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Abstract
Nuclear medicine therapy offers a promising approach for tumor treatment, as the energy emitted during radio-
nuclide decay causes irreparable damage to tumor cells. Notably, α-decay exhibits an even more significant de-
structive potential. By conjugating α-nuclides with antibodies or small-molecule inhibitors, targeted alpha therapy
(TAT) can enhance tumor destruction while minimizing toxic side effects, making TAT an increasingly attractive
antineoplastic strategy. Astatine-211 (211At) and actinium-225 (225Ac) have emerged as highly effective agents in TAT
due to their exceptional physicochemical properties and biological effects. In this review, we highlight the appli-
cations of 211At-/225Ac-radiopharmaceuticals, particularly in specific tumor targets, such as prostate-specific mem-
brane antigen (PSMA) in prostate cancers, cluster of differentiation (CD) in hematological malignancies, human
epidermal growth factor receptor-2 (HER2) in ovarian cancers, and somatostatin receptor (SSTR) in neuroendocrine
tumors. We synthesize the progress from preclinical and clinical trials to provide insights into the promising
potential of 211At-/225Ac-radiopharmaceuticals for future treatments.
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Introduction
From 1991 to 2021, the cancer mortality rate had a notable
reduction of 33%. However, the incidence of cancer continues to
increase, with malignant tumors being the second most formidable
health threat to humans [1]. Nuclear therapy, particularly radio-
immunologic drugs and small-molecule inhibitors, is a promising
approach for treating small, diffuse, and micrometastatic tumors.
The study of radioactivity originated in 1895 with Roentgen’s
discovery of X-rays, and groundbreaking discoveries such as the
identification of natural radiation, α-rays, and artificial radioactivity
laid the foundation for synthesizing and utilizing radionuclides. The
use of iodine-131 (131I) marked a pivotal milestone in radiation
diagnosis and therapy, and various β-/γ-nuclides, such as fluorine-
18 (18F), yttrium-90 (90Y), gallium-68 (68Ga), iodine-125 (125I),
iodine-131 (131I) and lutetium-177 (177Lu), have promoted signifi-
cant advancements in nuclear medicine. Although radium-223
(223Ra) remains the sole α-nuclide approved by the Food and Drug

Administration (FDA) for commercial use so far, targeted alpha
therapy (TAT) holds immense clinical importance.

Firstly, α-nuclides decay releases energy ranging from 4 to 8 MeV
within a limited range of approximately 100 μm, leading to high
energy deposition, and the peak relative biological effect (RBE)
occurs when the linear energy transfer (LET) approaches
~100 keV/μm [2–4]. Secondly, the average ionization path length
of α-particles in cells is closely comparable to the diameter of the
deoxyribonucleic acid (DNA) double helix, potentially resulting in
irreparable damage to genetic material. Moreover, their cytotoxicity
remains unaffected mainly by dose or oxygen level, rendering them
highly effective at eliminating hypoxic tumor cells [5].

So α-nuclides are predominantly employed in therapeutic
applications, whereas β-particles serve dual roles in diagnosis and
treatment. Their energy ranges from 30 keV to 2.3 MeV, with a path
length of 0.05 to 12 mm; the low LET of approximately 0.2 keV/μm
causes sparse single- and double-strand breaks in DNA. Currently,
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the utilization of 18F and 68Ga in imaging diagnostics has reached a
relatively advanced stage, while 131I is widely applied for treating
thyroid diseases. Additionally, a phase III trial involving 831
patients with metastatic castration-resistant prostate cancer
(mCRPC) demonstrated that 177Lu-PSMA-617 significantly pro-
longed their survival [6].

To increase the enrichment of radiopharmaceuticals in tumors,
researchers have coupled α-nuclides with antibodies or small-
molecule inhibitors via succinimidyl N-2-(4-211At-phenylethyl)
succinamate (SAPS), closo-decaborate (2-) (B10), 1,4,7,10-tetra-
azacyclododecane-1,4,7,10-tetraacetic acid (DOTA), their deriva-
tives, and other specific chelators (Figure 1). Radiopharmaceuticals
exhibit increased potential as our understanding of tumor molecular
mechanisms intensifies and novel targeted vectors arise. Astatine-
211 (211At), bismuth-212 (212Bi), lead-212 (212Pb), bismuth-
213 (213Bi), thorium-227 (227Th), and actinium-225 (225Ac) have
been evaluated in preclinical and clinical studies on the basis of the
appropriate half-life, minimally toxic decay products, and relatively
uncomplicated production circumstances [7]. Herein, we present a
brief overview of the targets and indications for 211At-/225Ac-
radiopharmaceuticals, review relevant preclinical studies and
clinical trials, and delineate advancements in targeted 211At/225Ac
complexes over the past decade. Our objective is to serve as a

reference for opinions in research on nuclear therapeutics.

Characteristics of 211At and 225Ac
Initially discovered in 1940, astatine encompasses 39 isotopes,
among which 211At (T1/2 = 7.2 h) is the solitary isotope appropriate
for the TAT [8]. 211At decays to stable 207Pb via the emission of an α-
particle with a simple dose calculation (Figure 2A). The ability of
the thyroid to take up iodine predisposes it to accumulate halogens,
indicating that 211At is a suitable candidate for the management of
thyroid cancers. Nevertheless, the off-target effects of unstable
211At-radiopharmaceuticals could lead to 211At enrichment in the
thyroid. Accordingly, blockers are frequently used to safeguard the
thyroid. The 211At employed in studies is predominantly generated
in cyclotrons through 209Bi (α, 2n) 211At (20 MeV ≤ Eα ≤ 28.4 MeV)
[9,10]. After wet/dry purification, 211At can be labeled with targeted
molecules via aryl or B10. Currently, over 30 organizations globally
are competent in manufacturing 211At.

225Ac (T1/2 = 9.9 d) undergoes a radioactive disintegration, emits 4
high-energy α-particles, ultimately culminating in the stable form
of 209Bi, which exhibits substantial clinical potential for use in
nuclear therapeutics (Figure 2B). The principal adverse effects of
225Ac arise from the off-target daughter nuclide 213Bi, which is
engendered by decay recoil. Presently, the use of 225Ac in clinical

Figure 1. Chemical structures of SAPS, B10 maleimide and DOTA

Figure 2. Decay models of 211At (A) and 225Ac (B) The percentage is the probability of decay, and α and β indicate alpha-decay and beta-decay,
respectively. EC: electron capture.
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research mainly originates from 229Th generators [11]. Oak Ridge
National Laboratory (ORNL) in the United States, the Joint Research
Centre-Institute for Transuranium Elements (JRC-ITU) in Germany,
and the Institute of Physics and Power Engineering (IPPE) in Russia
constitute the three cardinal institutions capable of manufacturing
medical-grade 225Ac. Regrettably, the global production of 225Ac is
less than 2.5 Ci per annum, which is inadequate for satisfying
clinical requirements [12].

Preclinical Studies of 211At-/225Ac-radiopharmaceuticals
Preclinical studies on radionuclide-labeled antibodies and small-
molecule inhibitors are intended to assess the therapeutic efficacy of
their respective targets, chelators, and tumor-homing properties.
These endeavors are crucial in ascertaining the suitability of these
agents for clinical trials and furnish valuable perspectives for
optimizing radiopharmaceuticals. There are several eminent targets
in targeted therapy: prostate-specific membrane antigen (PSMA)
constitutes a representative target for targeted therapy in prostate
cancer (PC), cluster of differentiation (CD) presents novel ther-
apeutic strategies for hematological malignancies, and human
epidermal growth factor receptor-2 (HER2) is prominently ex-
pressed on the surface of various breast and ovarian cancer cells.
Related investigations are being vigorously pursued.

PSMA-targeted radiopharmaceuticals
PSMA is localized on the external surface of PC cells and is
particularly conspicuous in instances featuring poor differentiation
and metastatic variations. As neoplasms progress, the expression
level of PSMA tends to increase, making it an ideal candidate target
for diagnosis and treatment. Table 1 summarizes PSMA-targeted
radiopharmaceuticals.

Kiess and colleagues [13] reported a significant retardation in the
growth of PC xenografts in mice through the administration of (2S)-
2-(3-(1-carboxy-5-(4-211At-astatobenzamido)pentyl)ureido)-penta-
nedioic acid. Furthermore, RPS-027 possesses dual targeting
capabilities toward PSMA and albumin, exhibits robust tissue
distribution and extends the intratumoral retention time in tumor-
bearing mice [14].

The PSMA inhibitor PSMA-769 labeled with 211At has been
demonstrated to have relatively low nephrotoxicity and augment
the tumor-to-kidney uptake ratio [15]. Li et al. [16] subsequently
conjugated B10 with streptavidin (SAV) or human serum albumin
(HSA), succinylated it to decrease renal uptake, subsequently
associated this chelator with polyethylene glycolylated lysine-
urea-glutamate (PEGylated LuG, a PSMA-targeting polypeptide)
and ultimately radiolabeled it with 211At. The 211At-B10-SAV/HSA-
PEGylated LuG exhibited considerable clinical potential in a C4-2B
PC xenograft mouse model. While 211At-PSMA5 (Figure 3A,B)
demonstrates a pronounced tumor retention of 30.6 ± 17.8 and
40.7 ± 2.6 %ID/g at 3 h and 24 h post-injection respectively, the total
excretion (%ID) was 8.26 ± 5.0 %ID at 3 h and increased to 15.33 ±
6.3 %ID at 24 h in the urine and 35.2 ± 9.2 %ID at 24 h in the feces.
Moreover, 0.4 MBq of 211At-PSMA5 significantly inhibited LNCaP
xenograft growth [18].

For antibodies and micromolecules labeled with 225Ac that are
utilized in the therapeutics of PC, RPS-074 can be quantitatively
combined with 225Ac, and PSMA-D4 is a targeted derivative of
DOTA that manifests considerable therapeutic potency [21,22]. In
addition, SibuDAB is an albumin-binding antibody, and the
biodistribution revealed that 225Ac-SibuDAB (the structure as
shown in Figure 3C) has higher retention in the blood, liver, heart,
kidneys, and lungs of PC-3 PIP tumor-bearing mice at 1 h, 4 h, 24 h,
and 48 h post-injection. The tumor accumulation reached a
maximal value of 80 ± 8 %IA/g at 24 h. Despite the tumor-to-
blood/kidney/liver ratios being suboptimal compared with 225Ac-
PSMA-617, the tumor uptake of 225Ac-SibuDAB at 48 h is twice that
of 225Ac-PSMA-617 (64 ± 11 %IA/g vs 31 ± 3 %IA/g) and signifi-
cantly inhibited the tumor volume (Figure 3D), indicating that
225Ac-SibuDAB could function as a feasible substitute for 225Ac-
PSMA-617 [23].

CD-targeted radiopharmaceuticals
CD family comprises a wide spectrum of proteins that act as
distinctive labels on external membranes throughout leukocyte
differentiation, maturation, and activation. Investigators have
engineered diverse chelators to bind anti-CD antibodies to 211At/

Table 1. PSMA-targeted radiopharmaceuticals

Radiopharmaceuticals Experimental type (cell lines) Ref.

(2S)-2-(3-(1-carboxy-5-(4-211At-astatobenzamido)pentyl)ureido)-pentanedioic acid in vivo (PC3 PIP) [13]
211At-RPS-027 in vivo (LNCaP) [14]
211At-PSMA-769 in vivo (PC3 PIP) [15]
211At-B10-SAV-PEGylated LuG and 211At-B10-HSA-PEGylated LuG in vivo (C4-2B) [16]
211At-GV-620 in vivo (PC3 PIP) [17]
211At-PSMA5 in vivo (LNCaP) [18]
175Lu(III)(14S,18S)-9-(4-[211At]Astatobenzyl)-2,8,16-trioxo-1-(4,7,10-tris(carboxymethyl)-
1,4,7,10-tetraazacyclododecan-1-yl)-3,9,15,17-tetraazaicosane-14,18,20-tricarboxylic acid

in vivo (PC3 PIP) [19]

[211At]PSAt-3-Ga in vivo (LNCaP) [20]
225Ac-RPS-074 in vivo (LNCaP) [21]
225Ac-PSMA-D4 in vivo (LNCaP) [22]
225Ac-sibuDAB in vivo (PC3 PIP) [23]
225Ac-macropa-pelgifatamab in vivo (C4-2) [24]

[225Ac]Ac-PSMA-NAT-DA1 in vivo (LNCaP, PC-3) [25]
225Ac-L1 in vivo (PC3 PIP) [26]
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225Ac, such as p-iso-thiocyanato-phenethyl-closo-decaborate (B10-
NCS), N-(15-(aminoacyldecaborate)-4,7,10-(trioxatridecanyl)-3-
maleimidopropionamide (ADTM), and N-succinimidyl-4-(tri-
methylstannyl)-benzoate (SPMB). Table 2 summarizes a concise
overview of these CD targets and their radiopharmaceuticals.

CD20 is a membrane protein that is prevalent in lymphoid cancers
and can be precisely targeted by the FDA-approved therapeutic
entity rituximab. Aurlien et al. [28] radiolabeled rituximab with
211At, revealing that negligible RAEL cell survival transpired when
the radioactivity surpassed 30 kBq/ml in vitro. Additionally, the anti-
human CD20 single-domain antibody (sdAb) 9079 is amenable to
radiolabeling with 225Ac via DOTA, which is substantially inhibited
in huCD20 transgenic B16 melanoma xenografts in vivo [31].

CD25 is a critical biomarker for evaluating malignant, activated T
cells. A total of 10 μg of 211At-labeled 7G7/B6, an anti-CD25 murine
monoclonal antibody (mAb), exhibited pronounced therapeutic
efficacy against the leukemic MET-1 model in vitro. The combina-
tion of 211At-7G7/B6 and daclizumab, another CD25-targeted mAb,
resulted in an increased lifespan of tumor-bearing mice [33].

CD33, an overexpressed protein in acute myeloid leukemia
(AML), serves as a target for 225Ac-lintuzumab. Venetoclax is a
novel drug for elderly AML patients or ineligible patients for
intensive chemotherapy. Combining 225Ac-lintuzumab with vene-
toclax demonstrated tumor suppression and resistance reversal in a
venetoclax-resistant model [36]. CD123 is another antigen of
leukemia. Laszlo et al. [46] introduced a dehumanized anti-CD123
mAb named 10C4, which was radiolabeled with 211At via B10 to
inhibit MOLM-13 xenografts in mice.

The CD antigens in Table 2 are typically employed in treating
hematological disorders, whereas CD44v6 and CD46 are exceptions.

CD44v6 is crucial in head and neck squamous cell carcinomas
(HNSCCs). The U36 mAb was successfully conjugated with 211At
through SPMB, resulting in substantial uptake by SCC-25 cells and
consequent induction of cytotoxicity in vitro [39]. Compared with
PSMA, CD46 is homogeneously expressed in PC cells. Bidkar et al.
[44] conjugated a humanized YS5 mAb with p-SCN-Bn-DOTA and
subsequently labeled it with 225Ac. The therapeutic efficiency and
targeting efficacy of 225Ac-DOTA-YS5 in 22Rv1 xenografts and
toxicity analysis in normal mice yielded promising outcomes.

HER2-targeted radiopharmaceuticals
HER2 is overexpressed on the membrane of breast carcinoma and
ovarian cancer cells, rendering it an ideal target for nuclear therapy.
Trastuzumab, also known as Herceptin, is a humanized anti-HER2
antibody that has obtained regulatory sanction. 211At-/225Ac-labeled
trastuzumab via diverse chelators exhibited considerable potential
in treating HER2-positive malignancies (Table 3).

Labeling trastuzumab with 211At via N-succinimidyl 3-[211At]
astatobenzoate confirms the therapeutic potential in MCF-7/HER2-
18, SKBr-3, and BT-474 cells in vitro [47], yet it manifests
inadequate stability. Talanov et al. [48] incorporated a methyl
moiety into SAPS to couple trastuzumab with 211At (Figure 3E,F).
Subsequently, they administered approximately 130–220 kBq of
211At-methyl-SAPS-trastuzumab and 211At-SAPS-trastuzumab to
athymic mice bearing LS-174T xenografts through the caudal vein.
The blood retention rates of 211At-methyl-SAPS-trastuzumab were
26.20 ± 2.49 %ID/g and 16.05 ± 3.59 %ID/g at 2 h and 24 h post-
injection, respectively; for the cohort receiving 211At-SAPS-trastu-
zumab, the values were 23.66 ± 4.10 %ID/g and 11.45 ± 0.86 %ID/g,
respectively. The N-methyl-modified SAPS prolonged the plasma

Figure 3. The chemical structures, pharmacokinetic properties and therapeutic effects of representative radiopharmaceuticals (A) Chemical
structure of 211At-PSMA5. (B) Whole-body distributions of 211At-PSMA1, 211At-PSMA5 and 211At-PSMA6 at 3 h and 24 h post-injection [18].
(C) Chemical structure of 225Ac-SibuDAB. (D) Relative tumor volume of the vehicle group and 225Ac-SibuDAB group in the PC-3 PIP and PC-3 flu
mouse models [23]. (E) Chemical structure of 211At-methyl-SAPS. (F) Pharmacokinetic properties of 211At-methyl-SAPS-trastuzumab, 211At-SAPS-
trastuzumab, 125I-methyl-SAPS-trastuzumab, and 125I-SAPS-trastuzumab [48]. (G) Chemical structure of 225Ac-FAPI-04. (H) Tumor volume and body
weight of the control group and 225Ac-FAPI-04 group in the PANC-1 mouse model [65]. (I) Chemical structure of 225Ac-PSMA-617. (J) PET/CT images
of two CRPC patients after receiving 225Ac-PSMA-617 treatment [66].
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half-lives of radiolabeled trastuzumab compounds, demonstrating
increased stability in vivo. Fujiki et al. [49] moved toward B10
modifications that enhanced in vivo stability but failed to meet
clinical requirements. In addition, PEG-modified gold nanoparticles
(NPs) have been posited as vectors for conjugating 211At and
trastuzumab [50], showing efficacious performance against SKOV-3
cells in vitro. Recently, the use of 211At-trastuzumab to treat mice

with liver metastatic gastric cancer significantly prolonged the
survival duration with low toxicity [51].

Studies on 225Ac-trastuzumab have emerged relatively slowly.
Yoshida et al. [52] undertook experiments on ductal carcinoma in
situ from the breast in mice. They administered the therapeutic
substance through a mammary duct to increase tumor uptake and
reduce side effects, resulting in superior efficacy compared with

Table 2. CD-targeted radiopharmaceuticals

Targets Radiopharmaceuticals Indications Experimental type (cell lines) Ref.

CD5 211At-T101 Acute lymphoblastic leukemia in vitro (MOLT-4) [27]

CD20 211At-rituximab Lymphoma in vitro (RAEL cells) [28]

CD20 211At-1F5-B10 Lymphoma in vivo (Ramos cell) [29]

CD20 225Ac-DOTA-rituximab Lymphoma in vivo (Raji cells) [30]

CD20 225Ac-9079 Disseminated tumor in vivo (transgenic B16) [31]

CD25 211At-labeled HAT Immunosuppression of heart transplantation in vivo (cynomolgus model) [32]

CD25 211At-7G7/B6 Leukemia, lymphoma in vivo (MET-1) [33]

CD30 211At-HeFi-1 Leukemia, lymphoma in vivo (karpas299, SUDHL-1) [34]

CD33 211At-anti-CD33 Leukemia, lymphoma in vivo (HL-60) [35]

CD33 225Ac-lintuzumab Acute myeloid leukemia in vivo (U937, OCI-AML3) [36]

CD38 211At-OKT10-B10 Multiple myeloma in vivo (NCI-H929) [37]

CD38 225Ac-DOTA-daratumumab Multiple myeloma in vivo (MM.1S) [38]

CD44v6 211At-U36 Head and neck squamous cell carcinoma in vitro (SCC-25) [39]

CD45 211At-B10-CA12.10C12 Immunosuppression of hematopoietic cell transplantation in vivo (canine model) [40]

CD45 211At-B10-30F11 Acute myeloid leukemia in vivo (SJL) [41]

CD45 211At-30F11-ADTM Acute myeloid leukemia in vivo (normal model) [42]

CD45 211At-BC8-B10 Lymphoma in vitro (Ramos cell) [43]

CD46 225Ac-DOTA-YS5 Prostate cancer in vivo (22Rv1) [44]

CD46 225Ac-DOTA-YS5 Multiple myeloma in vivo (MM.1S) [45]

CD123 211At-10C4-B10 Acute leukemia in vivo (MOLM-13) [46]

Table 3. HER2-targeted radiopharmaceuticals

Radiopharmaceuticals Experimental type (cell lines) Ref.
211At-trastuzumab in vitro (SKBr-3, BT-474, MCF7/HER2-18) [47]
211At-methyl-SAPS-trastuzumab in vivo (LS-174T) [48]
211At-decaborate-trastuzumab in vivo (A431) [49]
211At-AuNP-PEG-trastuzumab in vitro (SKOV-3) [50]
211At-trastuzumab in vivo (NCI-N87) [51]*
225Ac-trastuzumab in vivo (SUM225) [52]
225Ac-(py4pa-phenyl-trastuzumab) in vivo (SKOV-3) [53]
225Ac@Fe3O4-CEPA-trastuzumab in vivo (SKOV-3) [54]
211At-B10-ZHER2:342-cys in vivo (SKOV-3) [55]
211At-SAPS-C6.5 in vivo (MDA-MB-361/DYT2) [56]
211At-ABY-025 in vitro (SKOV-3, SKBR-3) [57]
211At-SAGMB-2Rs15d in vitro (SKOV-3) [58]

Iso-211At-AGMB-PODS-5F7GGC in vivo (BT474) [59]
225Ac-7.16.4 in vivo (N2.5) [60]
225Ac-DOTA-Nb in vivo (SKOV-3) [61]
225Ac-2Rs15d in vivo (SKOV3-Luc-IP1, MDA-MB-231Br) [62]
225Ac-Pr in vivo (BT-474, SKOV-3) [63,64]

The indications mainly are breast carcinoma and ovarian neoplasms, reference with * means the indication is liver metastatic gastric cancer.
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intravenous administration. Despite DOTA being a prevalently
employed chelator for 225Ac, H4py4pa demonstrates a more robust
binding affinity for 225Ac [53]. Each 225Ac@Fe3O4 NP could combine
with 8–11 mAbs while maintaining high stability and targeting
capability via 3-phosphonopropionic acid [54].

In addition to trastuzumab, numerous types of HER2-targeted
antibodies exist, such as ZHER2:4, C6.5, and ABY-025. These
antibodies can be coupled with 211At via SAPS, B10, and their
derivatives, indicating their therapeutic potential in preclinical
assays [55‒62]. Binding 2Rs15d sdAb to 211At via N-succinimidyl 4-
(1,2-bis-tert-butoxycarbonyl)guanidino-methyl-3-(trimethylstan-
nyl)benzoate (Boc2-SGMTB) efficaciously inhibited the growth of
SKOV-3 cells in vitro [58]. Alternatively, 225Ac-labeled p-SCN-Bn-
DOTA effectively controlled the SKOV-3 xenograft volume [61],
while labeling 7.16.4 mAb with 225Ac prolonged the survival of mice
with lung micrometastatic breast cancer for up to 1 year with
negligible nephrotoxicity [60].

SSTR-targeted radiopharmaceuticals
Somatostatin receptors (SSTRs) are G protein-coupled receptors
featuring multiple transmembrane domains in neuroendocrine
tumors (NETs). Octreotide and its analogs have shown considerable
efficacy in targeting SSTRs. Table 4 furnishes a compendium of
recent preclinical studies concerning SSTR-targeted radiopharma-
ceuticals.

Vaidyanathan et al. [67] synthesized N-(4-guanidinomethyl-3-
iodobenzoyl)-Phe1-octreotate (GMIBO) and radiolabeled it with
211At. They noted substantial liver and kidney accumulation in the
D341 Med cell cerebellar medulloblastoma mouse model, rendering
it unamenable to intravenous injection. They subsequently for-
mulated N-(1-deoxy-D-fructosyl)-N-(3-O-211At-benzoyl)-Lys0-oc-
treotate (211At-GABLO) [68], which decreased tumor uptake.
Moreover, the radiolabeling of DOTA-phenylalanine 1-tyrosine 3-
octreotide (DOTATOC) with 225Ac produced favorable outcomes in
a murine model with rat acinar pancreatic AR42J xenografts [69],
and 211At-SAB-octreotide might represent a potential therapeutic
option for small cell lung cancer [70]. Additionally, King et al. [71]
developed an 18-membered macrocyclic compound named
MACROPA, which could be further modified into MACROPA-
octreotate (MACROPATATE), facilitating facile conjugation with
225Ac at room temperature.

FAP-targeted radiopharmaceuticals
Fibroblast activation proteins (FAPs) are remarkable therapeutic
targets. They are ubiquitously present in the microenvironments of
virtually all epithelial cancers and play crucial roles in tumor
growth, invasion, and metastasis. FAP inhibitors (FAPIs) are ideal
candidates for cancer diagnosis and treatment because of their
superior binding affinity for FAPs (Table 5). 225Ac-FAPI-04 (Figure
3G,H) exhibited effective targeting, a high tumor-to-background
ratio, and prompt renal clearance in a pancreatic cancer PANC-1
xenograft model [65]. The urinary distributions at 3 h and 24 h after
intravenous administration were 40.66 ± 40.25 %ID/g and 1.34 ±
0.44 %ID/g, the corresponding tumor uptake values were 0.251 ±
0.010 %ID/g and 0.097 ± 0.008 %ID/g, and the blood concentra-
tions were 0.102 ± 0.021 %ID/g and 0.041 ± 0.017 %ID/g over the
same temporal intervals. 225Ac-FAPI-04 markedly attenuated the
tumor volume compared with that in the control group. Ayaka et al.
[72] exploited PEG and piperazine (PIP) as connectors in conjunc-
tion with FAPI1, FAPI2, FAPI3, FAPI4, and FAPI5. 211At-PEG-FAPI1
exhibited superior cellular uptake, enhanced radionuclide labeling
efficacy, and favorable in vivo pharmacokinetics. Nevertheless,
FAPIs undergo metabolic transformation within a few hours upon
cellular ingress; conversely, 225Ac and 211At possess protracted half-
lives and may not operate at peak efficiency. Therefore, 225Ac-/211At-
FAPI radiopharmaceuticals need prolonged retention in the blood-
stream and tumor tissues.

Other targets
Ideal targets for oncological therapeutics should be expressed at
high levels on the surface of neoplastic cells while remaining absent
in normal cells. However, the majority of promising targets exhibit
microexpression in common tissues. As formerly described, we
have delineated several targets with substantial clinical potential.
Tables 6 and 7 offer a synopsis of some alternative targets.

Table 7 encompasses targets with relatively few preclinical
studies, yet their therapeutic potential ought not to be undervalued.
Prostate stem cell antigen (PSCA) is hyper-expressed in approxi-
mately 90% of primary PCs. The A11 mAb efficaciously targets
PSCA and manifests significant tumor suppression in a PC3-PSCA
xenograft model [108]. Prostate-specific antigen (PSA) is another
helpful target. The PSA-targeting humanized hu5A10 mAb exhib-
ited therapeutic efficacy when conjugated with 225Ac [109]. More-

Table 4. SSTR-targeted radiopharmaceuticals

Radiopharmaceuticals Indications Experimental type (cell lines) Ref.
211At-AGMBO NET, paraganglioma in vivo (D341 Med) [67]
211At-GABLO NET, paraganglioma in vivo (D341 Med) [68]
225Ac-DOTATOC NET, paraganglioma in vivo (AR42J) [69]
211At-SAB-octreotide Small cell lung cancer in vivo (H446) [70]
225Ac-MACROPATATE NET in vivo (U2OS-SSTR2, H69) [71]

Table 5. FAP-targeted radiopharmaceuticals

Radiopharmaceuticals Indications Experimental type (cell lines) Ref.
225Ac-FAPI-04 Pancreatic cancer in vivo (PANC-1) [65]
225Ac-FAPI-46 Pancreatic cancer in vivo (PANC-1) [73]
211At-PEG-FAPI1 Epithelioid cancer in vivo (PANC-1) [72]

[225Ac]Ac-FAPI-mFS Fibrosarcoma in vivo (HT-1080-FAP) [74]
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over, specific agents lack specific targets but can accumulate within
tumor cells and play a vital role in the radiolabeling of 211At and 225Ac.
For example, L-phenylalanine possesses a high affinity for brain
gliomas, spurring the development of radiopharmaceuticals such as
4-[211At]-L-phenylalanine and 211At-AuNPs@mPEG [110,111].

Clinical Trials of 211At-/225Ac-radiopharmaceuticals
α-nuclides have distinctive biophysical attributes, 211At and 225Ac
have received great attention in radionuclide therapy, and many
potential drugs have been used in clinical trials to verify their
indications and efficacy. Table 8 summarizes recent clinical studies

Table 6. Targets more studied in preclinical trials of 211At-/225Ac-radiopharmaceuticals

Targets Radiopharmaceuticals Indications Experimental type
(cell lines)

Ref.

Epidermal growth factor receptor
(EGFR)

211At-benzoate-EGF Epithelioid cancer in vitro (A431) [75]*

211At-EGF Epithelioid cancer in vitro (A431) [76]*
225Ac-nimotuzumab-SpyTag-
∆N-spyCatcher

Breast cancer in vivo (MDA-MB-468) [77]

Folate receptor (FR) FA-HIgG-211At Lung cancer, breast cancer, etc. in vivo (HeLa-S3, OvCar-3,
etc.)

[78]*

211At-Mov18 Lung cancer, breast cancer, etc. in vivo (OVCAR-3) [79]*
211At-farletuzumab Lung cancer, breast cancer, etc. in vivo (OVCAR-3) [80]

Transferrin receptor (TFR) 211At-BK19.9 Ovarian cancer in vivo (HL60) [81]*
225Ac@multifunctional silica
nanoconstructs

Malignant tumor in vivo (BT-549) [82]

Noradrenaline transporter (NET) 211At-AFBG Neuroblastoma in vivo (SK-N-SH) [83]*

211At-MABG Pheochromocytoma in vivo (PC12) [84]
211At-MABG Neuroblastoma in vivo (NB1691, IMR-05,

etc.)
[85]

Sodium-dependent phosphate
transport protein 2b (NaPi 2b)

211At-MX35 F(ab′)2 Ovarian cancer in vivo (OVCAR-3) [86]*

211At-B-PLsuc Ovarian cancer in vivo (OVCAR-3) [87]*
211At-Rebmab 200 Ovarian cancer in vivo (OVCAR-3) [88]

L-type amino acid transporter 1
(LAT1)

211At-AAMT Melanoma, pancreatic cancer,
etc.

in vivo (B16F10, PANC-1) [89]

211At -NpGT Melanoma, pancreatic cancer,
etc.

in vivo (C6) [90]

Poly(ADP-ribose) polymerase 1
(PARP-1)

211At-MM4 Neuroblastoma in vivo (IMR-05) [91]
211At-PTT Neuroblastoma in vivo (patient-derived

model)
[92]

Thrombomodulin {La0.5Gd0.5}(225Ac)PO4@4Gd-
PO4shell@AuNPs-dPEG-mAb 210b

Lung cancer in vivo (EMT-6) [93]*

La(225Ac)PO4-mAb 201b Lung cancer in vivo (normal model) [94]*

αvβ3 integrin Ga-DOTA-[211At]c[RGDf(4-At)K] Glioblastoma multiforme in vivo (U-87MG) [95]

225Ac-DOTA-c(RGDyK) Glioblastoma multiforme in vivo (U-87MG) [96]

Glypican-3 (GPC3) 225Ac-hu11B6-IgG1 PC in vivo (LNCaP-AR) [97]

225Ac-DOTA-hu11B6 Breast cancer in vivo (BT-474, MFM-223) [98]

Human kallikrein 2 (hK2) 225Ac-GC33-BZM Liver cancer in vivo (HepG2) [99]

225Ac-Macropa-GC33 Liver cancer in vivo (HepG2) [100]

Tumor-associated glycoprotein 72
(TAG 72)

225Ac-HEHA-Hu-ΔCH2 CC49 Malignant tumor in vivo (LS-174T) [101]*

225AC-DOTA-CC49 Malignant tumor in vivo (OVCAR3) [102]

Glycoprotein A33 (GPA33) 211At-huA33 Colorectal cancer in vivo (SW1222) [103]*

225Ac-Pr Colorectal cancer in vivo (SW1222) [63]

Disialoganglioside (GD2) 225Ac-3F8 Neuroblastoma, meningeal
carcinoma

in vivo (NMB7) [104]*

225Ac-Pr Neuroblastoma, meningeal
carcinoma

in vivo (IMR-32) [63]

NK-1R 211At-Rh[16aneS4]-SP5-11 Brain glioma in vivo (T98G) [105]*
[106,107]

References with * means they are published in 2014 or earlier.
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Table 7. Targets less studied in preclinical trials of 211At-/225Ac-radiopharmaceuticals

Targets Radiopharmaceuticals Indications Experimental type (cell lines) Ref.

PSCA 211At-A11 PC
PC

in vivo (PC3-PSCA) [108]

PSA 225Ac-hu5A10 in vivo (LNCaP-AR) [109]

Insulin growth factor receptor
(IGF-1R)

225Ac-cixutumumab Triple-negative breast
cancer

in vivo (SUM149PT) [112]

Vascular endothelial growth factor
receptor (VEGFR)

iRGD-C6-lys(211At-ATE)-C6-DA7R Malignant tumor in vivo (U87MG) [113]

Gastrin-releasing peptide receptor
(GRPR)

211At-AB-3 Prostate cancer in vivo (PC-3) [114]

Metabotropic glutamate receptor 1
(mGluR1)

211At-AITM Melanoma, pancreatic
cancer, etc.

in vivo (PANC 1, A375, etc.) [115]

Chemokine(C-X-C motif)receptor 4
(CXCR4)

211At-CXCR4 mAb Acute myeloid leukemia in vivo (U937) [116]

σ receptor 211At-pAtV Malignant tumor in vivo (DU-145) [117]

Glucose-dependent insulinotropic
polypeptide receptor (GIPR)

211At-MeATE-SPN-GIP Malignant tumor in vivo (CFPAC-1) [118]

Melanocortin 1 receptor (MC1R) 225Ac-DOTA-MC1RL Metastatic uveal melanoma in vivo (transgenic A375 cells) [119]

Cholecystokinin B receptor (CCKBR) 225Ac-PP-F11N Thyroid cancer, ovarian
cancer, etc.

in vivo (A431/CCKBR) [120]

Scavenger receptor B type I (SR-BI) 225Ac-rHDL Ovarian cancer, liver
cancer, etc.

in vivo (HEP-G2, PC-3) [121]

Interleukin-13 receptor alpha 2
(IL13RA2)

225Ac-Pep-1L Glioblastoma multiforme in vivo (U251) [122]

NIS [211At]NaAt Thyroid cancer in vitro (transgenic cells) [123]*

Major histocompatibility complex
class I chainrelated protein A and B
(MICA/B)

211At-anti-MICA/B Breast cancer, liver cancer,
etc.

in vivo (HCT116) [124]

Tenascin 211At-mu81C6 Brain glioma in vivo (D-54MG) [125]

Delta-like protein 3 (DLL3) 225Ac-DOTA-MMA-huIgG1
225Ac-DOTA-MMA-SC16.56

Small cell lung cancer in vitro (HEK-293T-oxhSC16) [126]

Mucoglycoprotein 5AC (MUC5AC) 225Ac-labeled hNd2 Pancreatic cancer in vivo (SW1990) [127]

Podoplanin 225Ac-labeled NZ-16
225Ac-labeled NZ-12

Mesothelioma in vivo (H226) [128]

M-protein 225Ac-anti-5T33 MM sdAb Multiple myeloma in vivo (5T33MM) [129]

Vascular endothelial cadherin (VEC) 225Ac-E4G10 Malignant tumor in vivo (LS174T) [130]*

Oncogenically associated
membrane-bound alkaline
phosphatase isoenzyme (onco-APase)

6-211At-MNDP Malignant tumor in vivo (CMT-93) [131]*

Carbonic anhydrase IX (CAIX) 225Ac-DOTA-hG250 Kidney cancer in vivo (SK-RC-52) [132]

3H11 antigen 211At-3H11 Stomach cancer in vivo (M85) [133]*

Osteosarcoma antigen 211At-TP-3 Osteosarcoma in vivo (OHS) [134]*

Very late antigen 4 (VLA-4) 225Ac-DOTA-anti-VLA-4 Melanoma in vivo (B16-F10) [135]

Carbohydrate antigen 19.9 (CA19.9) 225Ac-DOTA-PEG7-Tz Pancreatic ductal
adenocarcinoma

in vivo (BxPC3) [136]

Carcinoembryonic antigen (CEA) 225Ac-DOTA-M5A Breast cancer, colon cancer in vivo (E0771, MC38) [137]

Glypican-1 (GPC1) 211At -B10-01a33 Pancreatic ductal
adenocarcinoma

in vivo (PANC-1) [138]

Lewis Y epitope 211At-BR96 Colon cancer in vivo (BN7005-H1D2, etc.) [139,140]*

Mesothelin 211At-ET210–28
211At-ET210–6

Pancreatic cancer, lung
cancer, etc.

in vitro (MDA-MB-231) [141]

Nucleolin 225Ac-DOTA-F3 Peritoneal carcinomatosis in vivo (MDA-MB-435) [142]*

Melanin 211At-MTB Melanoma in vivo (HX118, HX34) [143]*

Acrolein 211At-ADIPA Lung cancer in vivo (A549) [144]

References with * means they are published in 2014 or earlier.
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regarding 211At-/225Ac-based nuclear therapeutics.

211At
211At ions demonstrate a predisposition for accumulation in the
thyroid gland. Despite their notable benefits in the treatment of
thyroid cancer, thyroid blockers and local drug delivery are
indispensable for the management of non-thyroid malignancies. A
substantial risk of bias persists in 211At-nuclear therapy even though
tumor uptake is augmented and the survival period is prolonged.
[211At]NaAt
The sodium/iodide symporter (NIS) is an integral membrane protein
located on the basolateral side of thyroid cells that facilitates iodine
assimilation and 211At accumulation in a comparable fashion. As
early as 1954, 8 patients, including 1 with papillary adenocarcinoma
carrying cervical lymph node metastasis, were orally administered
1.85 MBq of 211At [145]. The transfer of the NIS gene into cancer
cells to augment the localization of [211At]NaAt could offer a
therapeutic modality for non-thyroid malignancies [123].
211At-labeled human serum albumin microspheres
Doberenz et al. [146] reported a case of recurrent lingual carcinoma.
The patient received an injection of 200 MBq of 211At-labeled human

serum albumin microspheres through the left lingual artery. The
tumor tissue underwent necrosis within a few days, leading to
substantial destruction of the tongue. Owing to the patient’s death
on day 43, no long-term clinical sequelae could be evaluated. We
need additional cases for analysis.
211At-ch81C6
Tenogenin is an extracellular matrix glycoprotein with a high
expression in malignant glioma. The Ch81C6 mAb can specifically
recognize and bind to tenogenin. Zalutsky et al. [147] administered
71–347 MBq of 211At-ch81C6 to 19 patients with recurrent brain
malignancies through surgically created resection cavities. One
patient was excluded, 1 experienced quadrantal blindness, and the
remaining subjects presented reversible mild adverse reactions. No
dose-limiting toxicity was observed. The median overall survival
was 52 weeks.
211At-MX35 F(ab′)2
Sodium-dependent phosphate transport protein 2b (NaPi 2b) is a
target recognized by MX35 F(ab′)2 and is detectable in more than
90% of human epithelial ovarian cancers. Andersson et al. [148]
delivered 1 to 2 liters of 211At-MX35 F(ab′)2 at concentrations
ranging from 20 to 215 MBq/L into the abdominal cavities of 12

Table 8. Clinical 211At-/225Ac-nuclear therapy

Targets Radiopharmaceuticals Indications Clinical stages Ref.

NIS [211At]NaAt Enrichment in thyroid gland Case reports [145]

Albumin receptor 211At-labeled human serum albumin microspheres Tongue cancer Case reports [146]

Tenascin 211At-ch81C6 Brain tumors Phase I [147]

NaPi 2b 211At-MX35 F(ab′)2 Ovarian cancer Phase I [148,149]

PSMA 225Ac-PSMA-617 PC Case reports [66]

PSMA 225Ac-PSMA-617 PC Phase I [150]

PSMA 225Ac-PSMA-617 PC Phase II [151]

PSMA 225Ac-PSMA-617 PC Phase II [152]

PSMA 225Ac-PSMA-617 PC Phase II [153]

PSMA 225Ac-DOTA-J591 PC Phase I [154]

PSMA 225Ac-PSMA-I&T PC Phase I [155]

SSTR 225Ac-DOTATOC NET Phase I [156]

SSTR 225Ac-DOTATOC Metastatic NET Phase I [157]

SSTR 225Ac-DOTATOC Metastatic hepatic NET Case reports [158]

SSTR 225Ac-DOTATOC Metastatic thymuc NET Case reports [159]

SSTR 225Ac-DOTATATE Gastroenteropancreatic NET Phase I [160]

SSTR 225Ac-DOTATATE Gastric NET Case reports [161]

SSTR 225Ac-DOTATATE Metastatic rectal NET Case reports [162]

SSTR 225Ac-DOTATATE Metastatic paragangliomas Phase I [163]

SSTR 225Ac-DOTATATE Gastroenteropancreatic NET Phase II [164]

SSTR 225Ac-DOTATATE Metastatic NET Case reports [165]

SSTR 225Ac-DOTATATE Metastatic NET Case reports [166]

SSTR 225Ac-DOTATATE Metastatic NET Case reports [167]

SSTR 225Ac-DOTATATE Metastatic NET Case reports [168]

SSTR 225Ac-DOTATATE Metastatic hepatic pancreatic NET Case reports [169]

CD33 225Ac-lintuzumab AML Phase I [170]

CD33 225Ac-lintuzumab AML Phase I [171]

CD33 225Ac-lintuzumab AML Phase II [172]

NK-1R 225Ac-DOTA-SP Glioblastoma Phase I [173]
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patients with recurrent ovarian cancer via catheters. The pharma-
cokinetics and dosimetric results were related to the initial activity
concentration (IC); the radioactive activity concentration decreased
in the peritoneal fluid to 50% IC at 24 h and increased in the serum
to 6% IC at 45 h, and the thyroid blocker significantly reduced
enrichment in the thyroid. No dose-limiting toxicity was observed.
During a long-term follow-up study [149], 4 patients survived for
more than 6 years, including 1 who remained free of relapse. The
median survival was 35 months, and the 10-year survival rate was
25%.

225Ac
To identify appropriate chelating agents and targeted molecules, 225

Ac has undergone more clinical trials and case reports than 211At.
This accumulation of experience has exerted a crucial influence on
the evolution and progress of 225Ac-based nuclear therapy.
225Ac-PSMA-617, 225Ac-DOTA-J591, and 225Ac-PSMA-I&T
PSMA-targeted nuclear therapy has emerged as a promising
treatment option in clinical trials. A phase I trial of 225Ac-
macropa-pelgifatamab has been initiated (NCT06052306) [24].
Two patients with CRPC achieved complete remission after 225Ac-
PSMA-617 therapy (Figure 3I,J). Patient 1 received 3 cycles of 100
kBq/kg and an additional 6 MBq of 225Ac-PSMA-617, and the PSA
level decreased to less than 0.1 ng/mL. Patient 2 received 2 cycles of
7.4 GBq/cycle 177Lu-PSMA-617; the PSA increased from 294 ng/mL
to 419 ng/mL and then changed to 2 + 1 cycle of 100 kBq/kg 225Ac-
PSMA-617, and the PSA decreased below 0.1 ng/mL [66]. In another
trial [150], 14 patients with advanced CRPC who had undergone
prior treatments received 225Ac-PSMA-617 at 50–200 kBq/kg, and
8/14 had a second cycle of the same or reduced radioactivity at
2-/4-month intervals. Notably, severe xerostomia was observed
when doses exceeded 100 kBq/kg, while lower doses were devoid of
toxicity but yielded inadequate anti-tumor responses. Then, 40
patients with highly advanced mCRPC received 3 cycles (2 months/
cycle) of therapy with 100 kBq/kg/cycle 225Ac-PSMA-617 [151]. Two
patients passed away before receiving the second cycle. Among the
remaining patients, 63% had a more than 50% decrease in PSA. The
median tumor control duration was 9.0 months, which was the
longest among the current treatments. Similarly, Sathekge et al.
[152] treated 17 patients with non-previous chemotherapy. The
initial dose was 8 MBq, which was then reduced to 7, 6, or 4 MBq in
good-response patients (2 months/cycle). PSA declined by more
than 90% in 14 patients, 7 in 14 patients had undetectable PSA in
the serum, and 11 patients experienced complete regression of all
metastases. The comprehensive clinical data of 201 patients with
225Ac-PSMA-617 treatment revealed that 66.1% had a decrease in
PSA of more than 50%, and the familiar side effects were
xerostomia and anemia [153].

225Ac-DOTA-J591 and 225Ac-PSMA-I&T are emerging PSMA-
targeted radiopharmaceuticals. Scott et al. [154] examined 225Ac-
DOTA-J591 in 22 patients with progressive CRPC; PSA decreased by
more than 50% in 9 patients, pain symptoms were present in 11
patients, and 6 patients suffered from xerostomia. Zacherl et al.
[155] investigated the data of 14 patients with advanced CRPC
treated with 225Ac-PSMA-I&T, and the results were highly compar-
able with those of 225Ac-PSMA-617.
225Ac-DOTATOC and 225Ac-DOTATATE
Compared with octreotide, [Tyr3]-octreotide has a stronger targeting
affinity for SSTRs. The synthesis of 225Ac-DOTATOC, which couples

[Tyr3]-octreotide with 225Ac via DOTA, was administered to 34
patients in 46 cycles [156]. The maximum tolerated dose is 40 MBq.
A two-year follow-up of 17 patients revealed no apparent chronic
renal toxicity. Zhang et al. [159] reported a rare and aggressive case
of thymic NETs in which the patient showed significant improve-
ment, without any adverse reactions during treatment or follow-up.
DOTATOC can be changed to DOTATATE by using natural Thr to
replace the alcohol Thr (ol) at the C-terminus of DOTATOC. 225Ac-
DOTATATE was tested by Ballal et al. [164] in 91 patients with
gastroenteropancreatic neuroendocrine tumors for 453 cycles. The
long-term follow-up resulted in a significant prolongation of the
median survival time. Among the 79 patients with evaluable
disease, 2 patients achieved a complete response, and 38 patients
achieved a partial response. Treatment was favorable for patients
who were refractory to previous 177Lu-DOTATATE therapy.
225Ac-lintuzumab
Joseph et al. [170] conducted a study combining 225Ac-lintuzumab
with low-dose cytarabine (LDAC) and reported that a fractionated
dose of 225Ac-linutuzumab can be safely administered in combina-
tion with LDAC to improve the status of elderly patients with
untreated AML. In another trial, 18 patients with relapsed or
refractory AML were administered with a single infusion of 225Ac-
lintuzumab [171], with radioactivity ranging from 18.5 to 148 kBq/kg.
The maximum tolerated dose was 111 kBq/kg, while myelosuppres-
sion was the most common side effect. In 10 of the 16 evaluable
patients, original peripheral blood cells were eliminated at a dose of
37 kBq/kg. Forty patients participated in a phase II trial [172],
9 patients achieved a complete response, and myelosuppression
was observed in all patients.
225Ac-DOTA-SP
Neurokinin-1 receptor (NK-1R), with Substance P (SP) as its ligand,
is highly expressed in glioblastomas. 225Ac-DOTA-SP has shown
therapeutic efficacy. Twenty-one patients diagnosed with glioblas-
toma received treatment every 2 months via intracavicular catheter
administration at doses of 10, 20, and 30 MBq/cycle. Minor and
temporary adverse reactions were primarily observed at the highest
dose, and no significant hematological, renal, or hepatic toxicity
was detected [173].

Outlooks
This article focuses on the advancement of 211At-/225Ac-radio-
pharmaceuticals for the treatment of biological entities, with an
emphasis on optimizing the targeting accuracy, stability, and
efficacy and minimizing toxicity. 211At and 225Ac have garnered
significant interest in TAT because of their unparalleled physical,
chemical, and biological attributes. Although radiopharmaceuticals
possess excellent functionality, there are still numerous challenges,
including instability and potential toxicity of radiopharmaceuticals,
and supply shortage of nuclides. Advancements in accelerator
technology and refinements in manufacturing approaches are
anticipated to progressively alleviate the supply predicament.

The half-lives of nuclides need to correspond to the pharmaco-
kinetic half-life of the carrier so that the carrier molecules persist
within the tumor for an adequate duration to allow the radio-
nuclides to decay completely and release lethal doses of radiation.
Furthermore, the development of superior chelators, antibodies,
and small molecule inhibitors is crucial in enhancing the in vivo
stability of radiopharmaceuticals and increasing their accumulation
in tumors. SAPS, B10, DOTA, their derivatives and several novel
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chelators are being employed for labeling 211At and 225Ac.
Takashima et al. [174] reported that sodium ascorbate could
increase the in vivo stability of 211At-trastuzumab. When L-tyrosine
was integrated with neopentyl glycol (NpG), 211At-NpGT showed
promising efficacy in a C6 glioma cell mouse model [90].
H2BZmacropa-NCS could optimize the binding of 225Ac to cotras-
tuzumab [99]. Recently, Cui et al. [74] developed a FAP-targeted
covalent radioligand based on the principles of covalent drug
theory, which can alleviate reversible interactions between ligands
and targets, offering a novel approach to enhancing in vivo stability
and optimizing tumor uptake.

The potential detrimental effects of radiopharmaceuticals on
normal tissues should not be ignored. Pretargeted radioimmu-
notherapy (PRIT) has emerged as a productive strategy for
enhancing clearance and diminishing non-specific toxicity. This
therapeutic approach has been corroborated through clinical trial
outcomes involving 131I-labeled anti-CEA and anti-diethylenetria-
minepentaacetic acid (DPTA) bispecific antibodies in patients with
medullary thyroid cancer [175], as well as the trispecific antibodies
TF2 and 177Lu-IMP-288 in patients with metastatic colorectal cancer
[176]. Cheal et al. [63] combined C825 with anti-HER2, huA33, and
hu3F8 antibodies and labeled 225Ac via proteus-DOTA (Pr), which
increased the survival rates and therapeutic benefits in mouse
models harboring breast cancer, colorectal cancer, and glioma.
Furthermore, a HER2-targeted 225Ac-PRIT has been validated to
improve therapeutic efficacy and mitigate toxicity in epithelial
ovarian cancer mouse models [64].

Moreover, nanomaterials and liposomes serve as strategic tools
for enhancing the in vivo stability and targeting efficacy of
radioisotopes. Nanocarriers have high specific surface areas to
stow diverse targeting ligands and therapeutic radioisotopes. In
addition, size and surface modifications can enhance tumor
retention and optimize pharmacokinetic profiles. Gold nanoparti-
cles (AuNPs) are extensively studied; they lack inherent targets and
are typically administered via intratumoral injection (e.g., 211At-
GNS [177], 211At-AuNPs@mPEG [111] and 225Ac-Au@TADOTAGA
[178]). However, {La0.5Gd0.5}(225Ac)PO4@4GdPO4shell@AuNPs-
dPEG-mAb 210b [93] was engineered to bind with thrombomodulin
on lung endothelial cells, yielding favorable results in a mouse
model of EMT-6 cell lung cancer. Other inorganic nanocarriers, such
as Fe3O4 [54] and SiO2 [82], are also being actively explored as
preclinical drugs. Given the limited biodegradability and potential
biotoxicity of inorganic nanocarriers, biodegradable organic nano-
carriers represent promising alternatives. For example, 211At-
MeATE-SPN-GIP [114] targets glucose-dependent insulinotropic
polypeptide receptors, has an ideal radiochemical yield and purity,
and has high tumor uptake and retention in mouse models of
CFPAC-1 cells in pancreatic cancer. Liposomes, as effective
encapsulation vehicles, have been employed in drug delivery
systems to mitigate the off-target effects of nuclide decay. However,
few relevant studies exist. Sofou et al. [179] synthesized 225Ac-
coated pegylated phosphatidylcholine-cholesterol liposomes and
reported that giant liposomes (650 nm) had better nuclide retention.

In addition to their ability to treat tumors, radiopharmaceuticals
have also achieved excellent results in nonneoplastic diseases. Jiang
et al. [180] designed and synthesized 28 kinds of 18F-radio-
pharmaceuticals that target sphingosine-1-phosphate receptor 1
(S1PR1) for PET images in brain diseases, some of which might hold
potential for further study. CD25-targeted 211At-HATs extended the

lifespan in heart transplant cynophagous monkey model. And 211At-
B10-CA12.10C12, which targets CD45, in combination with whole-
body irradiation, successfully abrogated transplant rejection in pre-
sensitized canine recipients who had received donor blood
transfusions, which potentially represents a groundbreaking strat-
egy for countering transplant rejection in patients subjected to
substantial blood transfusions [40]. Furthermore, Emily et al. [181]
developed and synthesized a novel benzopyrrole derivative that
targets amyloid aggregation, which demonstrated robust stability
following labeling with 211At (3′-211At-PIB-OMe). Despite the lack of
comprehensive biological validation, this study offers a novel
perspective for advancing 211At-based therapies for the treatment of
Alzheimer’s disease.

Despite the increasing diversity and volume of radiopharmaceu-
ticals, substantial impediments have been encountered in the clinic.
The integration of numerous disciplines, including radiochemistry,
nuclear medicine, oncology, and materials science, is imperative to
catalyze the advancement of radiopharmaceuticals. The evolution
and translation of radionuclide therapeutics are poised to increase
the precision of diagnosis and treatment.
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