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1 LSST to explore the deepest and widest optical sky: https://www.lsst.org/.
2 SDSS is one of the most successful surveys in the history of astronomy: https://

www.sdss.org/.
3 Euclid is an ESA medium class astronomy and astrophysics space mission: https://

www.euclid-ec.org/.
4 SKA is the flagship telescope being built in the field of radio astronomy: https://

www.skatelescope.org/.
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Astronomy is the oldest natural science based on observation,
and a census of objects in the sky map to create a catalog is the
basis for further research. This effort is achieved through astro-
nomical object detection, also known as ‘‘source finding”, which
aims to identify individual objects in an astronomical image and
then retrieve the properties of those objects to form a catalog.
The completeness, reliability, and accuracy of the resulting catalog
has a profound impact on astrophysical research.

We are currently in an era of explosive information growth,
where big data is revolutionizing human life, as well as changing
the paradigm of scientific research. For example, the Large Synop-
tic Survey Telescope (LSST)1 under construction will generate up to
20 terabytes of raw data per night, a scale comparable to that of the
Sloan Digital Sky Survey (SDSS)2 in a decade! The Euclid space mis-
sion3 is expected to create approximately tens of petabytes of total
data. The Square Kilometre Array (SKA)4 is taking the scale of astro-
nomical big data to a new level, generating raw data in a rate of sev-
eral Tera bits per second in its first phase (10% of the total scale) and
700 petabytes of scientific data per year [1,2]. The challenge for
astronomers around the world is how to access and utilize this mas-
sive amount of information.

Sky surveys with modern telescopes have led to a dramatic
increase in image size and quality, presenting enormous challenges
as well as opportunities for new discoveries. As an example, the
Australian SKA Pathfinder (ASKAP) all-sky survey is expected to
detect 70 million radio galaxies [3], and the classification and mor-
phology of these radio sources provide key information for under-
standing the formation and evolution of the Universe. However, it
is impossible to identify such a vast amount of objects by visual
inspection, and classifying the extracted sources is even challeng-
ing. To tackle these challenges, algorithms for automatic source
finding and classification need to be developed [4].
Early source finding algorithms were integrated in data process-
ing software packages. To process large astronomical data, a num-
ber of stand-alone source finding software packages have been
developed and offered higher reliability and accuracy than the
old ones. Artificial intelligence (AI) technology has been widely
used in industries, such as geological monitoring, robotics, autono-
mous driving, face recognition, medical image analysis, etc. Com-
pared to standard (non-AI) source finders in radio astronomy, AI-
based automated methods, especially deep learning (DL) methods,
aided by the acceleration of graphics processing unit (GPU)
devices, offer pronounced advantages in terms of operating speed.
Moreover, machine learning can also analyze data without our
instructions, i.e., it can identify unexpected patterns, e.g., identify-
ing more types of galaxies. This new discovery capability will cer-
tainly improve our understanding of the Universe.

Convolutional neural networks (CNNs) are the best performing
image recognition classifiers in academia and industry. Recently,
many DL-based astronomical source detectors or classifiers have
been developed ([5,6] and references therein), and they are divided
into single-stage and two-stage algorithms: the former is faster but
less accurate and suitable for fast detection; the later is more accu-
rate but slower. A suitable CNN architecture needs to be chosen
according to the task requirements, with a trade-off between
recognition precision and computational cost.

Among the region-based CNN (R-CNN) family, Faster R-CNN has
the advantage of faster training speed and easier data annotation.

CLARAN [5] v0.1 is a detector built on top of Faster R-CNN, and it
can locate and associate the radio source components with �90%
precision, making it one of the highest-precision CNN-based classi-
fiers. However, the performance of CLARAN v0.1 is limited by the
backbone network it uses, Visual Geometry Group Network
(VGGNet). When the number of network layers of VGGNet
increases, the model complexity increases and the recognition per-
formance decreases accordingly; in addition, increasing parame-
ters significantly increases the computational complexity,
training time, and GPU memory usage. Another shortcoming of

CLARAN v0.1 is that it can only classify radio sources by peak and
component, and lacks relevance for extended sources. In fact, most
of the commonly used source finders can only identify compact
point-like sources, rather than directly identifying and classifying
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extended sources, which is done by visual inspection in post-
processing.

To overcome these shortcomings, we construct a new source
finder, named HETU

5, based on an improved CNN model and a new
classification method. HETU uses a combined network structure with
Residual Network (ResNet) and Feature Pyramid Networks (FPN) as
the backbone network. It exploits the advantage of ResNet in balanc-
ing recognition precision and computational cost and the advantage
of FPN in multi-feature object detection. As a result, HETU not only
increases the network depth, but also provides multi-scale feature
maps without causing a significant decrease in running speed. In this
study, we used two different layers (50 and 101 layers) of ResNet,
the generated models are called HETU-50 and HETU-101, respectively.
The backbone network ResNet50-FPN is also used in CLARAN v0.2
[4]. The workflow of HETU is depicted in Fig.S1 (online) and the HETU

network is discussed in details (see the Supplementary materials
Sections2.3 and 2.4).

We run three experiments to verify the performance of HETU: (1)
the training experiment; (2) the testing experiment; (3) the pre-
dicting experiment. All experiments were conducted on the China
SKA Regional Centre Prototype [7] (see the Supplementary materi-
als Section3).

In the training experiment, we used the same datasets and the
same source classification scheme as CLARAN [5] in order to compare
the results. The metric of the mean Average Precision (mAP) [8]
increases from 78.4% for CLARAN to 86.7% for HETU-50 and to 87.6%
for HETU-101 (Table S3 online), indicating a significant improve-
ment in the recognition performance of HETU compared to CLARAN.
mAPs obtained from HETU are also much higher than those derived
from the ResNet models alone (Tables S3–S5 online), validating the
higher performance of the combined ResNet-FPN network. The
deeper HETU-101 network increases the precision by 0.9% over HETU-
50, therefore, HETU-101 is used for both testing and predicting
experiments. We also found that HETU’s performance is not strongly
dependent on the dataset used and it is therefore widely adaptable.

HETU supports parallel execution using multiple GPU devices, and in
our training experiment the training speed is 2.5 times faster than
without parallelism.

In the testing experiment (see the Supplementary materials
Section3.2), we used a different source classification scheme from

CLARAN. HETU automatically locates radio sources in the images and at
the same time assigns them to one of the four classes according to
their morphology: compact point-like sources (CS), Fanaroff-Riley
type I (FRI) sources characterized with a central core and promi-
nent two-sided jets which are weaker further from the core,
Fanaroff-Riley type II (FRII) sources characterized by two promi-
nent terminal components with symmetric shapes, and core-jet
(CJ) sources showing a bright core component at one end of an
elongated weaker jet feature. This classification scheme encom-
passes most of the radio sources with practical astrophysical
meaning. We re-labelled all images of the training dataset by visual
recognition according to the new classification scheme. To avoid
overfitting due to the imbalance of the different classes, we used
the data augmentation technique to enlarge the FRI, FRII and CJ
samples. It took 4.9 h to train the workflow of HETU-101 over
40,000 steps for the re-labelled augmented dataset on 8 GPU
devices. The processing time is about 5.4 ms per image, two orders
of magnitude faster than the visual recognition. mAP is 94.2% for
the re-labelled augmented dataset, 4.3% higher than the unaug-
mented dataset (Table S7 online). The average precisions (APs)
for some source classes are as high as 0.994 (CS) and 0.981 (FRII).
After augmentation, increasing the network depth did not greatly
5
HETU is named after two mysterious patterns handed down from ancient China,

which contains profound cosmic astrology.
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improve the recognition performance. Moreover, the total loss
curves show that the training model for the augmented dataset
is stable for all classes (Fig.S9 online).

Based on the successful establishment of the training set and
CNN model from the training experiment, we applied HETU to the
practical astronomical data processing (the predicting experiment,
see details in the Supplementary materials Section3.3). We used

HETU for source detection and classification on the images from
the all-sky survey GLEAM [9] observed with the SKA-low precursor
telescope MWA [10], and compared the results with those
obtained with the traditional source finding software AEGEAN [11].

HETU’s detection (and classification) speed is 100 ms per image,
21 times faster than AEGEAN. If only the identification task is per-
formed without classification (Gaussian fitting), HETU’s runtime is
even �2.5 times faster. We cross-matched the sources detected
by HETU and AEGEAN with a search radius of 30 arcsec. The cross-
matching fraction varies when different detection thresholds are
adopted (Table S8 online). For example, when the detection thresh-
old is 6r, the cross-matched CS objects account for 94.5% of the

HETU-detected CS sources and 94.3% for the AEGEAN-detected CS
sources. If the detection threshold is set to 5r, the cross-match
rates change to 96.9% and 89.2% for the HETU and AEGEAN CS catalogs.
A lower detection threshold results in more weaker sources
detected, but at the cost of introducing more fake sources. A large
fraction of the un-matched sources are found at the image edges
(e.g., Fig.S14 online), and they are discarded by HETU since HETU con-
siders them morphologically incomplete. At lower thresholds,

AEGEAN detects fake sources associated with sidelobes of very bright
sources, which are not identified by HETU. The predicting experi-
ment shows that HETU not only has high recognition precision,
but also has excellent ability in identifying weak sources (Fig.S16
online).

HETU is able to classify the detected sources into relevant classes
while recognizing them; in contrast, AEGEAN only identifies the com-
ponents of a source and can not directly determine whether there
is a connection between adjacent components, leading to the clas-
sification of extended sources to be done in an offline manner by
visual inspection. After associating the HETU-detected extended
sources with the brightest component of the corresponding AEGEAN-
detected sources, we found that the cross-match rate is 100% for
FRII, 97.4% for FRI and 97.6% for CJ classes (Table S8 online), respec-
tively, indicating that HETU performs very well in identifying
extended sources.

The ongoing and upcoming large radio continuum survey pro-
jects using the SKA pathfinder telescopes6 and SKA itself will pro-
duce a tremendous amount of images. Automated and accurate
source finding and classification tools are particularly important to
support these large sky surveys and to mine the data archive. Future
predicting experiments will be performed to further improve HETU’s
recognition performance and speed, to support larger-scale images
and to focus more on extended sources.

Neural networks have a deeper understanding of data than
expected, but require large data sets for training (learning), and
the vast Universe provides neural networks with a naturally enor-
mous amount of data, and AI will undoubtedly have a profound
impact on astronomy. However, it is important to note that AI
can only perform certain tasks well if there is a large, correctly
labelled dataset to learn from, and the trained model performs a
single type of tasks. In other words, AI is not an ‘‘all-around cham-
pion”. But even so, the speed and efficiency of AI is increasingly
shaping our understanding of the natural world. The network
framework of HETU is used not only for astronomical source identi-
6 See latest advances of the SKA pathfinder telescopes at 2021 SKA Science
Meeting: https://www.skatelescope.org/skascicon21/.
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fication and classification but also in other fields such as medical
CT image analysis (e.g., automated tumor detection).
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