MacU (Ours) 90.52 87.68 87.71 80.17 75.42 84.30

AutoCAD +MacU 89.74 86.60 87.28 82.75 79.05 85.08
Sentiment-CAD +MacU 87.73 86.93 83.73 81.16 78.09 83.53
NFL+MacU 88.51 84.62 88.53 81.94 77.53 84.23

Table 6: The performance of BERT models trained using different methods on the SA task.

GLM-4-9B[11]: It is a large-scale model with around 9B parameters. Along with LLaMA-2,
it is recognized as a strong baseline in both Chinese and English research communities. Its inclu-
sion allows a comprehensive validation of the effectiveness and competitiveness of our proposed
method.

All baseline models are open-source, ensuring the reproducibility of the experiments and
the fairness of comparisons. Specifically, we first train the BERT models with various spurious
correlation mitigation methods on both SST-2 and SNLI datasets, and subsequently evaluate the
generalizability of these methods on different test data. Additionally, we also fine-tune the GPT-
2, LLaMA-2-7B, Qwen-2-1.5B, and GLM-4-9B models using the MauU method to verify the
applicability and effectiveness of MauU on larger-scale models.

4.1.4. Parameter settings
We train the Fine-tuning model using a batch size of 32, a training epoch of 10, and the

initial learning rate of 1e-5. In the PSO optimization algorithm, we set the maximum number of
iterations to 40, the particle optimization interval to [-1,1], c1 and c2 to 1.5, and w to 0.5.

4.1.5. Metrics
The method’s effectiveness is assessed based on the following metrics.
Accuracy [33]. Accuracy is used to assess the performance of the spurious correlation miti-

gation method on various test sets.
Average accuracy (Avg) [33]. Avg is the average performance of spurious correlation miti-

gation method on different test sets, used to evaluate the generalization.
Average proximity (η). η proposed in this paper is used to quantify the correction degree of

spurious correlations by mitigation method.

4.2. RQ1: Performence and generalization comparison

Tables 6 and 7 show the results of the BERT model (trained with various spurious correlation
mitigation methods on the SST-2 and SNLI datasets) on different test sets. We evaluate the
generalization of the model using the Avg. in the tables. The result analyses are as follows.

In-Domain: From the Tables 6 and 7, we observe that on the BERT model, compared to
the Fine-tuning, the performance of other methods decreases, whereas MacU shows a slight
Data Intelligence 13
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Accuracy on the NLI task

Methods In-Domain Out-of-Domain Challenge Avg.

SNLI MNLI Human-CAD Diagnostic Stress Break

BERT-base

Fine-tuning 84.37 61.85 56.35 49.18 59.42 60.45 61.93
AutoCAD 82.85 59.58 58.25 48.01 57.15 53.66 59.92

NFL 83.21 62.33 58.62 51.26 60.00 65.07 63.41
C2L 84.12 64.98 58.11 51.65 56.33 58.47 62.27
PoE 83.40 64.10 66.20 50.36 37.95 63.13 60.86

MacU (Ours) 84.76 65.27 59.43 52.26 60.03 62.14 63.98

AutoCAD + MacU 82.25 60.27 62.43 53.26 59.13 57.59 62.49
NFL + MacU 83.29 71.07 59.24 53.24 48.07 68.06 63.82
C2L + MacU 83.85 68.43 58.11 52.32 56.02 59.01 62.95
PoE + MacU 83.79 65.34 67.15 51.23 42.98 64.60 62.51

Table 7: The performance of BERT models trained using different methods on the NLI task.

improvement on in-domain datasets. This suggests that the MacU method, based on machine
unlearning, is more effective than the other methods.

Out-of-Domain and Challenge: From the model’s results on the out-of-domain datasets,
we observe that our method performs better. In Table 6, MacU outperform the Fine-tuning by
3.67% (87.68%-84.01%) and 1.20% (87.71%-86.51%) on the IMDB and Yelp, respectively. In
Table 7, MacU surpasses the Fine-tuning by 3.42% (65.27%-61.85%) on MNLI. Additionally,
MacU performs well on the challenge datasets. Notably, MacU achieves the highest Avg. score,
surpassing the Fine-tuning by 3.13% (84.30%-81.17%) on the SA task and 2.05% (63.98%-
61.93%) on the NLI task, demonstrating our machine unlearning-based method has superior
generalization ability.

In the tables, we find that although MacU outperformed other methods overall, it does not
achieve optimal performance on all datasets. This may be due to the characteristics of the dataset-
s. We discuss this issue in section 4.8.

Method+MacU. Furthermore, we enhance models trained using other methods with MacU,
observing a noticeable performance improvement. For instance, the Avg. accuracy of Auto-
CAD + MacU surpasses that of Auto-CAD by 3.23% (85.08%-81.85%) and 2.57% (62.49%-
59.92%) on the SA and NLI tasks, respectively. This suggests that models trained with other
mitigation strategies still retain some spurious correlations, which can be further eliminated by
MacU. Moreover, this demonstrates our approach is both plug-and-play and effective.

Overall, it can be seen that MacU can effectively alleviate the spurious correlation of the
model and improve its generalization ability.

4.3. RQ2: Spurious correlation correction capability comparison

In this section, we explore to what extent various mitigation methods corrected the spurious
correlations internalized by the model.

The average proximity η between C and Gspu quantifies the extent to which the model’s
behavior reflects spurious correlations. A lower value of η indicates that the model internalizes
less spurious correlation information, demonstrating stronger correction ability. Specifically, the
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Average proximity (η)

Methods SNLI SST-2

Fine-tuning 0.98 0.91
AutoCAD 1.01 1.05

Sentiment-CAD - 1.02
C2L 0.88 -
NFL 1.29 0.97
PoE 1.01 -

MacU (Ours) 0.84 0.87

Table 8: Average proximity η of models using different mitigation strategies. “-” represents no
experimental results, as these methods are not applicable on SST-2. To facilitate comparison, we
will normalize this value.

metric η for average accuracy is defined as:

η = proximity(C,Cspu)/len(D) (10)

Table 8 shows the η values of models trained with different strategies. It can be observed
that the model trained using MacU has the smallest η, indicating superior correction capability.
In contrast, other strategies exhibit weaker correction abilities. For instance, the η of Auto-CAD
is higher than that of Fine-tuning, suggesting that the model’s spurious correlation information
has not been effectively removed. This could be due to the fact that when Auto-CAD introduces
counterfactual data, it may also introduce additional spurious correlations.

4.4. RQ3: MacU’s Scalability on models with different sizes
We further extend our method to the LLMs. Tables 9 and 10 present the performance of

GPT-2, LLaMA-2-7B , Qwen-2-1.5B, and GLM-4-9B models fine-tuned using MacU on the
SST-2 and SNLI datasets, respectively. As observed, similar to the results with BERT, the LLMs
fine-tuned using the MacU method also showed better generalization ability.

It should be pointed out that due to the high computational complexity of the C2L strategy,
even with four A100, it is difficult to run on LLMs. Therefore, the relevant results are not present-
ed in the table. In contrast, the MacU strategy only requires a single A100. This comparison not
only highlights the advantages of our method in computational efficiency, but also demonstrates
its deployment convenience in practical application scenarios.

From Tables 9 and 10, we find that some methods exhibit different trends in performance on
LLM models compared to the BERT models, such as the Auto-CAD and Sentiment-CAD, which
significantly reduce generalization on larger models. This may be due to the mismatch between
the generated counterfactual data size and model requirements, as the LLMs often rely more on
spurious correlation patterns established in the pre-training stage rather than learning effective
causal representations from limited new samples.

4.5. RQ4: Neural encoding mechanism for spurious correlation information
We design the following experiments to confirm that spurious correlations or causal correla-

tions are indeed encoded in specific neurons.
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Accuracy on the SA task

Methods In-Domain Out-of-Domain Challenge
Avg.

SST-2 IMDB Yelp Human-CAD Contrast

GPT − 2

Fine-tuning 90.3 67.82 74.16 65.95 61.75 71.99
AutoCAD 87.85 67.39 66.71 64.22 63.03 69.84

Sentiment-CAD 80.46 72.54 71.12 51.33 60.78 67.24
NFL 89.79 68.36 72.43 66.48 62.78 71.93

MacU (Ours) 90.20 69.67 75.97 69.23 65.26 74.06

LLaMA − 2 − 7B

Fine-tuning 95.99 93.23 95.49 93.95 92.62 94.25
AutoCAD 95.82 93.03 94.81 92.52 90.37 93.31

Sentiment-CAD 95.44 90.78 91.37 87.09 78.28 88.59
NFL 95.76 93.86 94.98 93.15 91.47 93.84

MacU (Ours) 96.32 94.88 96.64 94.56 91.98 94.87

Qwen − 2 − 1.5B

Fine-tuning 94.28 95.49 97.13 92.82 91.39 94.22
AutoCAD 93.82 91.59 94.03 87.50 88.72 91.53

Sentiment-CAD 93.34 90.57 94.46 81.55 81.14 88.21
NFL 93.67 95.48 95.97 93.57 91.54 94.04

MacU (Ours) 94.35 96.73 97.94 93.13 93.26 95.08

GLM − 4 − 9B

Fine-tuning 97.69 95.49 97.81 95.29 94.06 96.06
AutoCAD 92.10 97.38 98.16 96.77 93.28 95.53

Sentiment-CAD 90.83 96.47 94.19 92.00 84.40 91.57
NFL 97.50 95.55 97.70 94.82 93.95 96.20

MacU (Ours) 97.59 96.67 98.07 97.03 94.86 96.84

Table 9: The performance of GPT-2, LLaMA-2-7B, Qwen-2-1.5B, and GLM-4-9B models
trained using different methods on the SA task.
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Accuracy on the NLI task

Methods
In-Domain Out-of-Domain Challenge

Avg.
SNLI MNLI Human-CAD Diagnostic Stress Break

GPT − 2

Fine-tuning 72.20 48.83 74.93 44.50 32.87 25.3 49.77

AutoCAD 66.30 43.66 65.75 38.49 34.30 22.96 45.24

NFL 68.49 49.26 73.28 46.58 35.56 26.68 50.02

PoE 69.57 50.21 76.89 43.87 28.96 27.89 49.56

MacU (Ours) 72.86 50.58 75.85 47.41 36.15 29.61 52.07

LLaMA − 2 − 7B

Fine-tuning 91.21 83.71 77.10 63.04 81.92 93.81 81.79

AutoCAD 91.05 83.95 77.35 63.28 82.15 93.67 82.01

NFL 90.87 83.52 76.89 62.75 81.63 91.45 81.18

PoE 90.42 83.10 76.50 62.30 81.25 90.20 80.62

MacU (Ours) 91.78 85.62 78.05 64.12 83.89 93.15 82.76

Qwen − 2 − 1.5B

Fine-tuning 90.56 80.78 71.27 59.87 78.46 87.75 78.11

AutoCAD 90.89 81.19 71.67 61.95 79.13 86.63 78.57

NFL 90.61 81.02 71.55 60.05 78.95 87.80 78.33

PoE 89.78 80.28 70.88 59.15 78.70 87.95 77.79

MacU (Ours) 90.48 82.54 72.94 62.27 79.89 88.26 79.56

GLM − 4 − 9B

Fine-tuning 92.29 85.76 75.48 65.85 83.20 89.88 82.07

AutoCAD 77.49 88.97 70.50 81.71 85.41 83.08 81.19

NFL 91.85 86.05 76.20 65.10 83.75 89.95 82.15

PoE 91.68 85.25 75.85 64.50 81.90 90.10 81.56

MacU (Ours) 92.34 87.98 77.62 67.35 84.69 89.71 83.28

Table 10: The performance of GPT-2, LLaMA-2-7B, Qwen-2-1.5B, and GLM-4-9B models
trained using different methods on the NLI task.
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Average proximity

Methods SNLI SST-2

Ori 1.06 1.01
Zero 0.90 0.95

Amplified 1.03 1.03

Table 11: Average proximity between the correlation token extracted by the model and the gold-
en spurious correlation when the neuron parameters change. To facilitate comparison, we will
normalize this value.

Activation values

Samples golden
label

prediction Activation values
of causal neurons

Activation values
of spurious neurons

unflinchingly bleak and desperate. 0 1 0.067 0.1240

What is 100% missing here is a
script of the most elemental litera-
cy, an inkling of genuine wit...

0 1 0.070 0.100

but taken as a stylish and energetic
one-shot , the queen of the damned
can not be said to suck.

1 0 0.062 0.086

good film , but very glum. 1 0 0.103 0.155

Table 12: The activation values of causal or spurious correlation neurons under different inputs.

(1) From neuron changes to model behaviors. We discuss the impact of changes in neuron
parameters on the extracted correlation tokens by the model. Specifically, we manipulate the
parameters of the identified spurious correlation neurons by setting them to 0 or amplifying their
values. Then, we observe the changes in the correlation tokens extracted by the model. Table
11 shows the average proximity between the identified correlation tokens and the golden spu-
rious correlation tokens during prediction after the identified spurious correlation neurons have
been set to 0 or amplified. (The smaller the average proximity value, the weaker the memo-
ry of spurious correlation information). It can be seen that after the neurons are set to 0, the
average proximity decreases, indicating that the model has forgotten the spurious correlation in-
formation. When the neurons are amplified, the average proximity increases, indicating that the
model’s memory of the spurious correlation information is also enhanced. These phenomena
indicate that these neurons do indeed encode spurious correlation information. (2) From pre-
dictive behaviors to neuron activation state. We discuss the activation state of neurons when
the model predicts incorrectly. Specifically, we observe the model’s output and analyze the ac-
tivation effect of the samples on the identified causal (or spurious correlation) neurons when the
model makes incorrect predictions. We analyze the activation values of several samples on the
identified causal correlation neurons and spurious correlation neurons. The samples and their
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corresponding activation values are presented in Table 12.
In Table 12, when the sentence “unflinchingly bleak and desperate” is input into the model,

we observe that the model incorrectly predicted a positive emotion. Through a detailed analysis
of the neuron activation patterns induced by this sentence, we find that the activation level of
spurious correlation neurons is significantly higher than that of causal neurons. This result sug-
gests that the model may not have fully understood the true emotional meaning of the sentence
but instead relied on the spurious correlations between the token “unflinchingly” in the sample
and the labels “positive” to make inferences, leading to an incorrect answer.

Based on the above analysis, we find that suppressing and amplifying located spurious cor-
relation neurons notably affects the extraction of the spurious tokens. Besides, we have observed
that when the model predicts incorrectly, neurons associated with spurious correlations tend to
be activated more readily than those related to causal correlations. These findings support our
hypothesis in section 1 that spurious and causal correlation information can be encoded in par-
ticular neuron groups.

4.6. RQ5: Distribution characteristics of causal neurons and spurious correlation neurons

We visualize the distribution of neurons encoding causal correlations and spurious correla-
tions in Figures 3 and 4. Figure 3 shows the independent distribution of spurious correlations
neurons and causal correlations neurons in BERT trained on SST-2 and SNLI datasets. Overall,
both types of neurons exhibit a pyramid-like distribution structure, with the majority concentrat-
ed in layers 8 to 12. Further comparison between Figure 3a and Figure 3c, as well as between
Figure 3b and Figure 3d, we can observe that causal correlation neurons are predominantly dis-
tributed in the deeper layers of the FFN, whereas spurious correlation neurons are mainly located
in the shallower layers of the network.

Figure 4 shows the joint distribution of causal correlation neurons and spurious correlation
neurons in the BERT model trained on the SST-2 and SNLI datasets. We observe an overlap
between neurons encoding causal correlation and spurious correlation information, indicating
that modifying spurious correlation neurons inevitably influences the model’s memory of causal
correlations. This suggests that a simple approach of setting all neurons to “zero” to eliminate
spurious correlations is not suitable.

4.7. Other comparative experiments

We conduct comparative experiments on neuron localization and neuron parameter editing
methods.

4.7.1. Comparison of localization methods
We compare the neuron localization method guided by the proximity between correlation

tokens identified by the model and golden correlation tokens with the method guided by the
model’s performance on the spurious-free dataset (The data are from the Human-CAD dataset).

Table 13 indicate that the localization method guided by the proximity outperforms the
performance-guided method, demonstrating its superior accuracy and effectiveness.

4.7.2. Comparison of neuron parameter editing methods
We compare the neuron editing method based on the PSO algorithm to the common “Zero”

method used in other machine unlearning studies, where neuron parameters are simply set to
zero. The results in Table 14 show that when the parameters of all identified spurious correlation
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(a) Spurious correlation neuron distribution map
in BERT trained on SST-2 dataset

(b) Spurious correlation neuron distribution map
in BERT trained on SNLI dataset

(c) Causal correlation neuron distribution map in
BERT trained on SST-2 dataset

(d) Causal correlation neuron distribution map in
BERT trained on SNLI dataset

Figure 3: Distribution of spurious and causal correlation neurons in BERT, showing a pyramid-
like structure. Causal correlation neurons are predominantly in deeper FFN layers, while spuri-
ous correlation neurons are clustered in shallower layers.

(a) The joint distribution map of neurons in the
BERT model trained on the SST-2 dataset

(b) The joint distribution map of neurons in the
BERT model trained on the SNLI dataset

Figure 4: The joint distribution of causal correlation neurons and spurious correlation neurons
in BERT. The red dots represent causal correlation neurons, blue dots represent spurious corre-
lation neurons, and green dots represent neurons storing both causal and spurious correlations
simultaneously. It can be observed that causal correlation neurons (red dots) are predominantly
distributed in deeper FFN layers, while those spurious correlation neurons (blue dots) are located
in shallower layers. Additionally, there is an overlap between these two types of neurons (green
dots).
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Accuracy on in-domain dataset
Methods SNLI SST-2

Localization guided by performance on samples 83.16 88.63
Localization guided by proximity 84.76 90.52

Table 13: Bert model performance under different neuron localization strategies.

Accuracy on in-domain dataset

Methods SNLI SST-2

Ori 84.37 90.30
Zero 83.20 89.46

PSO(Ours) 84.76 90.52

Table 14: Performance of BERT model with different neuron parameter editing strategies. In
the Table, “Ori” refers to the scenario where no adjustments are made to the neuron parameters.
“Zero” is to set the located spurious correlation neurons to 0.

neurons are set to zero, model performance decreases compared to the neuron parameter editing
strategy based on the PSO algorithm. This suggests that setting the parameters to zero not only
eliminates spurious correlations but also inadvertently disrupts certain causal correlations, lead-
ing to a decline in performance. In contrast, the PSO-based parameter editing strategy fine-tunes
the parameters, optimizing them to achieve a balanced state that allows the model to effectively
forget spurious correlations while retaining crucial causal information.

4.8. How do dataset characteristics affect the performance of spurious correlation mitigation
methods?

We explore the impact of dataset characteristics on the performance of spurious correlation
mitigation strategies.

In Table 7, we find that the PoE outperforms MacU on the Human-CAD and Break dataset.
To investigate the reasons for this phenomenon, we quantify the degree of hypothesis-only bias
contained in the nli test datasets used in this paper. Table 15 shows the performance of the Fine-
tuning model in different NLI datasets when the input is the original dataset versus when the
input contains only the hypothetical dataset. Observing the the performence on the hypothesis-
only input, a higher performence indicates that the BERT model contains more hypothesis-only
bias. It can be seen that compared to other datasets, the Human-CAD and Break datasets contain
more such hypothesis-only biases. The PoE method focuses on reducing hypothesis-only biases,
making it more effective for these two datasets. Furthermore, we conduct the experiment on
Human-CAD to evaluate the capability of the MacU in handling the ”hypothesis-only bias” .
We first select the samples that the model predicts incorrectly under the hypothesis-only input
setting. Then, we use the corresponding versions of these error samples from the original Human-
CAD dataset and construct a subset. On this subset, a correct prediction indicates that the model
remains unaffected by the hypothesis-only bias, whereas an incorrect prediction suggests that the
model may either rely on this bias or lack sufficient capability to make correct predictions. The
results of the model’s performance on this subset are summarized in Table 16, and it shows that
the MacU demonstrates a certain ability to mitigate hypothesis-only bias.
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Methods Accuracy

In-Domain Out-of-Domain Challenge

SNLI MNLI Human-CAD Diagnostic Stress Break

Original input 84.37 61.85 56.35 49.18 59.42 60.45
hypothesis-only input 45.34 40.61 46.64 34.51 39.98 76.49

Table 15: Fine-tuned BERT model performance (Accuracy) under original input and hypothesis-
only input.

Methods Accuracy

Fine-tuning 52.15
MacU 58.97
POE 69.54

Table 16: Performance of BERT models using different mitigation methods on the constructed
Human-CAD subset. Higher performance indicates a greater capability of the model to mitigate
hypothesis-only bias.

Besides, in Table 7, the performance of the NFL outperforms the MacU on the Break dataset,
which may be related to the dataset construction method. The Break is an NLI dataset con-
structed through the automatic replacement of words, where the replacement words are collected
from online resources for English learning. This automatic replacement may involve incorrect
clustering of many tokens. NFL is an effective regularization method that reduces spurious cor-
relations by preventing erroneous clustering. Therefore, NFL may achieve better performance on
the Break dataset.

4.9. Sensitivity experiments of the parameters in PSO

(a) The impact of changes in the w on
fitness score.

(b) The impact of changes in (c1, c2) val-
ue on fitness scores.

(c) The impact of changes in iteration
number value on fitness scores.

Figure 5: The impact of parameter values (w, c1, c2, and iteration number) in the PSO algorithm
on fitness. The horizontal axis represents the changing values of the parameter, and the vertical
axis represents the corresponding best fitness score.
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Methods data processing time model training/editing time overall time

AutoCAD 6.6 h 0.52 h 7.12 h
NFL - 2.50 h 2.50 h
C2L 1.54 h 1.13h 2.67 h
POE 0.35 h 0.78 h 1.13 h

MacU - 1.91 h 1.91 h

Table 17: Comparison of time consumption for adapting BERT using different spurious correla-
tion mitigation methods on NLI.

In this section, we conduct parameter sensitivity experiments to analyze how the best fitness
score varies with the parameters w, c1, c2, and iteration number. The experimental results on
Table 5 show that the fitness score reaches its maximum when the iteration number is 40, the
inertia weight w is 0.5, and both learning factors c1 and c2 are set to 1.5. Accordingly, this
parameter combination is adopted as the final configuration for the PSO algorithm in this paper.

4.10. Comparison of the time consumption

Under the experimental setting employing the BERT model and the NVIDIA GeForce RTX
3090 GPU on the SNLI dataset, we compare the time consumption of various spurious corre-
lation mitigation methods. As shown in Table 17, our method achieves the second-lowest time
consumption among all compared methods, superseded solely by the POE method. The primary
time consumption of our method is concentrated on the editing and optimization of model pa-
rameters, which fundamentally enhances the core capabilities of the model. In comparison, the
POE method only adjusts the model’s output without changing its parameters, which limits its
ability to generalize to different scenarios.

5. Discussion and Limitations

The MacU strategy effectively mitigates the model’s spurious correlations and demonstrates
broad applicability. To further elucidate the technical boundaries and limitations of this study,
we will conduct in-depth discussions around the following issues.

Human-Centric golden correlation token set construction. This paper adopts a research
method centered on human cognition in neuron localization, which combines LLM-assisted dis-
covery and manual verification to construct a set of golden correlation tokens aimed at accurately
locating neurons encoding relevant information. The design of this method is mainly based on
the following considerations: 1) The existing model-driven causal token extraction methods are
often limited by endogenous biases in the model, which may lead to incorrect token extraction.
2) Causal correlations have dynamic evolutionary characteristics, and their semantic boundaries
are constantly reconstructed with social context and technological evolution. Taking the evolu-
tion of the semantic network of “apple” as an example, before the electronic age, this concept
was mainly related to the stable category of “fruit”. However, with the rise of electronic technol-
ogy companies, their semantic focus has shifted towards the dimension of “electronic products”,
and traditional methods are difficult to effectively capture this “concept drift” phenomenon. In
the future, we will explore the human-machine collaboration method to achieve efficient and
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accurate discovery of causal correlation tokens by controlling the timing and degree of human
intervention.

Applicability of spurious correlation in individual semantic units. Our spurious correla-
tion mitigation method focuses on the spurious correlations between individual semantic units
(such as “failure” and “negative”), without fully considering the spurious correlations issues of
compound semantic units (such as “not fail” and “positive”). The reason is that spurious corre-
lations are common between two individual semantic units, and we’d like to investigate whether
the MacU method can effectively solve this kind of spurious correlation. In the future, we will
continue to explore the MacU method on the spurious correlations in compound semantic units.

Analysis of model behavior based on attention attribution. In section 3.1.2, we use the
attention attribution method to analyze model behavior. This method is widely used in academic
research and industrial applications due to its high computational efficiency and ease of integra-
tion. However, there may be a lack of stable causal correlation between attention weights and
model predictions. In the future, we will develop more reliable model interpretation methods,
striving to improve the reliability and scientificity of interpretation results while maintaining the
practicality of the methods.

6. Conclusions and Future Work

For the issue of spurious correlations between training data and labels that language mod-
els may internalize, we propose an innovative strategy, MacU, which effectively mitigates these
spurious correlations. The MacU strategy incorporates a novel neuron localization method, guid-
ed by the proximity between correlation tokens identified by the model and golden correlation
tokens, alongside a neuron editing approach leveraging the PSO algorithm. A large number
of experiments have demonstrated the superiority of our strategy in generalization and demon-
strated strong correction capabilities. Moreover, MacU does not require retraining the model
or constructing counterfactual datasets, making it both efficient and effective. In the future, we
will develop a strategy with more reliable model interpretation methods and solve the problem
of spurious correlation in compound semantic units.
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