SCIENTIA SINICA Mathematica

论 文

5- 正则图的路分解

献给刘桂真教授 80 寿辰

初亚男1, 范更华2, 洪明珠2, 周垂香2*

- 1. 苏州科技大学数学科学学院, 苏州 215009;
- 2. 福州大学离散数学研究中心, 福州 350108

E-mail: ynchu@mail.usts.edu.cn, fan@fzu.edu.cn, 1577546318@qq.com, cxzhou@fzu.edu.cn

收稿日期: 2023-11-20;接受日期: 2024-05-07;网络出版日期: 2024-07-29;*通信作者国家自然科学基金(批准号: 12201447, 11971110和 12271099)资助项目

摘要 对于正则图的路分解问题, Favaron 等 (2010) 提出猜想: 对于奇数 l, 任意包含一个完美匹配的 l- 正则图可以分解成长度为 l 的路. 当 l=5 时, Favaron 等 (2010) 证明了不含 4- 圈时猜想成立. 后来 Botler 等 (2015) 证明了不含 3- 圈时猜想成立. 本文证明当 l=5 且图中任意 3- 圈与 4- 圈的交为空集时, 猜想成立.

关键词 分解 路 正则图

MSC (2020) 主题分类 05C07, 05C38

1 引言

本文涉及的图都是有限的简单图. 图 G 的项点集用 V(G) 表示, 边集用 E(G) 表示. 如果图 G 的每个点的度都等于 k, 则图 G 称为 k- 正则图. 圈或路的长度分别指它们包含的边数. 图 G 的一个完美匹配是一组点不交的边且包含 G 的所有项点. 设 \mathcal{H} 是由一些图构成的集合, 如果图 G 中不存在子图同构于 \mathcal{H} 中的图, 则称 \mathcal{H} 是 G 的禁用子图集. 设 \mathcal{D} 是图 G 中的一组边不交的子图. 若 \mathcal{D} 满足 $\bigcup_{H \in \mathcal{D}} E(H) = E(G)$, 则称 \mathcal{D} 为图 G 的一个分解. 若 \mathcal{D} 中每个子图均为路, 则称 \mathcal{D} 为 G 的一个路分解. 进一步地, 如果 \mathcal{D} 中每个子图都是长度为 k 的路, 则称 \mathcal{D} 为 G 的一个 P_{k} - 分解.

近年来, 正则图的路分解问题被广泛研究. 众所周知, 关于路分解有著名的 Gallai 猜想 (参见文献 [8]): 任意 n 个点的连通图可以分解成至多 $\lceil n/2 \rceil$ 条路. Lovász [8] 在 Gallai 猜想方面做了许多重要工作, 下面的定理就是 Lovász 的一个结果的推论.

定理 $1.1^{[8]}$ 对于奇数 l, 任意 n 个点的 l- 正则图可以分解成至多 n/2 条路.

英文引用格式: Chu Y N, Fan G H, Hong M Z, et al. Path decompositions of 5-regular graphs (in Chinese). Sci Sin Math, 2024, 54: 1787–1794, doi: 10.1360/SSM-2023-0316

注意到, 在定理 1.1 中, 只给出了关于路的个数的界, 并没有限制路的长度. Kotzig [7]、Bouchet 和 Fouquet [5] 分别证明了包含完美匹配的 3- 正则图存在 P_3 - 分解 (包含完美匹配是必要条件). Favaron 等 [6] 证明了包含完美匹配且不含 4- 圈的 5- 正则图存在 P_5 - 分解, 提出了以下猜想:

猜想 1.1 假设 l 是一个奇数. 如果 G 是 l- 正则图且包含一个完美匹配, 则 G 存在 P_l - 分解.

如果猜想 1.1 成立, 则不难计算 G 的边数为 $\frac{1}{2}nl$, 而在 G 的 P_l - 分解中每条路含 l 条边, 那么路的个数正好是 $\frac{ln}{2l} = n/2$, 从而满足 Gallai 猜想中关于路的个数的界. 也就是说, 如果上述猜想成立, 则在存在完美匹配的条件下, 可得出比定理 1.1 更强的结果.

关于猜想 1.1 的研究, Botler 等 $^{[4]}$ 证明了当 l=5 且 G 不含三角形时, 猜想成立. 用类似的方法, 文献 [3] 将以上结论进行了推广, 证明了对于 (2k+1)- 正则且围长至少是 2k 的图, 猜想 1.1 成立. 最近, Botler 和 Hoffmann $^{[2]}$ 证明了以下两类图猜想 1.1 成立: 包含支撑圈的 k 次方的 (2k+1)- 正则图, 包含简单交换 4- 正则 Caley 子图为支撑子图的 5- 正则图.

聚焦于 5- 正则图, 文献 [4,6] 已经证明了当 G 分别不包含 3- 圈和 4- 圈时, 猜想 1.1 成立. 在允许 G 含 3- 圈和 4- 圈的前提下, 本文证明了当 G 中任意 3- 圈与任意 4- 圈的交 (指边集的交) 为空集时, 猜想成立. 令 C_1 是 G 中的一个 3- 圈, C_2 是 G 中的一个 4- 圈. 注意到 G 是简单图, 从而 $|E(C_1)\cap E(C_2)| \leq 2$. 当 $|E(C_1)\cap E(C_2)| = 2$ 时, $C_1\cup C_2$ 同构于 4- 圈加一条弦; 而当 $|E(C_1)\cap E(C_2)| = 1$ 时, $C_1\cup C_2$ 则同构于 5- 圈加一条弦. 如果用 C_4^+ 和 C_5^+ 分别表示子图 4- 圈和 5- 圈加一条弦, 则本文的结论可以描述为: 令 G 是包含完美匹配的 5- 正则图. 当 $\{C_4^+, C_5^+\}$ 是 G 的禁用子图集时, G 存在 P_5 - 分解.

接下来介绍本文要用到的一些符号和定义. 令 G 是一个图. 设 $x,y \in V(G)$, xy 表示以 x 和 y 为端点的边. 假设 H 是 G 的子图, x 是 G 的一个顶点, $N_H(x)$ 表示点 x 在 H 中的邻域, 即 $N_H(x) = \{y \mid y \in V(H), yx \in E(H)\}$. 若 $x,y \in V(H)$, 则 $d_H(x,y)$ 表示 x 与 y 在 H 中的距离. 令 F 是一个边集合, G - F (或 G + F) 表示由 G 去掉 (或增加) F 中的所有边得到的图. 当 $F = \{uv\}$ 时,通常简记为 G - uv 和 G + uv. 图 G 的 k- 正则支撑子图称为 G 的 k- 因子. 图的完美匹配就是 1- 因子. 图的迹记作 $T = x_0x_1 \cdots x_{t-1}x_t$,满足 $E(T) = \{x_ix_{i+1} : 0 \leq i \leq t-1\}$ 且 $x_ix_{i+1} \neq x_jx_{j+1}$, $i \neq j$. 在图中经过所有边恰好一次的迹称为 Euler 迹,存在闭的 Euler 迹(起点与终点相同)的图称为 Euler 图. 进一步地,由 Euler 图包含闭的 Euler 迹可推导出 Euler 图所有点的度数均为偶数.

在简单有向图 D 中,有向边称为弧,用 A(D) 表示 D 的所有弧的集合. $xy \in A(D)$ 意味着 xy 是从 x 到 y 的一条有向边,也称 x 控制 y. 有向图 D 的一点 v 的入邻点指控制 v 的顶点,用 $N_D^-(v)$ 表示, $d_D^-(v) = |N_D^-(v)|$ 称为点 v 的入度. 类似地定义点 v 的出邻点为被 v 控制的顶点,用 $N_D^+(v)$ 表示, $d_D^+(v) = |N_D^+(v)|$ 称为 v 的出度. 如果一个 Euler 图在定向 σ 下满足每个点的出度与入度相等,则称 σ 为此 Euler 图的一个 Euler 定向.

2 主要结论

本节的目标是证明本文的主要结论—定理 2.2. 思路是首先找到图的一个长度为 5 的迹分解, 然后通过一系列调整, 将这个迹分解转换成 P_{5} - 分解. 作为准备工作, 先列举出关于因子分解的定理及一些相关的定义, 然后证明引理 2.1, 这个引理在主要定理的证明中起着至关重要的作用.

以下是 Petersen [9] 关于 Euler 图的 2- 因子分解定理的加强形式, 此结论可从 Petersen 定理的证明中得出, 并不需要单独证明 (参见文献 [1] 和 [6, 定理 5]).

定理 2.1 (Petersen 定理) 假设 σ 为 2k- 正则图 G 上的任意 Euler 定向,则 G 可以分解成 k 个 2- 因子使得定向 σ 在每个 2- 因子上导出一个 Euler 定向.

本文研究的是 5- 正则图的路分解. 给定 5- 正则图 G, 根据前提条件, G 存在一个完美匹配 M, 再根据定理 2.1, G-M 可以分解成两个 2- 因子. 这样可以将一个 5- 正则图分解成一个完美匹配和两个 2- 因子, 继而在这 3 个子图中寻找需要的路分解. 下面的定义用来对迹中的点进行标号, 方便后面对迹分解的调整.

定义 2.1 令 ℓ 是 G 的边集上的函数, 满足 ℓ : $E(G) \to \{0,1,2\}$, 记带有函数 ℓ 的 5- 正则图 G 为 (G,ℓ) . 若 $T=x_0x_1x_2x_3x_4x_5$ 是图 (G,ℓ) 中长为 5 的迹并满足 $\ell(x_2x_3)=0$, $\ell(x_1x_2)=\ell(x_3x_4)=1$, $\ell(x_0x_1)=\ell(x_4x_5)=2$, 则称 x_1 和 x_4 是 T 的 (1,2)- 点, x_2 和 x_3 为 T 的 (0,1)- 点.

为了叙述方便, 令 \mathcal{T} 是两个图的集合, $T \in \mathcal{T}$ 是长为 5 的路或者是 4 圈加一条悬挂边构成的图. 可以看出 \mathcal{T} 中的两个图均为长度为 5 的迹, 将其中含 4 圈的迹称为待调整的迹. 假设 \mathcal{D} 是图 \mathcal{G} 的一个迹分解, 用 $\mathcal{D}(v)$ 表示 \mathcal{D} 中以点 v 为端点的迹的个数. 下面的引理给出一个特殊的迹的分解, 此分解的存在保证能将其转换成一个路分解.

引理 2.1 令 G 是一个包含完美匹配的 5- 正则图且 G 中任意 3- 圈与 4- 圈的交为空集. 则 G 存在一个迹分解 \mathcal{D} 使得任意 $T \in \mathcal{D}$ 都同构于 \mathcal{T} 中的迹, 且对于 G 的任意点 v 有 $\mathcal{D}(v) = 1$. 进一步地, G 存在标号函数 ℓ 使得 (G,ℓ) 中任意点 v 有且仅有一个 $T \in \mathcal{D}$ 使得 v 是 T 的 (j,j+1)- 点, 其中 $j \in \{0,1\}$.

证明 假设 M 是 G 的一个完美匹配. 令 G' = G - E(M). 对于 G 的任意顶点 v, 设 $N_G(v) = \{v_0, v_1, \ldots, v_4\}$. 由于 M 是完美匹配, 不妨假设 $vv_0 \in M$. 在此基础上, 通过 G' 来作一个新图 G'', 作法如下: 如果 v 存在两个邻点 v_i 和 v_j 满足 $v_iv_j \in M$, 则将点 v 分裂成两个点 v' 和 v'',使得 $N_{G''}(v') = \{v_i, v_j\}$, $N_{G''}(v'') = N_{G'}(v) \setminus \{v_i, v_j\}$ (在 G'' 中,与 v'' 相邻的两个点之间可能有边也可能没有边,如果有边,有可能在 M 中也有可能不在 M 中); 如果 v 中不存在满足上面条件的邻点 v_i 和 v_j ,则保持 v 在 G' 中的邻接关系,即不对 v 进行任何操作. 于是 G'' 是一个 Euler 图且满足每个点的度是 2 或者 4. 此时,G'' 存在一个 Euler 迹,沿着这个 Euler 迹进行定向使其成为一条有向的 Euler 迹,这样的定向称为 Euler 定向。假设 G'' 的 Euler 定向为 σ ,只需要将分裂的点合成一个点, σ 也可以转换成图 G' 上的 Euler 定向.为减少符号的使用,仍用 σ 表示图 G' 上的 Euler 定向.

由于 G' 是一个 4 正则图, 对于 G' 上的 Euler 定向 σ , 可以根据定理 2.1 将 G' 分解成两个 2- 因子 F_1 和 F_2 使得 σ 在 F_1 和 F_2 上都成为 Euler 定向, 即 F_1 和 F_2 在定向 σ 下都是一组边不交的有向圈. 在 F_1 和 F_2 当中任选一个并将其上的方向改变为反方向, 此时得到的这个新的定向仍然是 F_1 和 F_2 上的 Euler 定向. 记这个新的定向为 σ^* , 同时 σ^* 也可以导出 G' 上的一个 Euler 定向. 接下来根据 M 及 F_1 和 F_2 对 G 进行迹分解.

对于任意 $e = uv \in M$,选择 $uu_1, vv_1 \in A(F_1)$,然后选择 $u_1u_2, v_1v_2 \in A(F_2)$.注意到任意顶点在 F_i (i = 1, 2) 中的出度和入度都是 1,所以上面对 u_1 、 v_1 、 u_2 和 v_2 的选择由 e = uv 唯一确定.于是按上面的方法对 M 中的每条边构造出一条长为 5 的迹,共可得 n/2 条这样的迹.设 $T_1 = x_2x_1xyy_1y_2$ 和 $T_2 = u_2u_1uvv_1v_2$ 为其中任意两条迹,我们要说明 $E(T_1) \cap E(T_2) = \emptyset$.如若不然,不失一般性,可假设 $uu_1 \in E(T_1) \cap E(T_2)$ 或 $u_1u_2 \in E(T_1) \cap E(T_2)$.由 F_1 和 F_2 中的定向以及 T_1 和 T_2 的构造可得,如果 $uu_1 \in E(T_1) \cap E(T_2)$,则 uv 与 xy 相邻,与 uv 和 xy 分别是 M 中的边矛盾;若 $u_1u_2 \in E(T_1) \cap E(T_2)$,则在 F_1 中的定向中 u_1 的入度为 2,同样矛盾.这说明这样构造的迹之间是边不交的,通过计算不难 发现这 n/2 条迹构成了 G 的分解,将其记为 D. 对于图 G 中任意一点 v,在 F_2 中有且只有一条弧是

v 的入边, 从而 $\mathcal{D}(v) \leq 1$. 再根据 \mathcal{D} 中迹的个数, 对于任意 $v \in V(G)$, 有 $\mathcal{D}(v) = 1$. 接下来证明分解 \mathcal{D} 满足引理的其他要求.

任取 \mathcal{D} 中的迹 $T = u_2 u_1 u v v_1 v_2$. 接下来分析 T 的结构.

- (1) 如果 T 中没有圈,则 T 是一条长为 5 的路,此时显然同构于 T 中的路.
- (2) 如果 T 中包含一个 3- 圈, 则这个 3- 圈一定包含 e = uv, 而根据 T 的取法, 3- 圈中除了 e 之外的其余两条边应该分别包含在 F_1 和 F_2 中, 因此 T 中有 $v = u_2$ 或 $u = v_2$. 又由 G 中 3- 圈与 4- 圈不交的结构特点, 可知 $v = u_2$ 和 $u = v_2$ 不同时成立. 不妨设 $v = u_2$. 从而 $uu_1 \in F_1$, $u_1v \in F_2$. 注意到 σ^* 是将 σ 在 F_1 或 F_2 上反向得到的. 我们可假设 σ^* 是由 σ 在 F_1 上反向得到的, 于是, 在 σ 下, uu_1 和 u_1v 的方向应该是 $\overline{u_1u}$ 和 $\overline{u_1v}$. 然而 u_1 的两个邻点 u 和 v 之间的边为 $e = uv \in M$, 所以在 G'' 中 u_1 应该被分裂为两个 2 度点且 uu_1v 在 G'' 中的 Euler 定向中必须是一条 u 和 v 之间的有向路,即 uu_1 与 u_1v 在定向 σ 下应该是 $\overline{u_1u}$ 、 $\overline{vu_1}$ 或 $\overline{uu_1}$ 、 $\overline{u_1v}$. 此矛盾说明 T 中不能包含 3- 圈.
 - (3) 如果 T 中包含 4- 圈, 则 T 同构于 T 中待调整的迹.
- (4) 如果 T 是一个 5- 圈, 则 $u_2=v_2$. 但是根据 T 的选取以及 σ^* 在 F_2 上导出的是一个 Euler 定向, 这种情形不会出现.

由 T 的任意性得到 D 中的迹必定与 T 中的图同构, 即 D 中的迹要么是 P_5 , 要么是待调整的迹. 最后寻找引理中满足条件的标号. 定义 ℓ 如下:

$$\ell(e) = \begin{cases} 0, & e \in M, \\ 1, & e \in F_1, \\ 2, & e \in F_2. \end{cases}$$

任取一点 $v \in V(G)$, $v \in M$ 的一条边相邻,同时与 F_i (i=1,2) 中两条边相邻且这条边在定向 σ^* 下分别是一条入边和一条出边. 根据 \mathcal{D} 中迹的构造, v 分别是两条迹中的 (0,1)- 点和 (1,2)- 点. 进一步地,由于 G 是 5- 正则图, 所以在标号 ℓ 下使 v 为 (0,1)- 点的迹是唯一确定的. 同理, 使 v 为 (1,2)- 点的迹也唯一. 引理证毕.

假设 G 是包含完美匹配的 5- 正则图, \mathcal{D} 是 (G,ℓ) 中满足上述引理的迹分解, 即 \mathcal{D} 中每个迹是长为 5 的路或者是待调整的迹, 对于任意点 v, 都有 $\mathcal{D}(v)=1$ 且以 v 为 (0,1)- 点和 (1,2)- 点的迹分别是唯一确定的.

令 $T=x_0x_1x_2x_3x_4x_1$ 是 \mathcal{D} 中的一个待调整的迹, 其中 $\ell(x_2x_3)=0$, $\ell(x_1x_2)=\ell(x_3x_4)=1$ 且 $\ell(x_0x_1)=\ell(x_4x_1)=2$. 将 x_2 称为 T 的连接点, 将 x_1 称为 T 的中心. 注意到, 在 T 中 x_1 既是端点也是 (1,2)- 点, x_2 是 (0,1)- 点且有 $d_T(x_1,x_2)=1$. 假设 $Q=y_0y_1y_2y_3y_4y_5$ 是 \mathcal{D} 中的迹, 满足 $\ell(y_2y_3)=0$, $\ell(y_1y_2)=\ell(y_3y_4)=1$ 且 $\ell(y_0y_1)=\ell(y_4y_5)=2$. (Q 可以是长为 5 的路也可能是待调整的迹. 若 Q 为 待调整的迹, 则 $y_5=y_1$ 或 $y_0=y_4$, 此情形可参考图 1 中 Q 的两种可能性.) 进一步假设 T 的连接点 x_2 是 Q 的 (1,2)- 点, 不妨设 $x_2=y_1$ (T 和 Q 的位置关系见图 1). 定义 T 和 Q 上的 α - 操作如下: 将 T 和 Q 分别变换为 $T'=T-x_1x_2+y_0y_1$ 和 $Q'=Q-y_0y_1+x_1x_2$ 并调整函数 ℓ 使得 $\ell(x_1x_2)=2$. 当 G 中的任意 3- 圈和 4- 圈的交为空时, 上述操作中得到的 T' 是一条长为 5 的路, 而 Q' 可能是一条路 也可能是一条待调整的迹, 这取决于 Q 的结构. 如下定理的证明中将进一步刻画 Q' 的结构并运用 α -操作将待调整的迹转换为路, 从而证明本文的主要结论. 这里再强调一下, 迹的连接点、中心、(0,1)-点及 (1,2)- 点都是在特定的函数 ℓ 之下才有定义的.

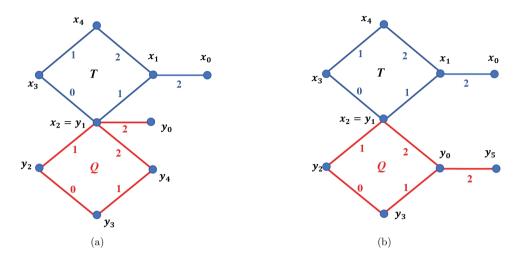


图 1 (网络版彩图) 满足 α - 操作的 T 和 Q: (a) $y_5 = y_1$; (b) $y_0 = y_4$

定理 2.2 令 G 是包含完美匹配的 5- 正则图. 假设 G 中的任意 3- 圈与 4- 圈均不相交, 则 G 存在 P_{5-} 分解.

证明 令 \mathcal{D} 为 G 的分解, 且 \mathcal{D} 包含长度为 5 的路和待调整的迹. 根据引理 2.1, 存在标号函数 ℓ 使得 \mathcal{D} 在 ℓ 下满足以下性质: (1) 对于任意点 $v \in V(G)$, 都有 $\mathcal{D}(v) = 1$; (2) 对于 \mathcal{D} 中的任意待调整的迹 W, 都存在 \mathcal{D} 中唯一的迹 W', 使得 W 的连接点与 W' 的 (1,2)- 点重合. 在所有满足以上条件的分解 \mathcal{D} 中,令 \mathcal{D}^* 是含待调整的迹最少的分解. 为方便叙述,用 $b(\mathcal{D}^*)$ 表示分解 \mathcal{D}^* 中所包含的待调整的迹的条数. 如果 $b(\mathcal{D}^*) = 0$, 则 \mathcal{D}^* 就是 G 的 P_5 - 分解, 定理得证. 因此, 不妨设 $b(\mathcal{D}^*) > 0$. 接下来的目标是将 \mathcal{D}^* 中所有待调整的迹都转化为长度为 5 的路.

首先作有向图 A, 使得 A 的顶点与 \mathcal{D}^* 中元素相对应, A 中两个顶点 T 与 Q 之间有弧 \overrightarrow{TQ} 当且 仅当 \mathcal{D}^* 中的元素 T 与 Q 满足: (I) T 是待调整的迹; (II) T 的连接点是 Q 的 (1,2)- 点. 由于 \mathcal{D}^* 中每个迹最多有两个 (1,2)- 点且根据引理 2.1, \mathcal{D}^* 中每个待调整的迹有且只有一个元素, 其 (1,2)- 点与这个待调整的迹的连接点重合. 所以在有向图 A 中, 如果 T 所代表的迹在 \mathcal{D}^* 中是一条待调整的迹,则 $d_A^+(T)=1$ 且 $d_A^-(T)\leqslant 2$; 如果 T 代表的迹在 \mathcal{D}^* 中是一条路,则 $d_A^+(T)=0$ 且 $d_A^-(T)\leqslant 2$. 从而,A的每个连通分支最多含一个圈.

假设 $T \in V(A)$ 是图 A 中所有非孤立点中入度数最小的一个点, 显然有 $d_A^-(T) \le 1$. 若 $d_A^-(T) = 0$, 则有 $d_A^+(T) = 1$. 于是在原图 G 中,与 T 相对应的分解 \mathcal{D}^* 中的元素是一条待调整的迹.

设 $N_A^+(T) = \{Q\}$. 不失一般性,假设 $N_A^-(Q) = \{T, Q_1\}$, $N_A^+(Q) = \{Q_2\}$, 其中 Q_1 与 Q_2 有可能不存在. 当 Q 是一条路时, Q_2 一定不存在; 当 Q 的另一个 (1,2)- 点是一条路的 (0,1) 点时,则 Q_1 不存在. 为简便起见,仍用 T、Q、 Q_1 和 Q_2 表示与其相对应的分解 \mathcal{D}^* 中的元素.

令 $T = x_0 x_1 x_2 x_3 x_4 x_1$, $Q = y_0 y_1 y_2 y_3 y_4 y_5$ 且 $y_1 = x_2$, 其中可以有 $y_5 = y_1$ 或 $y_0 = y_4$. 针对 T 和 Q 进行 α - 操作. 根据 G 中任意 3- 圈和 4- 圈均不相交的结构特点以及分解 \mathcal{D}^* 是由 F_1 和 F_2 上的 Euler 定向得来,可知 Q 一定不经过 T 的中心点,即 $x_1 \notin V(Q)$,同时 $y_0 \notin V(T)$. 从而经过 α - 操作后 T' 是长度为 5 的路,而 Q' 则可能是一条路(当 Q 是一条路或 Q 是图 1(b) 时),也可能是一条待调整的迹(当 Q 是图 1(a) 时)。令 $\mathcal{D}' = (\mathcal{D}^* \setminus \{T,Q\}) \cup \{T',Q'\}$. 不难看出 \mathcal{D}' 仍然是 G 的迹分解且每条迹要么是长为 5 的路,要么是待调整的迹. 接下来继续验证 \mathcal{D}' 是否符合定理证明中要求的所有条件. 首先 α - 操作只是交换了两条迹的端边,T' 的端点是 x_0 和 y_0 , Q' 的端点是 x_1 和 y_1 或 x_1 和 y_5 , 其中

 y_1 或 y_5 是 Q 的端点, 即 α - 操作交换了两条迹的一个端点, 并没有改变以某个点为端点的迹的个数. 所以对于任意一点 $v \in V(G)$, 由 $\mathcal{D}^*(v) = 1$ 可知 $\mathcal{D}'(v) = 1$ 成立. 其次由 α - 操作的定义可知, 在函数 ℓ 的定义下, Q_1 若存在, 则它的连接点仍然是 Q' 的 (1,2)- 点, 并且当 Q' 是待调整的迹时, Q' 的连接点仍然是 Q_2 的 (1,2)- 点, 且此时的 Q_2 是唯一的. 由于在 A 中, $d_A^-(T) = 0$, 所以 T' 中的 x_1 和 x_4 不会是其他迹的连接点, 所以 T 转换为 T' 并不影响 A 中其他点的出度. 事实上, 只有当 Q 是待调整的迹且与 T 的关系如图 1(a) 所示时, α - 操作得到的 Q' 才是待调整的迹. 由上面的分析可知, \mathcal{D}' 中任意待调整的迹都有唯一的迹满足条件 (2). 但是 T 转换成 T' 使得 $b(\mathcal{D}') \leq b(\mathcal{D}^*) - 1$, 这与开始时 \mathcal{D}^* 的选择相矛盾. 于是一定有 $d_A^-(T) = 1$ 且 $d_A^+(T) = 1$,从而可知图 A 的每个连通分支是孤立点或圈且与 \mathcal{D}^* 中待调整的迹所对应点一定含在 A 的某个圈中.

根据 A 的构造, 如果 A 的某个连通分支是孤立点, 则这个点所代表的迹是一条路. 对于 A 中的 孤立点, 我们不进行任何操作. 如果 A 的某个连通分支是圈, 则这个圈上的所有点相对应的 \mathcal{D}^* 中的 元素都是待调整的迹. 对于 A 中的圈, 有如下断言:

断言 2.1 假设 C 是 A 的连通分支且 C 是一个圈, 则 \mathcal{D}^* 中对应于 C 上所有点的迹都可以转换成长度为 5 的路.

根据此断言, \mathcal{D}^* 中所有待调整的迹都可以转换成长度为 5 的路, 这样就证明了定理 2.2. 接下来的主要工作就是证明断言 2.1.

断言 2.1 的证明 令 $C = T_1T_2 \cdots T_kT_1$ 是 A 中的圈, 边的方向是由 T_k 到 T_1 , 且当 $i = 1, \ldots, k-1$ 时, 由 T_i 到 T_{i+1} . 根据 G 的结构, 可得 $|C| \ge 3$. 为方便起见, 仍延续之前的做法, 用 T_i 表示与其相对应的 \mathcal{D}^* 中的迹, 其中 $1 \le i \le k$. 由之前的分析可知 T_i $(1 \le i \le k)$ 在 \mathcal{D}^* 中是一条待调整的迹. 圈 C 上的两个相邻项点, 对应到 \mathcal{D}^* 中的两条迹 T 和 Q (如图 I(a) 和 I(b) 所示), 它们有两种位置关系. 在图 I(a) 中,Q 的中心是 T 的连接点; 而在图 I(b) 中,Q 的 I(a) 中,I(b) 的连接点. 下面就 I(b) 中的位置关系从以下 I(b) 个方向进行证明.

情形 1 T_k 的连接点是 T_1 的中心, 对于 $1 \le i \le k-1$, T_i 的连接点是 T_{i+1} 的中心.

为满足下标的表达, 可令 $T_0 = T_k$. 对于所有的 $i \in \{1, \dots, k\}$, 令 v_i 和 u_i 分别是 T_i 的端点且 v_i 是 T_i 的中心点. 于是根据条件, v_i 也是 T_{i-1} 的连接点. 此时作如下变换 (见图 2, 分别用红色实线和黑色实线表示相邻的 T_i): $T_k' = T_k - u_k v_k - v_k v_1 + v_{k-1} v_k + v_1 u_1$, $T_1' = T_1 - u_1 v_1 - v_1 v_2 + v_k v_1 + v_2 u_2$, $T_i' = T_i - u_i v_i - v_i v_{i+1} + v_{i-1} v_i + v_{i+1} u_{i+1}$, 这里 $i = 2, \dots, k-1$. 由于 G 中任意 3- 圈与 4 圈都不相交,不难验证以上定义的所有 T_i' ($1 \le i \le k$) 都是长度为 5 的路.

情形 2 T_k 的连接点是 T_1 的 (1,2)- 点, 对于 $1 \le i \le k-1$, T_i 的连接点是 T_{i+1} 的 (1,2)- 点.

如果 k 是偶数,则对所有的 T_{2i-1} 和 T_{2i} ($i \in \{1,2,\ldots,k/2\}$) 构成的对作 α - 操作. 由于在 G 中任意 3- 圈和 4- 圈的交都为空集,每个 T_i ($1 \le i \le k$) 在 α - 操作下都变成了路,于是结论成立. 从而假设 k 是奇数. 首先考虑 $k \ge 5$ 的情形. 先在每对迹 T_{2i} 和 T_{2i+1} ($i=2,\ldots,(k-1)/2$) 上进行 α - 操作. 根据同上面类似的分析知, $T_4 \cup T_5 \cup \cdots \cup T_k$ 可以分解成 k-3 条 G 中的路. 最后,考虑剩下的 3 条迹 T_1 、 T_2 和 T_3 . 为方便讨论,令 $T_1 = z_0z_1z_2z_3z_4z_1$, $T_2 = x_0x_1x_2x_3x_4x_1$, $T_3 = y_0y_1y_2y_3y_4y_1$,其中 $z_2 = x_4$, $x_2 = y_4$. (这里不排除以下情形: $x_0 \in \{y_2, z_4\}$, $y_0 \in \{x_4 = z_2, z_4\}$ 和 $z_0 \in \{x_2 = y_4, y_2\}$. 因为 $\mathcal{D}(z_0) = 1$,所以可得 $z_0 \notin \{x_1, y_1\}$. 类似地有 $x_0 \notin \{y_1, z_1\}$ 且 $y_0 \notin \{x_1, z_1\}$.) 如果能够证明由 $E(T_1) \cup E(T_2) \cup E(T_3)$ 构成的子图可以分解成 3 条路,结合 $T_4 \cup T_5 \cup \cdots \cup T_k$ 分解成的 k-3 条路,我们就将 T_1, T_2, \ldots, T_k 转化成了 k 条路,于是结论成立. 所以接下来考虑 $E(T_1) \cup E(T_2) \cup E(T_3)$ 的 P_5 - 分解. 首先假设 $x_0 \neq y_2$. 如果 $y_0 \neq x_4$,则令 $T_1' = T_1 - z_1z_2 + z_2x_1$, $T_2' = z_1z_2x_3x_2y_1y_0$, $T_3' = x_0x_1x_2y_3y_2y_1$.

由 G 中任意 3- 圈与 4- 圈交均为空集的结构可知 $\{T_1', T_2', T_3'\}$ 就是我们想要寻找的 3 条路. 如果 $y_0=x_4=z_2$,可以令 $T_1'=T_1-z_1z_2+z_2x_1$, $T_2'=z_1z_2y_1x_2x_1x_0$, $T_3'=x_4x_3x_2y_3y_2y_1$,则 T_1' 、 T_2' 和 T_3' 满足要求. 从而考虑 $x_0=y_2$ 的情形. 如果 $z_0=x_2=y_4$,则 $T_1'=z_1z_4z_3z_2x_3x_2$ 、 $T_2'=y_1y_4z_1z_2x_1x_0$ 和 $T_3'=x_1x_2y_3y_2y_1y_0$ 是符合条件的路分解. 如果 $z_0\neq x_2$,注意到我们的前提是 $k\geqslant 5$,则 $y_2\neq z_4$,于是 $T_1'=z_0z_1z_2x_3x_2y_1$ 、 $T_2'=z_1z_4z_3z_2x_1x_0$ 和 $T_3'=y_0y_1y_2y_3y_4x_1$ 就是我们想要的路分解,结论成立.

接下来考虑 k=3,即 C 是一个 3- 圈. 仍然致力于将 $E(T_1)\cup E(T_2)\cup E(T_3)$ 分解成 3 条长为 5 的路. 由于 C 的长度为 3,所以 $y_2=z_4$. 根据顶点重合的几种可能性分类讨论. 首先假设 $x_0\neq y_2$. 当 $z_0\neq x_2$ 时, $T_1'=z_0z_1z_2x_3x_2x_1$ 、 $T_2'=x_0x_1x_4z_3z_4y_1$ 和 $T_3'=y_0y_1y_4y_3y_2z_1$ 是满足条件的路分解. 当 $z_0=x_2$ 时,进一步考虑如果 $y_0\neq x_4$,令 $T_1'=z_1z_4z_3z_2x_3x_2$ 、 $T_2'=x_0x_1x_2y_3y_2y_1$ 和 $T_3'=y_0y_1y_4z_1z_2x_1$,则 $\{T_1',T_2',T_3'\}$ 满足要求. 从而 $y_0=x_4=z_2$. 这种情形下可得满足条件的路分解 $T_1'=y_1y_2z_3z_2x_3x_2$ 、 $T_2'=x_0x_1x_4y_1y_4z_1$ 和 $T_3'=x_1x_2y_3y_2z_1z_2$. 接下来假设 $x_0=y_2$ 成立,即 $x_0=y_2=z_4$. 如果 $z_0\neq x_2$,则满足条件的分解为 $T_1'=y_1y_2x_1z_2z_1z_0$ 、 $T_2'=z_4z_3z_2x_3x_2x_1$ 和 $T_3'=y_0y_1y_4y_3y_2z_1$. 如果 $z_0=x_2$,则 $T_1'=z_1x_2x_3x_4z_3z_4$ 、 $T_2'=y_0y_1y_4y_3y_2x_1$ 和 $T_3'=y_1y_2z_1z_2x_1x_2$ 是满足条件的路分解.

情形 3 存在某个 $j \in \{1, ..., k\}$ 使得 T_j 的连接点是 T_{j+1} 的中心且 T_{j+1} 的连接点是 T_{j+2} 的 (1,2)- 点.

不失一般性,可假设 j=1. 首先对 T_2 和 T_3 进行 α - 操作,由于 G 中任意 3- 圈与 4- 圈的交都为空,从而 α - 操作后得到的 T_2' 和 T_3' 是长度为 5 的路. 接下来对 T_4 和 T_5 进行 α - 操作,同样由 G 的结构特点,操作后得到一条长为 5 的路 T_4' ,而此时 T_5' 有可能仍然是一条待调整的迹或一条路,这取决于 T_4 的连接点是否为 T_5 的中心点. 如果 T_5' 是一条待调整的迹,则 T_5' 的连接点仍是 T_6 的 (1,2)-点,从而可以对 T_5' 和 T_6 进行 α - 操作. 如果 T_5' 是一条路,则对 T_6 和 T_7 进行 α - 操作. 按上面的方式继续对剩余的迹进行 α - 操作. 到最后要么所有的 T_i ($1 \le i \le k$) 都被转换成长度为 5 的路,要么剩下 T_1 (没有经过 α - 操作) 或者 T_1' (经过 T_k 或 T_k' 和 T_1 的 α - 操作后得到) 为待调整的迹,其他的迹均转换为长度为 5 的路。前一种情形正是我们期望的结果,在后一种情形下设 $T_1 = x_0 x_1 x_2 x_3 x_4 x_1$ 或 $T_1' = z x_1 x_2 x_3 x_4 x_1$,其中 z 是 T_k 的中心点且 x_2 是 T_1 (或 T_1') 的连接点。我们将利用 T_2' 进一步将 T_1

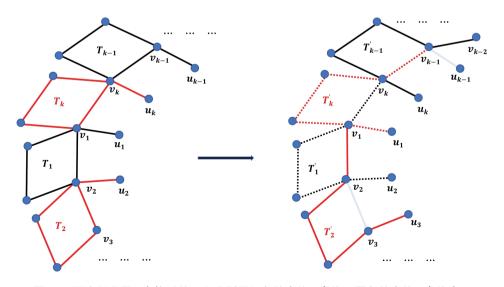


图 2 (网络版彩图) 变换后的 T'_i 分别用红色的实线、虚线及黑色的实线、虚线表示

或 T_1' 转换成路. 设 $T_2' = y_0 y_1 y_4 y_3 y_2 w$, 其中 $y_1 = x_2$, w 是 T_3 的中心点. 令 $T_2'' = T_2' - y_0 y_1 + x_1 x_2$. 由于 x_1 是 T_1 或 T_1' 的中心点, 所以 $x_1 \notin V(T_2')$, 从而 T_2'' 是一条路. 若经过之前一系列 α - 操作后 余 T_1 , 则令 $T_1'' = T_1 - x_1 x_2 + y_0 y_1$; 若经 α - 操作后余 T_1' , 则令 $T_1'' = T_1' - x_1 x_2 + y_0 y_1$. 通过简单 分析知 T_1'' 也是长为 5 的路且 $\{T_1'', T_2''\}$ 构成 $E(T_1) \cup E(T_2')$ (或 $E(T_1') \cup E(T_2')$) 的分解. 于是分解 $\{T_1'', T_2''\} \cup \{T_1': 3 \leqslant i \leqslant k\}$ 就是满足条件的路分解, 从而断言 2.1 得证.

参考文献

- 1 Berge C. Théorie des Graphes et Ses Applications. Paris: Dunod Université, 1967
- 2 Botler F, Hoffmann L. Decomposition of (2k+1)-regular graphs containing special spanning 2k-regular Cayley graphs into paths of length 2k+1. Discrete Math, 2022, 345: 112906
- 3 Botler F, Mota G O, Oshiro M T I, et al. Decomposing regular graphs with prescribed girth into paths of given length. European J Combin, 2017, 66: 28–36
- 4 Botler F, Mota G O, Wakabayashi Y. Decompositions of triangle-free 5-regular graphs into paths of length five. Discrete Math, 2015, 338: 1845–1855
- 5 Bouchet A, Fouquet J L. Trois types de décompositions d'un graphe en chaînes. Ann Discrete Math, 1983, 17: 131-141
- 6 Favaron O, Genest F, Kouider M. Regular path decompositions of odd regular graphs. J Graph Theory, 2010, 63: 114–128
- 7 Kotzig A. Aus der Theorie der endlichen regulären Graphen dritten und vierten Grades. Časopis Pěst Mat, 1957, 82: 76–92
- 8 Lovász L. On covering of graphs. In: Theory of Graphs. Akad Kiadó: Budapest, 1968, 231–236
- 9 Petersen J. Die Theorie der regulären graphs. Acta Math, 1891, 15: 193-220

Path decompositions of 5-regular graphs

Yanan Chu, Genghua Fan, Mingzhu Hong & Chuixiang Zhou

Abstract Let l be an odd integer. It was conjectured that every l-regular graph containing a perfect matching can be decomposed into paths of length l. For the case l=5, Favaron et al. (2010) verified the conjecture for graphs with no cycle of length 4, and Botler et al. (2015) verified it for triangle-free graphs. In this paper, we prove that every 5-regular graph with a perfect matching can be decomposed into paths of length 5, provided that 3-cycles and 4-cycles in the graph have no edge in common.

Keywords decomposition, path, regular graph

MSC(2020) 05C07, 05C38

doi: 10.1360/SSM-2023-0316