铅-二甲酚橙络合吸附波及 食糖中铅的测定*

李启隆

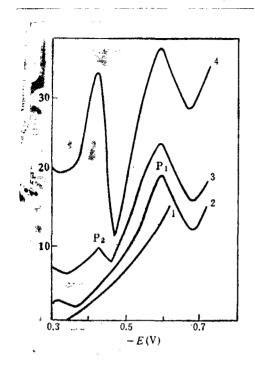
冯晓红

(北京师范大学化学系)

(中国肉类食品综合研究中心)

摘 要

铅-二甲酚橙(XO)络合物的极谱行为的研究 迄 今 尚 未 报 导 过。XO 在 0.025 mol/L (NH4)2SO4, 0.1 mol/L 大次甲基四胺的溶液(PH5.0)中,出现一 还 原 被, $Ep_1 = -0.64 \text{V}$ (vs.SCE)。 再加入微量的 Pb(I) 后,在较正的电位上出现 一 灵 敏 的 还 原 被, $Ep_1 = -0.64 \text{V}$ (vs.SCE)。再加入微量的 Pb(I) 后,在较正的电位上出现 一 灵 敏 的 还 原 被, $Ep_1 = -0.44 \text{V}$, $i_p = C_P \cdot b_{(II)} \cdot 45 \times 10^{-8} - 2 \times 10^{-6} \cdot 40 \text{Mol/L}$ 范围内成线性关系,并用于食精中微量铅的测定,方法简便、可靠。用等摩尔连续变化法确定络合物的络合比为1:1。用单扫示波极谱、循环伏安法、常规脉冲极谱等研究极谱波的性质及其机理。实验证明。该波为络合吸附波。


Veber等^[1]对二甲酚橙(XO)的极谱行为进行过研究,高小霞等^[2]和李启隆等^[3]分别研究了XO 与铕和铜的络合吸附体系,但有关铅-XO 络合物的极谱行为,则迄今尚未见到报导。XO在0.025mol/L(NH)₄SO₄,0.1mol/L六次甲基四胺的溶液(pH5.0)中,在-0.3—-0.8V范围内出现一还原波,峰电位 $E_{P_1}=-0.64$ V(vs.SCE)。如再加入微量Pb(II),则在较正电位出现一灵敏的还原波(见图 1),其峰电位 $E_{P_2}=-0.44$ V,峰电流i,与铅浓度在 5×10^{-8} — 2×10^{-6} mol/L 范围内成线性关系,可用于食用糖中微量铅的测定。用等摩尔连续变化法确定络合物的络合比为1:1。用单扫示波极谱、循环伏安法、常规脉冲极谱等研究极谱波的性质及其反应机理。实验证明,该波属于络合吸附波。

实验部分

仪器 JP-2 型示波极谱仪,三电极系统,饱和甘汞电极为参比电极; pH S-2 型酸度计,501型超级恒温器, PAR 370-8M Electrochemistry System (美国).

试剂 $0.25 \text{mol/L}(NH_4)_2SO_4$, 1 mol/L 六次甲基四胺溶液 (pH5.0); 1.0×10^{-2} mol/L XO. 准确称取0.7606g XO(A.R)溶于水中,定容 100 ml, 用时再适 当 稀 释; $1.0 \times 10^{-2} \text{mol/L}$ 铅标准溶液;准确称取0.3312g Pb $(NO_3)_2(A.R)$,加少量稀HNO₃,加水溶解,定容 100 ml,用时再适当稀释。

^{*} 国家自然科学基金资助课题。曾在1988年9月全国第二届无机微量及痕量分析学术讨论会上宣读过。

🛭 1 单扫示波极谱导数波

Fig.1 Derivative waves of single sweep polarograph

- (1) 0.025mol/L(NH4)2SO4+0.1mol/L 六次甲基四胺
- (2) (1) $+2.0 \times 10^{-5}$ mol/L XO
- (3) (2) $+1.0 \times 10^{-7} \text{mol/L Pb}(\mathbf{I})$
- (4) (2) $+1.0 \times 10^{-6} \text{mol/L Pb}(\mathbf{I})$ PH5.0 S = 0.06

所用水均为二次去离子水再经蒸馏。

结果与讨论

1. 实验条件的选择

- 1.1 支持电解质 试验了 HAC-NaAC、邻苯二甲酸氢钾 (KHP) 和 (NH₄)₂SO₄-六次甲基四胺等支持电解质。实验表明,在 (NH₄)₂SO₄-六次甲基四胺溶液中,峰电流较高,波形较好,且与 XO 的还原波分离较远,故选择它为支持电解质较适宜。
- 1.2 (NH)₄₂SO₄- 六次甲基四胺溶液的浓度 随着支持电解质的浓度增加, $i_{\bar{p}}$ 上升 至稳定值,认为取 0.025mol/L (NH₄)₂SO₄—0.1mol/L六次甲基四胺为宜,见图2a.
- 1.3 XO的浓度 XO的浓度对络合吸 附波影响很大。当 $C_{xo} = 0$ 时, i_0 为0,随 XO浓度增加, i_0 迅速上升至稳定值,取 $C_{xo} = 2 \times 10^{-5} \text{mol/L}$ 为官。见图 $2b_0$
- 1.4 pH值的影响 pH对络合物 i, 的影响如图2c所示。pH<3, i, 为0, 随pH

值上升,i。增加,pH4.3-5.9 之间出现稳定值,pH>5.9 后,i。迅速下降,认为以取 pH5.0为好。

- 1.5 稳定性 溶液配制后i,即达稳定值,放置32h,i,仍无变化,表明稳定性较好。
- 2. 工作曲线及食糖中微量铅的测定
- 2.1 工作曲线 在上述最佳**实**验条件下作铅的工作曲线,如图 3 所 示。在 铅 浓 度 5.0×10^{-8} 2.0×10^{-8} —
- 2.2 干扰离子的试验 1000倍Cl-, Br-, 260倍Cd²⁺, 186倍 Ca²⁺, 50倍 Mg²⁺, Mn²⁺, Fe³⁺, 15倍Ni²⁺, 5倍 Cu²⁺, Zn²⁺, 2.5倍 Sn²⁺, Bi³⁺ 均不干扰, I-干扰严重.

2.3 回收率和食糖中微量铅的测定

(1) 试样处理方法,准确称取20g左右古巴糖或中国红糖,置于 50ml石英坩埚中,加水少许,搅拌成糊状。放置在电炉上小心缓慢加热使冒烟,待冒烟少时提高温度使之炭化,然后放入高温炉中,慢慢升温至 350℃,恒温1h,再升温至 500℃ 使之灰化,再恒温3h。取出冷却。以少量水润湿,加4mL 2mol/L HNO₃使溶解,转移至25ml容量瓶中,加水稀释至刻度,摇匀。

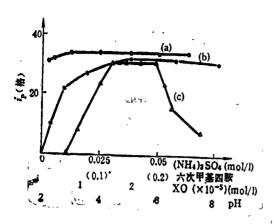


图 2 实验条件的选择

- a. (NH₄)₂SO₄-六次甲基四胺 (2×10⁻⁵mol/L XO, 1.0×10⁻⁶mol/L Pb(I), PH=5.0)
- b. XO (0.025mol/L(NH₄)2SO₄, 0.1mol/L六次甲基四胺, 1.0×10⁻⁶mol/L Pb(I), PH=5.0)
- c. pH (2×10⁻⁵mol/L XO, 其它条件同b), S=0.06 Fig.2 Selection of experimental conditions

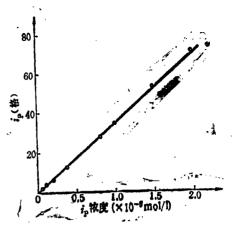


图 3 工作曲线
0.025mol/L(NH₄)2SO₄,
0.1mol/L六次甲基四胺,
2.0×10⁻⁵mol/L XO,
PH=5.0
S=0.06

Fig. 3 Calibration curve

(2) 测定方法: 取适量上述试液 于 20ml 小 烧杯中,加 入 2.0mL 2.0×10^{-3} mol/L XO,摇匀,加入 1.0mL 0.25mol/L (NH₄) $_2$ SO₄-1mol/L 六次甲基四胺溶液,再加水至 10.0ml,摇匀。用标准溶液加入法测定微量铅的含量和方法回收率。为了对照,还用原子吸收分光光度法进行测定。测定结果见表 1 。

表 1 測 定 结 果

Table 1 Analytical results of lead in sugar

试 样	原子吸收分光光度法		本		法		
	测 得 值 (μg/g)	平均值 (µg/g)	测得值 (μg/g)	平均值 (μg/g)	加入Pb(I)量 (µg)	剥得值 (μg)	國 收 率 (%)
古巴糖	1.05	1.07	1.04	1.11	0,518	0.472	91,1
	1.03		1,12			0.472	99.4
	1.12		1,18			0.468	90.3
中国红糖	0.28	0.27	0.27	0.26	0.21	0.20	95
	0.27		0.24			0.22	105
	0.26		0.27			0.17	81

从表 1 可见,本法的回收率在 81—105% 之间,而且测得结果与原子吸收分光光度 法所测颇吻合,因此,可用于直接测定食糖中微量的铅,方法简便、可靠。

3. 络合物络合比的测定

XO在支持电解质 (pH5.0) 中呈黄色,加入 Pb(Π) 后呈橙红色,表明形成了络合物。用等摩尔连续变化法,在单扫示波极谱仪上测得结果如 图 4 所 示,Pb(Π):XO=1:1,以[Pb(H_3 L)]²⁻表示。

4. 极谱波的性质及其反应机理

- 4.1 温度和表面活性物质的影响 在19—28℃间的平均温度系数为+3.7%/℃,比扩散波的温度系数大;在28—44℃间的峰电流几乎不变。加入动物胶或聚乙烯醇,均使峰电流下降;当加入 \geq 0.01%动物胶或 \geq 0.008%聚乙烯醇后极谱波消失。这些实验表明极谱波具有动力性和吸附性。
- 4.2 静止时间的影响 在 370—8M Electrochemistry System (三电极系统, 悬汞电极, As/AgCl为参比电极) 上, 做了静止时间的影响实验, 结果示于图 5. 峰电流随

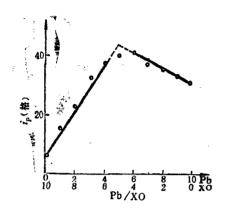


图 4 络合比的测定 0.025mol/L(NH₄)2SO₄ 0.1mol/L六次甲基四胺 PH=5.0

Fig.4 Determination of complex composition

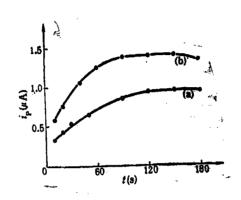


图 5 静止时间对峰电流的响影
0.025mol/L(NH₄)290₄ 0.1mol/L六次甲基四胺
2×10⁻⁵mol/L XO
a.5.0×10⁻⁷mol/LPb(I),b.1.0×10⁻⁶mol/LPb(I)
PH=5.0, v=100mV/s, S=1µA
Fig.5 Influence of rest time on the peak
current

静止时间增加而上升。120s 后达到稳定值,表明该体系具有**吸附性**,且达到**吸**附 平 衡需要一定的时间。

4.3 扫描速度的影响 如图 6 所示,峰电流与扫速成直线关系(图6a),与扫速的平方根关系是偏离直线而上翘(图6b);峰电位随扫速增加而稍向负移,表明电极反应物为吸附类型^[4]。

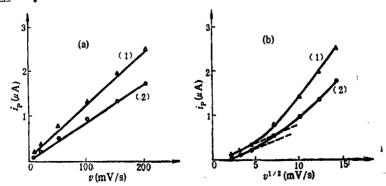
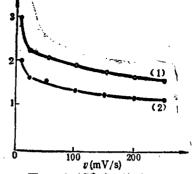
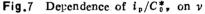


图 6 扫速对峰电流的影响 a. i_p-ν, b. i_p-ν₁₇², (1) 1 × 10⁻⁶mol/L Pb(I), (2) 5 × 10⁻⁷mol/L Pb(I), 静止时间2min, S=1μA

Fig.6 Effect of scan rate on the peak current


 $4.4 i_{\mathfrak{p}}/C_{\mathfrak{p}}^*$,与 ν 的关系 如图7所示。 $i_{\mathfrak{p}}/C_{\mathfrak{p}}^*$,随 ν 增加而迅速下降至水平直线。如果是完全吸附波,则 $i_{\mathfrak{p}}/C_{\mathfrak{p}}^*$,- ν 应为水平直线^[5]。实验表明,当扫速较快时,电极过程受吸附控制。

4.5 循环伏安图 如图 8 斯示。从较正电位向负电位扫描(正扫)时出现两个尖的还原峰,其中 P_1 为试剂XO的还原峰, P_2 为 $(Pb(H_2L))^2$ -络合物的还原峰,反扫时, P_1 对应的氧化峰并不明显, P_2 对应的氧化峰较明显, ΔE_p =40mV,是汞齐中Pb(0)的氧化。第二次扫描时, P_1 和 P_2 的峰高均降低,其中 P_1 降低更明显。这表明试剂XO和络合物 $(Pb(H_3L))^2$ -均能在电极上吸附,而XO的吸附能力较弱。


4.6 NPP图 正扫时(Pb(H₃L))²-的 还原波呈峰形,而反扫则不明显,也表明 了络合物具有吸附性。

以上实验表明,我们所研究的体系属于络合吸附波。在pH为5.0 的溶液中,XO主要以H₈L⁴-形式存在¹⁸¹,与Pb(II)形成1:1的络合物。此络合物吸附在电极表面后,其中Pb(II)在电极上还原,形成灵敏的络合吸附波。整个电极过程,包括络合反应,可表示为:

Pb(I) + H₃L⁴- (Pb(H₃L))²- (Pb(H₃L))²- 吸附 (Pb(H₃L))²- 吸附 + 2e + Hg = Pb(Hg) + H₃L⁴-

■ 7 i_p/C₀, 与v关系
(1)5×10⁻⁷mol/L Pb²⁺,(2)1×10⁻⁶mol/L Pb²⁺
0.025mol/L(NH₄);SO₄-0.1mol/L(CH₂)₆N₄
PH为5.0, 2×10⁻⁵mol/L XO

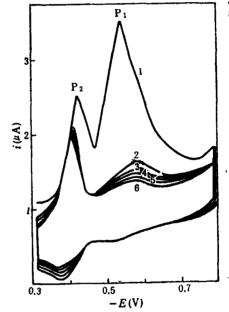


图 8 循环伏安图

0.025mol/L(NH4)2SO4-0.1mol/L六次甲基四胺
2×10⁻⁵mol/LXO,1.0×10⁻⁶mol/L Pb(I)

PH为5.0,v=100mV/s,S=0.5µA

静止时间2min 图中数字为扫描次数

Fig.8 Cyclic voltammetric curves

参考文献

- [1] Veber M, Csangi L J, 1979. J. Electroanal. Chem., 101:419
- [2] 高小霞, 张曼平, 1982。中国科学, (13) 5:398
- 〔3〕李启隆、狄青,1987。北京化学会1987年度年会论文集,上册,18页
- [4] Bond A. M., 1981. Modern Polarographic Methods in Analytical Chemistry. Marcel Dekker Inc., New York, 195
- [5] 李启隆。李松梅, 1989。电分析化学, 1:65
- [6] 武汉大学等五校编, 1978。分析化学, 人民教育出版社, 230页

1988年6月14日收到。

STUDIES ON THE COMPLEX WAVE OF LEAD-XYLENOL ORANGE AND DETERMINATION OF LEAD IN SUGARS

Li Qilong
(Department of Chemistry, Beiling Normal University)

Feng Xiaohong
(Chinese Comprehensive Research Centre of Meat)

ABSTRACT

This paper reports the polarographic behavior of lead-xylenol orange(XO) complex. In a supporting electrolyte containing $0.025 \text{mol/L}(NH_4)_2 SO_4$ and 0.1 mol/L hexamine (pH5.0), a sensitive wave of lead-XO has been obtained by using linear sweep voltammetry. The peak potential is 0.44 V(vs.SCE). The change of peak height with the concentration of lead is linear in the range from 5×10^{-8} to $2 \times 10^{-8} \text{mol/L}$, and the method described is applicable to the determination of lead in sugars. In the solution, the composition of the complex has been determined to be 1:1. The wave has been proved to be an adsorptive wave by several experiments.