DOI: 10.3724/SP.J.1006.2021.02083

盐胁迫对水稻颖花形成及籽粒充实的影响

韦还和 1 张徐彬 1 葛佳琳 1 陈 熙 2 孟天瑶 2 杨 洋 3 熊 飞 3 陈英龙 1 戴其根 1,2,*

http://zwxb.chinacrops.org/

E-mail: zwxb301@caas.cn

¹ 江苏省作物遗传生理重点实验室 / 江苏省作物栽培生理重点实验室 / 江苏省粮食作物现代产业技术协同创新中心 / 扬州大学水稻产业工程技术研究院, 江苏扬州 225009; ² 扬州大学教育部农业与农产品安全国际合作联合实验室 / 扬州大学农业科技发展研究院, 江苏扬州 225009; ³ 扬州大学生物科学与技术学院, 江苏扬州 225009

摘 要: 旨在探明盐胁迫对水稻颖花形成与籽粒充实性状的影响机制,本研究以江苏沿海滩涂大面积种植的常规粳稻南粳9108 和盐稻12 为试材,在盆栽条件下设置对照(check, CK,盐浓度0%)、中盐(medium-salinity stress, MS,盐浓度0.15%)和高盐(high-salinity stress, HS,盐浓度0.3%),分析盐胁迫对颖花分化与退化、花器官发育及籽粒充实的影响。结果表明,与对照相比,(1)盐胁迫下水稻产量显著下降,中盐和高盐胁迫下南粳9108产量降幅分别为18.7%和54.5%,盐稻12分别为24.3%和58.6%。(2)盐胁迫显著降低了每穗粒数,中盐和高盐胁迫下南粳9108每穗粒数较对照分别低8.6%和19.8%,盐稻12较对照分别低8.0%和25.9%。此外,中盐和高盐胁迫下南粳9108和盐稻12的结实率和粒重亦均显著低于对照。(3)盐胁迫下水稻颖花分化数与现存数下降,颖花退化数与退化率增加;盐胁迫降低了一次和二次枝粳颖花分化数和现存数,提高了一次和二次枝粳颖花退化数,二次枝粳颖花分化数和现存数的下降幅度和颖花退化数的增加幅度均高于一次枝粳。(4)盐胁迫下花药长度、宽度与体积降低,花药开裂率、花粉活力以及颖花长度与宽度呈类似趋势。本研究表明,盐胁迫抑制水稻颖花分化,促进颖花退化,导致每穗颖花数显著下降;影响花器官正常发育,并降低籽粒饱满度,使籽粒充实性状明显变劣。

关键词: 水稻; 盐胁迫; 颖花形成; 籽粒充实

Effects of salinity stress on spikelets formation and grains filling in rice (*Oryza sativa* L.)

WEI Huan-He 1 , ZHANG Xu-Bin 1 , GE Jia-Lin 1 , CHEN Xi 2 , MENG Tian-Yao 2 , YANG Yang 3 , XIONG Fei 3 , CHEN Ying-Long 1 , and DAI Qi-Gen 1,2,*

¹ Jiangsu Key Laboratory of Crop Genetics and Physiology / Jiangsu Key Laboratory of Crop Cultivation and Physiology Jiangsu / Co-innovation Center for Modern Production Technology of Grain Crops / Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China; ² Joint International Research Laboratory of Agri-culture and Agro-product Safety, Ministry of Education / Institute of Agricultural Science and Technological Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; ³ College of Biological Sciences and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China

Abstract: This study was conducted to explore the effects of salinity stress on spikelets formation and grains filling in rice. To analyze the effects of salinity stress on the differentiation and degradation of spikelets, development of floral organs, and grain-filling characteristics in rice, conventional *japonica* rice Nanjing 9108 and Yandao 12 were used with three salinity

本研究由江苏省重点研发计划项目(BE2019343),国家自然科学基金项目(32001466, 31901448),中国博士后面上项目(2020M671628, 2020M671629),江苏省高等学校自然科学研究面上项目(19KJB210004)和江苏高校优势学科建设工程项目资助。

This work was supported by the Key Research and Development Program of Jiangsu Province (BE2019343), the National Natural Science Foundation of China (32001466, 31901448), the China Postdoctoral Science Foundation (2020M671628, 2020M671629), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB210004), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

* 通信作者(Corresponding author): 戴其根, E-mail: qgdai@yzu.edu.cn

第一作者联系方式: E-mail: hhwei@yzu.edu.cn

Received (收稿日期): 2020-11-30; Accepted (接受日期): 2021-03-19; Published online (网络出版日期): 2021-04-14.

URL: https://kns.cnki.net/kcms/detail/11.1809.S.20210414.1405.002.html

treatments under pot-cultivation conditions, control (CK, 0 salt concentration), medium-salinity stress (MS, 0.15% salt concentration), and high-salinity stress (HS, 0.3% salt concentration). As a result, compared with the CK, (1) rice grain yield was decreased under salinity stress. The grain yield of Naniing 9108 was decreased by 18.7% and 54.5%, and Yandao 12 was decreased by 24.3% and 58.6%, under MS and HS treatments, respectively. (2) the number of spikelets per panicle was decreased under salinity stress. The number of spikelets per panicle of Nanjing 9108 was 8.6% and 19.8%, and Yandao 12 was 8.0% and 25.9% lower than that of CK under MS and HS treatments, respectively. Besides, the filled-grain percentage and grain weight of Nanjing 9108 and Yandao 12 under MS and HS were also significantly lower than CK. (3) the number of differentiated and survived spikelets was decreased, while the number of retrograded spikelets and its rate was increased under salinity stress. Salinity stress reduced the differentiated and survived spikelets on the primary and secondary branches, while increased retrograded spikelets. The decline in the number of differentiated and survived spikelets on the secondary branches were higher than those of primary branches, and the similar observations were also for the increase in the number of retrograded spikelets. (4) the length, width, and volume of anther were decreased under salinity stress, and the similar trends were also observed for dehiscence rate of anther, pollen vigor, and the length and width of spikelets. Our results suggested that, salinity stress could inhibit the differentiation of rice spikelets and promote the degradation of spikelets, resulting in a significant decrease in the number of spikelets per panicle; it adversely affected the development of floral organs and reduced the fullness of grains, which significantly deteriorated the characteristics of grain plumpness.

Keywords: rice; salinity stress; spikelets formation; grains filling

我国有 234 万公顷沿海滩涂和 1 亿公顷内陆盐 碱地, 是我国最重要的后备耕地资源[1]。水稻常作为 盐土改良的重要粮食作物、有关盐胁迫下水稻生长 发育与产量形成特征一直备受关注[2-3]。研究表明, 盐胁迫对水稻植株生长发育的伤害主要包括渗透胁 迫和离子胁迫。渗透胁迫主要是由于土壤中高浓度 的盐分降低了土壤水势,使植株吸水困难,抑制植 株生长: 离子胁迫则是由于植株叶片中 Na+的过量 积累常导致 K⁺、Ca²⁺和磷素吸收受抑, 从而产生单 盐毒害[4-5]。盐胁迫下、水稻植株光合作用受到抑制、 不仅加剧了光合产物在主茎与分蘖之间的竞争、引 起部分分蘖困难且也难以获得充足的养分而未能成 穗; 而且加快了花后植株衰老进程, 导致群体库容 充实差、产量低[6-8]。当前, 我国正大力开发利用沿 海滩涂和内陆盐碱地发展水稻生产[9-10]。但总体上, 沿海滩涂和内陆盐碱地种植的水稻产量偏低且稳产 性较差[11-12]。每穗颖花数是决定水稻丰产性与稳产 性的重要因子, 取决于颖花的分化与退化 2 个过程。 水稻穗部颖花分化和退化, 既受植株营养物质供应 的多寡、碳/氮比值的平衡以及幼穗器官生理活性高 低等诸多内在生理因素的影响[13-15], 也易受外在环 境条件和栽培措施的影响[16-18]。环境条件方面, 王 亚梁等[16]研究表明、水稻穗分化期高温胁迫会加剧 颖花退化、造成每穗颖花量显著下降; 抑制花药发 育, 降低花粉活力, 导致籽粒充实性状差。栽培措施 方面、陈培峰等[17]研究表明、与浅水灌溉相比、轻 干湿交替灌溉利于促进稻穗枝粳和颖花的分化、尤 其是促进稻穗中下部二次颖花的现存数的增加,显 著提高了中、弱势粒的粒重和充实度。目前,关于

盐胁迫下水稻穗部颖花分化与退化及籽粒充实的报道较少, 且缺少系统研究。为此, 本研究以江苏沿海滩涂大面积种植的常规粳稻南粳 9108 和盐稻 12 为试材, 研究分析盐胁迫对稻穗颖花形成、花器官发育及籽粒充实的影响, 旨在为沿海滩涂水稻高产栽培与调控措施提供理论与实践支撑。

1 材料与方法

1.1 供试材料

以江苏沿海滩涂大面积种植的常规粳稻南粳 9108 和盐稻 12 为供试材料。

1.2 试验设计与栽培管理

2019—2020年,在扬州大学农学院试验农场进行盆栽试验,盆钵直径25 cm、高30 cm。盆钵所装土壤取自试验农场稻田耕层,土壤类型为沙壤土,20 cm土壤耕层中含全氮0.13%、碱解氮89.4 mg kg⁻¹、速效磷32.9 mg kg⁻¹、速效钾80.1 mg kg⁻¹,每盆装土18 kg。

设置对照 (check, CK, 盐浓度 0%)、中盐 (medium-salinity stress, MS, 盐浓度 0.15%)和高盐 (high-salinity stress, HS, 盐浓度 0.3%)共3个盐浓度 梯度处理,每处理50盆。根据试验设计的含盐量梯度和盆钵土的重量来计算NaCl海盐的重量,移栽前 3 d将对应重量的Q/ZLY型速溶海水晶(浙江蓝海星盐制品厂生产,天然海水晒制,基本保留了海水的主要成分)均匀撒施在对应处理盆钵中,并与土壤充分搅拌均匀。盆栽场上方建有遮雨棚,以防因降雨引起池内盐分变化。2年中,南粳9108和盐稻12均于5月20日播种,采用塑料软盘旱育秧,秧龄25 d后移

至盆钵,每盆4穴,每穴4株苗。每盆基施2 g尿素和 0.5 g磷酸二氢钾,移栽后7 d每盆施0.5 g尿素,穗分 化期每盆施0.6 g尿素。移栽后,各盆栽处理建立 1~2 cm浅水层,以湿润灌溉为主;穗分化阶段与抽穗扬花期始终保持2~3 cm水层;灌浆结实期实行干湿交替,自1~2 cm浅水层自然落干至土壤水势—15 kPa,然后灌1~2 cm浅水层,再落干,如此循环,直至成熟。盆钵内安装真空表式负压计(中国科学院南京土壤研究所生产)监测土壤水势。按常规高产栽培管理病虫草害。

1.3 测定项目与方法

颖花现存(退化)数 = 一次枝粳颖花现存(退化)数 + 二次枝粳颖花现存(退化)数;

颖花分化数 = 颖花现存数 + 颖花退化数; 颖花退化率(%) = (颖花退化数 / 颖花分化数) $\times 100$;

- -次(二次)枝粳颖花分化数 = -次(二次)枝粳 颖花现存数 + -次(二次)枝粳颖花退化数;
- 一次(二次)枝粳颖花退化率 = 一次(二次)枝粳 颖花退化数×100 / 一次(二次)枝粳颖花分化数。
- 1.3.2 主茎穗花药形态 于主茎稻穗抽出约 20%~30%时集中取样 1 次。各处理选取当天开放的 花药 30 个, 在体视显微镜下(OLYMPUS, SZX16)观察花药形态, 并照相。之后, 利用测微尺测量花药长

度(length, L)和宽度(width, W)。花药体积(V)按公式 $V = 0.34LW^2$ 计算[19]。

1.3.3 主茎穗花药升裂率 取样方法与时期同1.3.2。各处理选取当天开放的花药30个,在体视显微镜下(OLYMPUS, SZX16)观察花药开裂情况,计算花药开裂率。

花药开裂率(%) = (完全开裂花药数+部分开裂花药数)/ 镜检花药总数 \times 100。

1.3.4 主茎穗花粉活力 取样方法与时期同 1.3.2。各处理选取当天开放的颖花 3 枚, 用镊子取下每枚颖花上的全部花药挤碎, 用 1% I_2 -KI 溶液染色并于生物显微镜下(OLYMPUS, BX61)选取 3 个视野统计可染率, 能染色的花粉即具有活力的花粉。

1.3.5 主茎穗穗部性状与实产 于成熟期,各处理选取大小一致主茎穗 40 个,测定单穗重、每穗粒数、结实率和粒重。各处理选取植株长势基本均匀,且未经取样测定的 10 盆稻株,每盆单独手工脱粒计产。

1.4 数据处理

运用 Microsoft Excel 软件录入数据、计算, DPS 软件作统计分析, SigmaPlot 软件作图。

2 结果与分析

2.1 产量与主茎穗部性状

与对照相比, 盐胁迫显著降低了南粳 9108 和盐稻 12 产量。中盐胁迫下, 南粳 9108 和盐稻 12 产量降幅分别为 18.7%和 24.3%; 高盐胁迫下, 南粳 9108 和盐稻 12 产量降幅分别为 54.5%和 58.6% (表 1)。 盐胁迫处理下水稻主茎单穗重和每穗粒数显著低于对照。2 年中, 中盐和高盐胁迫下南粳 9108 每穗粒数较对照分别低 8.6%和 19.8%, 盐稻 12 较对照分别低 8.0%和 25.9%; 穗部籽粒充实性状方面, 盐胁迫

表 1 盐胁迫对水稻产量的影响

Table 1 Effects of salinity stress on grain yield in rice

年份	处理	实产 Actual yield (g plot ⁻¹)				
Year	Treatment	南粳 9108 Nanjing 9108	盐稻 12 Yandao 12			
2019	对照 CK	126 a	121 a			
	中盐 MS	101 b	93 b			
	高盐 HS	55 c	51 c			
2020	对照 CK	120 a	118 a			
	中盐 MS	99 b	88 b			
	高盐 HS	57 c	48 c			

标以不同小写字母的值在同一年份同一栏中 0.05 水平差异显著。

CK: check; MS: medium-salinity stress; HS: high-salinity stress. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

处理显著降低了南粳 9108 和盐稻 12 穗部籽粒的结实率和粒重, 2 年中, 中盐和高盐胁迫下盐稻 12 穗部粒重分别为 24.4 mg 和 22.9 mg, 较对照分别低 1.2 mg 和 2.7 mg (表 2)。

2.2 主茎穗部颖花分化与退化

与对照相比, 盐胁迫处理降低了水稻主茎颖花分化数和颖花现存数。中盐胁迫下南粳 9108 和盐稻 12 主茎颖花分化数较对照分别降低了 4.4%和 3.5%, 高盐处理下则分别降低了 12.1%和 11.2%。盐胁迫处理显著提高了主茎颖花退化数与退化率; 2 年中, 中盐和高盐胁迫下南粳 9108 主茎颖花退化数分别为 15.2 和 22.3, 较对照分别增加了 72.7%和 153.4% (表 3)。对南粳 9108 和盐稻 12 而言, 中盐胁迫下一次枝粳上颖花分化数和颖花现存数均与对照差异不显著,

高盐胁迫下一次枝粳上颖花分化数和颖花现存数则显著低于对照。与对照相比,中盐和高盐胁迫处理提高了主茎一次枝粳颖花退化数与退化率(表 4)。中盐和高盐胁迫下,主茎二次枝粳颖花分化数与颖花现存数均显著低于对照,颖花退化数与颖花退化率则显著高于对照。中盐和高盐胁迫下,南粳 9108 主茎二次枝粳颖花退化数较对照分别增加了 52.7%和112.7%,盐稻 12 主茎二次枝粳颖花退化率则较对照分别增加了 51.7%和 108.8% (表 5)。

2.3 主茎花药性状、花粉活力与颖花大小

与对照相比, 盐胁迫处理降低了水稻主茎花药长度、宽度与体积。中盐和高盐胁迫下, 南粳 9108 花药长度 2 年平均为 1.71 mm 和 1.60 mm, 较对照分别下降了 4.7%和 11.1%; 盐稻 12 花药长度 2 年平均

表 2 盐胁迫对水稻主茎穗部性状的影响

Table 2 Effects of salinity stress on panicle traits of the main stem in rice

年份 Year	处 理		南粳 9108 Nanjing 9108			盐稻 12 Yandao 12			
	Treatment	单穗重 SPW (g)	每穗粒数 SPP	结实率 FGP (%)	粒重 GW (mg)	单穗重 SPW (g)	每穗粒数 SPP	结实率 FGP (%)	粒重 GW (mg)
2019	对照 CK	3.5 a	142.9 a	90.2 a	25.9 a	3.2 a	136.2 a	89.7 a	25.5 a
	中盐 MS	2.9 b	131.7 b	88.3 b	24.5 b	2.7 b	127.1 b	87.4 b	24.2 b
	高盐 HS	2.3 с	115.7 с	84.6 c	23.2 с	2.0 c	115.7 с	85.3 c	22.7 c
2020	对照 CK	3.7 a	150.4 a	90.7 a	26.2 a	3.4 a	143.8 a	90.2 a	25.7 a
	中盐 MS	3.1 b	136.3 b	88.2 b	25.1 b	2.9 b	130.4 b	87.7 b	24.5 b
	高盐 HS	2.4 c	119.4 с	85.7 c	23.7 с	2.1 c	105.7 c	85.1 c	23.0 с

处理同表 1。标以不同小写字母的值在同一年份同一栏中 0.05 水平差异显著。

Treatments are the same as those given in Table 1. SPW: single panicle weight; SPP: spikelets per panicle; FGP: filled-grain percentage; GW: grain weight. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

表 3 盐胁迫对水稻主茎穗部颖花分化与退化的影响

Table 3 Effects of salinity stress on differentiated and retrograded spikelets of the main stem in rice

年份 处理	かと土田		南粳 9108 N	Janjing 9108		盐稻 12 Yandao 12			
Year	Treatment	颖花分化数	颖花退化数	颖花现存数	颖花退化率	颖花分化数	颖花退化数	颖花现存数	颖花退化率
		DS	RS	SS	PRS (%)	DS	RS	SS	PRS (%)
2019	对照 CK	155.6 a	8.3 c	147.3 a	5.3 c	150.6 a	9.2 с	141.4 a	6.1 c
	中盐 MS	150.1 ab	15.0 b	135.1 b	10.0 b	145.8 a	16.6 b	129.2 b	11.4 b
	高盐 HS	138.1 b	22.6 a	115.5 c	16.4 a	128.8 b	22.4 a	106.4 c	17.4 a
2020	对照 CK	165.6 a	9.3 c	156.3 a	5.6 c	157.1 a	10.0 c	147.1 a	6.3 c
	中盐 MS	157.0 ab	15.4 b	141.6 b	9.8 b	151.0 ab	16.8 b	134.2 b	11.1 b
	高盐 HS	144.1 b	22.0 a	122.1 c	15.3 a	133.6 b	23.8 a	109.8 c	17.8 a

处理同表 1。标以不同小写字母的值在同一年份同一栏中 0.05 水平差异显著。

Treatments are the same as those given in Table 1. DS: differentiated spikelets; RS: retrograded spikelets; SS: survived spikelets; PRS: percentage of retrograded spikelets. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

表 4 盐胁迫对水稻主茎一次枝粳颖花分化与退化的影响

Table 4 Effects of salinity stress on differentiated and retrograded spikelets of the primary branches on the main stem of rice

年份	处理	南粳 9108 Nanjing 9108				盐稻 12 Yandao 12			
+ил Year	大 Treatment	颖花分化数	颖花退化数	颖花现存数	颖花退化率	颖花分化数	颖花退化数	颖花现存数	颖花退化率
- Cai	Treatment	DS	RS	SS	PRS (%)	DS	RS	SS	PRS (%)
2019	对照 CK	76.0 a	0.6 a	75.4 a	0.8 b	70.4 a	0.4 a	70.0 a	0.6 b
	中盐 MS	73.0 a	2.4 a	70.6 a	3.3 b	69.1 a	2.8 a	66.3 a	4.0 a
	高盐 HS	69.9 b	4.8 a	65.1 b	6.9 a	64.4 b	3.9 a	60.3 b	6.1 a
2020	对照 CK	79.1 a	0.5 a	78.6 a	0.6 b	73.5 a	0.5 a	73.0 a	0.7 b
	中盐 MS	74.7 b	2.8 a	71.9 b	3.7 b	71.4 a	2.9 a	68.5 a	4.1 a
	高盐 HS	72.5 b	4.6 a	67.9 b	6.4 a	60.3 b	4.2 a	56.1 b	6.9 a

处理同表 1、缩略词同表 3。标以不同小写字母的值在同一年份同一栏中 0.05 水平差异显著。

Treatments and abbreviations are the same as those given in Tables 1 and 3, respectively. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

表 5 盐胁迫对水稻主茎二次枝粳颖花分化与退化的影响

Table 5 Effects of salinity stress on differentiated and retrograded spikelets of the secondary branches on the main stem in rice

年份	处理	南粳 9108 Nanjing 9108				盐稻 12 Yandao 12			
+ил Year	文注 Treatment	颖花分化数	颖花退化数	颖花现存数	颖花退化率	颖花分化数	颖花退化数	颖花现存数	颖花退化率
i cai	Treatment	DS	RS	SS	PRS (%)	DS	RS	SS	PRS (%)
2019	对照 CK	79.6 a	7.7 c	71.9 a	9.7 с	80.2 a	8.8 c	71.4 a	10.9 c
	中盐 MS	77.1 a	12.6 b	64.5 b	16.3 b	76.7 b	13.8 b	62.9 b	18.0 b
	高盐 HS	68.2 b	17.8 a	50.4 c	26.1 a	64.4 c	18.5 a	45.9 с	28.7 a
2020	对照 CK	86.5 a	8.8 c	77.7 a	10.2 c	83.6 a	9.5 c	74.1 a	11.3 c
	中盐 MS	82.3 ab	12.6 b	69.7 b	15.3 b	79.6 ab	13.9 b	65.7 b	17.4 b
	高盐 HS	71.6 b	17.4 a	54.2 c	24.3 a	73.3 b	19.6 a	53.7 с	26.8 a

处理同表 1, 缩略词同表 3。标以不同小写字母的值在同一年份同一栏中 0.05 水平差异显著。

Treatments and abbreviations are the same as those given in Tables 1 and 3, respectively. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

为 1.80 mm 和 1.66 mm, 较对照分别下降了 6.5% 和 13.8% (表 6)。中盐和高盐胁迫下南粳 9108 花药开裂率分别为 69.9%和 55.6%, 盐稻 12 则分别为 68.0%和 54.0%, 均显著低于对照(图 1)。对于南粳 9108 和盐稻 12 而言, 盐胁迫处理均显著降低了花粉活力。中盐和高盐胁迫下南粳 9108 花粉活力

分别为 81.6%和 64.7%, 较对照分别降低了 13.6%和 31.5%(图 2)。与对照相比, 盐胁迫处理降低了水稻主茎穗部颖花的长度和宽度。以南粳 9108 为例, 高盐胁迫下主茎穗部颖花长度和宽度分别为 6.63 mm 和 3.49 mm, 较对照处理分别低 6.5%和 6.1%(表 7)。

表 6 盐胁迫对水稻主茎花药大小的影响

Table 6 Effects of salinity stress on size of anther of the main stem in rice

	南粳 9108 Nanjing 9108				盐稻 12 Yandao 12				
年份	处理	花药长度	花药宽度	花药体积	花药长度	花药宽度	花药体积		
Year	Treatment	Length of anther	Width of anther	Volume of anther	Length of anther	Width of anther	Volume of anther		
		(mm)	(mm)	(mm^2)	(mm)	(mm)	(mm ²)		
2019	对照 CK	1.82 a	0.46 a	0.13 a	1.91 a	0.48 a	0.15 a		
	中盐 MS	1.73 b	0.43 ab	0.11 ab	1.79 b	0.44 b	0.12 b		
	高盐 HS	1.62 c	0.41 b	0.09 b	1.65 c	0.42 b	0.10 b		
2020	对照 CK	1.77 a	0.45 a	0.12 a	1.94 a	0.47 a	0.15 a		
	中盐 MS	1.69 b	0.43 ab	0.11 ab	1.81 b	0.43 b	0.11 b		
	高盐 HS	1.57 c	0.39 b	0.08 b	1.67 c	0.41 b	0.10 b		

处理同表 1。标以不同小写字母的值在同一年份同一栏中 0.05 水平差异显著。

Treatments are the same as those given in Table 1. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

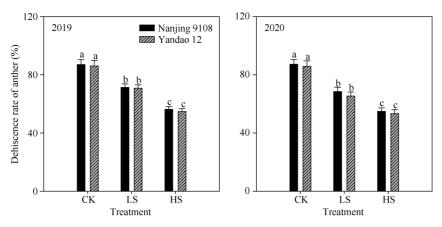
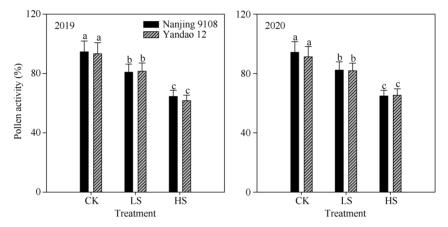



图 1 盐胁迫对主茎花药开裂率的影响

Fig. 1 Effects of salinity stress on dehiscence rate of anther on the main stem in rice

处理同表 1。处理间标以不同小写字母的值在 0.05 水平差异显著。

Treatments are the same as those given in Table 1. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the treatments.

图 2 盐胁迫对主茎花粉活力的影响

Fig. 2 Effects of salinity stress on pollen activity on the main stem in rice

处理同表 1。处理间标以不同小写字母的值在 0.05 水平差异显著。

Treatments are the same as those given in Table 1. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the treatment.

表 7 盐胁迫对水稻主茎穗颖花大小的影响

Table 7 Effects of salinity stress on size of spikelets on the main stem in rice

年份 Year	处理	南粳 9108 N	anjing 9108	盐稻 12 Yandao 12		
	大理 Treatment	长度 Length (mm)	宽度 Width (mm)	长度 Length (mm)	宽度 Width (mm)	
2019	对照 CK	7.11 a	3.72 a	7.24 a	3.34 a	
	中盐 MS	6.93 b	3.61 b	7.03 b	3.15 b	
	高盐 HS	6.68 c	3.49 c	6.82 c	3.07 c	
2020	对照 CK	7.07 a	3.71 a	7.21 a	3.32 a	
	中盐 MS	6.85 b	3.57 b	6.95 b	3.15 b	
	高盐 HS	6.58 c	3.49 c	6.69 c	3.03 c	

处理同表 1。标以不同小写字母的值在同一年份同一栏中 0.05 水平差异显著。

Treatments are the same as those given in Table 1. Values followed by different lowercase letters are significantly different at the 0.05 probability level within the same column and the same year.

2.4 相关性分析

相关性分析结果表明, 颖花长度与产量、每穗粒数、结实率和粒重呈极显著正相关。一次和二次枝粳颖花分化数和现存数与产量、每穗粒数、结实率和粒重呈

极显著正相关, 颖花退化数和颖花退化率则与产量、每穗粒数、结实率和粒重呈极显著负相关。此外, 花药长度与宽度、花药开裂率、花粉活力与产量、每穗粒数、结实率和粒重均呈显著或极显著正相关(表 8)。

表 8 盐胁迫处理下水稻穗部性状的相关性分析

Table 8 Correlation analysis of panicle traits under salinity stress in rice

		实产	———— 每穗粒数		—————————————————————————————————————
	tem	Actual yield	Spikelets per panicle	Filled-grain percentage	Grain weight
 颖花	长度 Length	0.89**	0.74**	0.88**	0.80**
Spikelets	宽度 Width	0.53	0.65*	0.51	0.61*
	颖花分化数 DS	0.74**	0.88**	0.74^*	0.82**
一次枝粳	颖花退化数 RS	-0.95**	-0.86**	-0.97**	-0.92**
Primary branches	颖花现存数 SS	0.86**	0.95**	0.86**	0.92**
	颖花退化率 PRS	-0.98**	-0.91**	-0.98**	-0.95^{**}
	颖花分化数 DS	0.86**	0.92**	0.89**	0.92**
二次枝粳	颖花退化数 RS	-0.99**	-0.94**	-0.98**	-0.98**
Secondary branches	颖花现存数 SS	0.95**	0.97**	0.96**	0.98**
	颖花退化率 PRS	-0.98**	-0.97**	-0.98^{**}	-0.98^{**}
花药长度 Length of anther		0.81**	0.68^{*}	0.80**	0.73**
花药宽度 Width of an	ther	0.81**	0.72**	0.86**	0.80^{**}
花药开裂率 Dehiscen	ce rate of anther	0.97**	0.92**	0.97**	0.95**
花粉活力 Pollen activ	rity	0.98**	0.94**	0.97**	0.97**

DS: differentiated spikelets; RS: retrograded spikelets; SS: survived spikelets; PRS: percentage of retrograded spikelets. * P < 0.05, ** P < 0.01.

3 讨论

本试验条件下, 南粳 9108 和盐稻 12 在中盐和 高盐胁迫下产量降幅分别为 18.7%~24.3%和 54.5%~58.6% (表 1), 表明盐胁迫显著降低了水稻产 量、这与此前的研究结果基本一致[6,8,20]。 有关盐胁 迫对水稻产量构成因素的影响已有较多研究报道, 但研究结果并不完全一致。周根友等[6]、孙现军等[21] 研究表明, 与非盐胁迫相比, 盐胁迫导致水稻产量 显著下降的主要原因是每穗粒数和粒重的降低;而 胡博文等[22]、荆培培等[23]研究表明、盐胁迫下水稻 群体穗数、每穗粒数、结实率和粒重均降低、从而 使水稻产量显著下降。本试验条件下, 与对照相比, 中盐和高盐胁迫均显著降低了南粳 9108 和盐稻 12 的每穗粒数、结实率和粒重(表 2); 此外, 笔者此前 的研究表明[8], 盐胁迫下水稻分蘖发生率与成穗率 均较低、单株与群体成穗数少。因此、库容量偏小与 库容充实差共同制约了盐胁迫下水稻产量的提升, 这与胡博文等[22]、荆培培等[23]的研究结果基本一致。

目前有关盐胁迫影响水稻颖花形成的研究报道 较少。本研究结果表明, 与对照相比, 盐胁迫处理降 低了水稻颖花分化数、提高了颖花退化数、每穗颖 花数显著下降: 从影响过程来看, 盐胁迫下南粳 9108 和盐稻 12 颖花退化数的增加幅度高于颖花分 化数的下降幅度, 因此, 盐胁迫下颖花退化数的增 加是导致每穗颖花数下降的关键因素(表 2 和表 3)。 盐胁迫导致水稻穗部颖花数增加的原因可能有以下 2点:(1)植株内源激素比例失衡。水稻植株内源激 素平衡程度是影响颖花退化的关键因素之一。水稻 穗分化期尤其是减数分裂期较低的内源油菜素甾醇 (BRs)和多胺(PAs)水平以及较高的乙烯水平与颖花 退化密切相关、提高 BRs、PAs 水平或 PAs 与乙烯的 比值可有效减少颖花退化[24-25]。此前研究表明[26-27], 盐胁迫下水稻植株乙烯释放量急剧上升, PAs 水平和 PAs 与乙烯的比值则显著下降, 加剧了穗部颖花的 退化。(2) 盐胁迫易造成植株能荷水平过低及活性氧 过度积累、使得膜脂过氧化伤害和小穗程序性细胞 死亡、导致颖花退化数的增加[28-29]。

关于不同枝粳上颖花分化与退化变化的比较已有相关研究报道^[15,18,30]。董明辉等^[18]研究表明,麦秸还田与施氮量处理均对枝梗与颖花分化数、退化数/率、现存数产生显著影响,对二次枝梗和二次颖花的影响大于一次枝梗和一次颖花。王亚梁等^[30]研究表明,穗分化期高温胁迫抑制水稻颖花分化,加剧颖花退化;高温对二次枝粳上颖花分化与退化的影响大于一次枝粳。本试验条件下,盐胁迫处理降低了一次和二次枝粳颖花分化数和现存数,增加了一次和二次枝粳颖花退化数;盐胁迫下二次枝粳颖花分化数和现存数的增加幅度均高于一次枝粳(表4和表5),表明盐胁迫对一次和二次枝粳颖花形成的影响存在差异,以对二次枝粳颖花形成的影响更大。

本研究表明, 与对照相比, 盐胁迫处理下水稻 籽粒充实性状(结实率和粒重)显著变劣(表 2)。水稻 花器官正常发育是籽粒充实饱满以及获取高产的关 键因素之一。花器官的发育极易受到环境胁迫因子 的影响[14-15,19,31]。温度胁迫方面、张荣萍等[19]研究表 明、开花期低温胁迫影响水稻结实率的主要原因是 低温胁迫影响花药发育成熟、使花药不能正常开 裂、散粉不足, 可育花粉率和柱头花粉萌发率降低, 直接影响了受精结实。水稻抽穗扬花期遇到高温胁 迫, 对水稻的花粉粒直径、花粉活力和花药开裂率 等均会产生不同程度的影响[14,31]。本试验条件下,与 对照相比, 盐胁迫降低了花药大小及其开裂率与花 粉活力(表 6、图 1、图 2)、表明盐胁迫下水稻花器官 受到伤害, 使花药开裂受阻, 导致散发到柱头上的 花粉量不足, 进而影响授粉受精, 引起结实率下降 (表 8)。水稻粒重取决于颖花大小和籽粒饱满度, 前 者决定了库容潜力,后者跟同化物的供应有关[32-33]。本 研究结果表明, 与对照相比, 盐胁迫处理降低了水 稻颖花长度和宽度(表 7)、抑制了库容潜力的提升; 此外、盐胁迫下植物光合作用受到抑制、植株衰老 进程加快,花后干物质积累量少,导致籽粒充实饱 满度差[8,34]。因此、盐胁迫抑制了水稻库容和籽粒充 实饱满度的提升,从而显著降低了粒重(表 2)。

本研究在盆栽条件下,模拟研究了不同盐胁迫浓度下水稻颖花分化与退化的变化趋势及花器官发育特点,明确了盐胁迫对水稻颖花形成及籽粒充实的影响,研究结果对于沿海滩涂水稻高产栽培与调控措施具有一定指导意义。考虑到盆栽条件与大田实际条件的差异,本研究中的部分研究结果仍需进

一步在沿海滩涂田间试验中加以验证。

4 结论

盐胁迫对水稻颖花形成及籽粒充实有显著影响。与对照相比, 盐胁迫抑制水稻颖花分化, 促进颖花退化, 每穗颖花数显著下降。影响花器官正常发育, 花药大小、花药开裂率和花粉活力下降; 缩短颖花长度和宽度, 降低籽粒饱满度, 使籽粒充实性状显著变劣。

References

- [1] 王才林, 张亚东, 赵凌, 路凯, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵春芳, 梁文化, 孙明法, 严国红. 耐盐碱水稻研究现状、问题与建议. 中国稻米, 2019, 25(1): 1–6.
 Wang C L, Zhang Y D, Zhao L, Lu K, Zhu Z, Chen T, Zhao Q Y, Yao S, Zhou L H, Zhao C H, Liang W H, Sun M F, Yan G H. Research status, problems and suggestions on salt-alkali tolerant rice.

 China Rice, 2019, 25(1): 1–6 (in Chinese with English abstract).
- [2] Liu L, Chen J, Tan Y N, Zhou T S, Ouyang N, Zeng J, Yuan D Y, Duan M J. Increasing fatty acids in rice root improves silence of rice seedling to salt stress. *Rice Sci*, 2019, 26: 339–342.
- [3] 沙汉景, 胡文成, 贾琰, 王新鹏, 田雪飞, 于美芳, 赵宏伟. 外源水杨酸、脯氨酸和 γ-氨基丁酸对盐胁迫下水稻产量的影响. 作物学报, 2017, 43: 1677–1688.

 Sha H J, Hu W C, Jia Y, Wang X P, Tian X F, Yu M F, Zhao H W. Effect of exogenous salicylic acid, proline, and γ-aminobutyric acid on yield of rice under salt stress. *Acta Agron Sin*, 2017, 43: 1677–1688 (in Chinese with English abstract).
- [4] Munns R, Gilliham M. Salinity tolerance of crops-what is the cost. New Phytol. 2015, 208: 668-673.
- [5] Zhang J F. Salinity affects the proteomics of rice roots and leaves. *Proteomics*, 2014, 14: 1711–1712.
- [6] 周根友,翟彩娇,邓先亮,张蛟,张振良,戴其根,崔士友. 盐逆境对水稻产量、光合特性及品质的影响. 中国水稻科学,2018, 32: 146–154.

 Zhou G Y, Zhai C J, Deng X L, Zhang J, Zhang Z L, Dai Q G, Cui S Y. Performance of yield, photosynthesis and grain quality of *japonica* rice cultivars under salinity stress in micro-plots. *Chin J Rice Sci*, 2018, 32: 146–154 (in Chinese with English abstract).
- [7] Wang X X, Wang W C, Huang J L, Peng S B, Xiong D L. Diffusional conductance to CO₂ is the key limitation to photosynthesis in salt-stressed leaves of rice (*Oryza sativa*). *Physiol Plant*, 2018, 163: 45–58.
- [8] 韦还和, 葛佳琳, 张徐彬, 孟天瑶, 陆钰, 李心月, 陶源, 丁恩浩, 陈英龙, 戴其根. 盐胁迫下粳稻品种南粳 9108 分蘖特性及其与群体生产力的关系. 作物学报, 2020, 46: 1238–1247. Wei H H, Ge J L, Zhang X B, Meng T Y, Lu Y, Li X Y, Tao Y, Ding E H, Chen Y L, Dai Q G. Tillering characteristics and its relationships with population productivity of *japonica* rice Nanjing 9108 under salinity stress. *Acta Agron Sin*, 2020, 46: 1238–1247 (in Chinese with English abstract).

- [9] Wang J J, Dai Q X, Shang J L, Jin X L, Sun Q, Zhou G S, Dai Q G. Field-scale rice yield estimation using sentinel-1A synthetic aperture radar (SAR) data in coastal saline region of Jiangsu province, China. *Remote Sens*, 2019, 11: 2274.
- [10] 彭既明. 耐盐(碱)水稻研发的建议. 中国稻米, 2019, 25(1): 7–9. Peng J M. Suggestions for developing saline-alkaline tolerant rice. *China Rice*, 2019, 25(1): 7–9 (in Chinese with English abstract).
- [11] Zhang Y, Li Q, Dai Q G, Kang Y J. Microbial mechanism underlying high and stable methane oxidation rates during mudflat reclamation with long-term rice cultivation: illumine high-throughput sequencing-based data analysis. *J Hazard Mater*, 2019, 371: 332–341.
- [12] 徐晨, 凌风楼, 徐克章, 武志海, 刘晓龙, 安久海, 赵兰坡. 盐 胁迫对不同水稻品种光合特性和生理生化特性的影响. 中国 水稻科学, 2013, 27: 280–286.

 Xu C, Ling F L, Xu K Z, Wu Z H, Liu X L, An J H, Zhao L P. Effects of salt stress on photosynthetic characteristics and physiological and biochemical traits of different rice varieties.
- physiological and biochemical traits of different rice varieties.

 Chin J Rice Sci, 2013, 27: 280–286 (in Chinese with English abstract).

 [13] 付永琦,向妙莲,蒋海燕,何永明,曾晓春.水稻颖花开放前
- 浆片转录组变化. 中国农业科学, 2016, 49: 1017-1033. Fu Y Q, Xiang M L, Jiang H Y, He Y M, Zeng X C. Transcriptome profiling of lodicules before floret opening in *Oryza sativa* L. *Sci Agric Sin*, 2016, 49: 1017-1033 (in Chinese with English abstract).
- [14] Kato Y, Kamoshita A, Yamagishi J. Preflowering abortion reduces spikelet number in upland rice (*Oryza sativa L.*) under water stress. *Crop Sci*, 2008, 48: 2389–2395.
- [15] Bai J T, Zhu X D, Wang Q, Zhang J, Chen H Q, Dong G J, Zhu L, Zheng H K, Xie Q J, Nian J Q, Chen F, Fu Y, Qian Q, Zuo J R. Rice *TUTOU1* encodes a suppressor of cAMP receptor-like protein that is important for actin organization and panicle development. *Plant Physiol*, 2015, 169: 1179–1191.
- [16] 王亚梁, 张玉屏, 朱德峰, 向镜, 武辉, 陈惠哲, 张义凯. 水稻穗分化期高温胁迫对颖花退化及籽粒充实的影响. 作物学报, 2016, 42: 1402-1410.Wang Y L, Zhang Y P, Zhu D F, Xiang J, Wu H, Chen H Z,
 - Wang Y L, Zhang Y P, Zhu D F, Xiang J, Wu H, Chen H Z, Zhang Y K. Effect of heat stress on spikelet degeneration and grain filling at panicle initiation period of rice. *Acta Agron Sin*, 2016, 42: 1402–1410 (in Chinese with English abstract).
- [17] 陈培峰, 韩立宇, 顾俊荣, 乔中英, 王文青, 董明辉. 灌溉方式与施氮量对杂交粳稻颖花形成及籽粒充实的影响. 核农学报, 2017, 31: 1604–1611.
 Chen P F, Han L Y, Gu J R, Qiao Z Y, Wang W Q, Dong M H.
 - Effects of irrigation pattern and nitrogen applications on spikelets formation and grain filling in hybrid *japonica* rice. *J Nucl Agric Sci*, 2017, 31: 1604–1611 (in Chinese with English abstract).
- [18] 董明辉, 顾俊荣, 陈培峰, 韩立宇, 乔中英. 麦秸还田与氮肥 互作对大穗型杂交粳稻不同部位枝梗和颖花形成的影响. 中 国农业科学, 2015, 48: 4437–4449.
 - Dong M H, Gu J R, Chen P F, Han L Y, Qiao Z Y. Effects of interaction of wheat straw residue with field and nitrogen applications on branches and spikelets formation at different positions in large panicle hybrid rice. *Sci Agric Sin*, 2015, 48:

- 4437-4449 (in Chinese with English abstract).
- [19] 张荣萍, 马均, 蔡光泽, 孙永健. 开花期低温胁迫对四川攀西稻区水稻开花结实的影响. 作物学报, 2012, 38: 1734–1742. Zhang R P, Ma J, Cai G Z, Sun Y J. Effects of low temperature stress during flowering stage on flowering and seed setting of rice in Panxi region, Sichuan province. *Acta Agron Sin*, 2012, 38: 1734–1742 (in Chinese with English abstract).
- [20] Gay F, Maraval I, Roques S, Gunata Z, Boulanger R, Audebert A, Mestres C. Effect of salinity on yield and 2-acetyl-1-pyrroline content in the grains of three fragrant rice cultivars (*Oryza sativa* L.) in Camargue (France). *Field Crops Res*, 2010, 117: 154–160.
- [21] 孙现军,姜奇彦,胡正,张惠媛,徐长兵,邸一桓,韩龙植,张辉.水稻资源全生育期耐盐性鉴定筛选.作物学报,2019,45:1656-1663.
 - Sun X J, Jiang Q Y, Hu Z, Zhang H Y, Xu C B, Di Y H, Han L Z, Zhang H. Screening and identification of salt-tolerant rice germplasm in whole growth period. *Acta Agron Sin*, 2019, 45: 1656–1663 (in Chinese with English abstract).
- [22] 胡博文, 谷娇娇, 贾琰, 沙汉景, 张君颜, 黄书勤, 赵宏伟. 盐 胁迫对寒地粳稻籽粒淀粉形成积累及产量的影响. 华北农学报, 2019, 34(1): 115–123.

 Hu B W, Gu J J, Jia Y, Sha H J, Zhang J Y, Huang S Q, Zhao H W. Effect of salt stress on starch formation and yield of *japonica* rice in cold-region. *Acta Agric Boreali-Sin*, 2019, 34(1): 115–123 (in Chinese with English abstract).
- [23] 荆培培,崔敏,秦涛,周在中,戴其根.土培条件下不同盐分梯度对水稻产量及其生理特性的影响.中国稻米,2017,23(4): 26-33.
 - Jing P P, Cui M, Qin T, Zhou Z Z, Dai Q G. Effects of different saline stress on yield and physiological properties of rice in soil culture. *China Rice*, 2017, 23(4): 26–33 (in Chinese with English abstract).
- [24] Wang Z Q, Zhang W Y, Yang J C. Physiological mechanism underlying spikelet degeneration in rice. *J Integr Agric*, 2018, 17: 1475–1481.
- [25] Zhang W Y, Zhu K Y, Wang Z Q, Zhang H, Gu J F, Liu L J, Yang J C, Zhang J H. Brassinosteroids function in spikelet differentiation and degeneration in rice. *J Integr Plant Biol*, 2019, 61: 943–963.
- [26] Sharma I, Ching E, Saini S, Bhardwaj R, Pati P K. Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. *Plant Physiol Biochem*, 2013, 69: 17–26.
- [27] Zhang H, Tan G L, Yang L N, Yang J C, Zhang J H, Zhao B H. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in *japonica/indica* hybrid rice. *Plant Physiol Biochem*, 2009, 47: 195–204.
- [28] Moradi F, Ismail A M. Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. *Ann Bot*, 2007, 99: 1161–1173.
- [29] Gregorio G B, Senadhira D, Mendoza R D, Manigbas N L, Roxas J P, Guerta C Q. Progress in breeding for salinity tolerance and associated abiotic stresses in rice. *Field Crops Res*, 2002, 76: 91–101.

- [30] 王亚梁, 张玉屏, 曾研华, 武辉, 向镜, 陈惠哲, 张义凯, 朱德峰. 水稻穗分化期高温胁迫对颖花分化及退化的影响. 中国农业气象, 2015, 36: 724–731.
 - Wang Y L, Zhang Y P, Zeng Y H, Wu H, Xiang J, Chen H Z, Zhang Y K, Zhu D F. Effect of high temperature stress on rice spikelet differentiation and degeneration during panicle initiation stage. *Chin J Agrometeorol*, 2015, 36: 724–731 (in Chinese with English abstract).
- [31] 张桂莲, 张顺堂, 肖浪涛, 武小金, 肖应辉, 陈立云. 花期高温胁迫对水稻花药生理特性及花粉性状的影响. 作物学报, 2013, 39: 177-183.
 - Zhang G L, Zhang S T, Xiao L T, Wu X J, Xiao Y H, Chen L Y. Effect of high temperature stress on physiological characteristics of anther and pollen traits of rice at flowering stage. *Acta Agron Sin*, 2013, 39: 177–183 (in Chinese with English abstract).
- [32] 王余龙, 姚友礼, 李昊云, 蔡建中. 水稻籽粒有关性状与粒重

- 关系的初步探讨. 作物学报, 1995, 21: 573-578.
- Wang Y L, Yao Y L, Li T Y, Cai J Z. An inquiring into grain characters and their relations with grain weight in rice (*Oryza sativa* L.). *Acta Agron Sin*, 1995, 21: 573–578 (in Chinese with English abstract).
- [33] 付景, 刘洁, 曹转勤, 王志琴, 张耗, 杨建昌. 结实期干湿交替灌溉对 2 个超级稻品种结实率和粒重的影响. 作物学报, 2014, 40: 1056–1065.
 - Fu J, Liu J, Cao Z Q, Wang Z Q, Zhang H, Yang J C. Effects of alternate wetting and drying irrigation during grain filling on the seed-setting rate and grain weight of two super rice cultivars. *Acta Agron Sin*, 2014, 40: 1056–1065 (in Chinese with English abstract).
- [34] Wungrampha S, Joshi R, Singla-Pareek S L, Pareek A. Photosynthesis and salinity: are these mutually exclusive? *Photosynthetica*, 2018, 56: 366–381.