DOI:10.11686/cyxb2021475

http://cyxb. magtech. com. cn

王星宇, 程静, 高生, 等. 应用 AMMI模型和 GGE 双标图评价裸燕麦品种在华北高寒区的适应性. 草业学报, 2022, 31(12): 76-84.

WANG Xing-yu, CHENG Jing, GAO Sheng, *et al.* Evaluation of adaptability of naked oat varieties in the alpine region of North China based on the AMMI model and GGE Biplot. Acta Prataculturae Sinica, 2022, 31(12): 76-84.

应用 AMMI 模型和 GGE 双标图评价裸燕麦品种 在华北高寒区的适应性

王星宇¹,程静¹,高生¹,李默涵¹,杨满霞²,葛军勇^{1*},周海涛¹,李云霞¹,臧华栋³, 左文博¹

(1. 张家口市农业科学院,河北省高寒作物研究所,河北 张家口 075000; 2. 张家口市经济技术开发区农业农村局,河北 张家口 075000; 3. 中国农业大学,北京 100193)

摘要:为全面地评价裸燕麦在华北高寒区的丰产性、稳产性和适应性以及试点的代表性和区分能力,本研究应用 AMMI模型和GGE 双标图对 2019年6个参试品种和6个区试点进行了联合分析与综合评价。结果表明,同时采用 AMMI模型和GGE 双标图分析评价裸燕麦区域试验,结果更为准确,结论更为全面。影响裸燕麦籽粒产量的变异来源,即基因型、环境以及二者的交互作用均达到了极显著水平,200910-28-4-3(G_2)是籽粒丰产稳产性均较好的品种,其次是 200910-5-2(G_3)和 200910-22-1(G_4)。从品种区域适应性试点选择来看,内蒙古乌兰察布试点既有很好的代表性又有较强的鉴别力,为最理想的试点,崇礼狮子沟原种场和张北基地作为试点也较为理想。本研究为华北高寒区裸燕麦品种的选育推广及试点布局提供了科学依据。

关键词:裸燕麦;AMMI模型;GGE双标图;品种适应性;试点代表性

Evaluation of adaptability of naked oat varieties in the alpine region of North China based on the AMMI model and GGE Biplot

WANG Xing-yu¹, CHENG Jing¹, GAO Sheng¹, LI Mo-han¹, YANG Man-xia², GE Jun-yong^{1*}, ZHOU Hai-tao¹, LI Yun-xia¹, ZANG Hua-dong³, ZUO Wen-bo¹

1. Zhangjiakou Academy of Agricultural Sciences, Hebei Alpine Crop Research Institute, Zhangjiakou 075000, China; 2. Agricultural and Rural Bureau of Zhangjiakou Economic-Technological Development Area, Zhangjiakou 075000, China; 3. China Agricultural University, Beijing 100193, China

Abstract: In order to comprehensively evaluate the productivity, stability and adaptability of varieties of naked oats, as well as the discriminative power and representativeness of testing sites in the alpine region of North China, data for six naked oat varieties and six testing sites in 2019 were analyzed and evaluated using the AMMI (additive main effects and multiplicative interaction) model and GGE (genotype main effect plus genotype-environment interaction) biplot. It was found that analyses of naked oats regional trial results using the two methods together reduced the statistical error and increased the ability to declare variety means significantly different, compared to traditional ANOVA methods. It was found that genotype, environment, and genotype×environment interaction effects all

收稿日期:2021-12-22;改回日期:2022-04-18

基金项目:国家燕麦荞麦产业技术体系项目(CARS-07),中央引导地方科技发展资金项目(206Z6302G),河北省现代农业产业技术体系杂粮杂豆创新团队(HBCT201807)和张家口市重点研发计划(1911015C)资助。

作者简介:王星宇(1989-),男,河北万全人,助理研究员,硕士。E-mail: wxyfcy@yeah. net

^{*}通信作者 Corresponding author. E-mail: gejunyong1987@163.com

第 31 卷第 12 期 草业学报 2022 年 77

contributed to differences in grain yield. Variety 200910-28-4-3(G_2) showed the best performance in both grain yield and stability of yield across sites, followed by varieties 200910-5-2 (G_3) and 200910-22-1(G_4). In terms of the selection of regional adaptability test sites for varieties, Ulanqab pilot in Inner Mongolia had both good representativeness and strong discriminability, and was the most ideal test site. Chongli Shizigou Seed Farm and Zhangbei Base were also comparatively good test sites. This study provided a scientific evaluation of methodology for performance testing of naked oat varieties in the alpine region of north China and the results basis will assist future breeding and promotion.

Key words: naked oats; AMMI model; GGE Biplot; variety adaptability; testing-site representativeness

燕麦(Avena sativa)属于禾本科(Poaceae)燕麦属(Avena),具有极高的营养、医疗保健、饲用与生态价值,是一种粮、饲、药多用途作物,也是对抗生态环境退化的先锋作物^[1]。燕麦的栽培种根据成熟时籽粒带皮(稃)与否,一般分为皮燕麦和裸燕麦两大类。世界上其他国家以种植皮燕麦为主,少数食用,大多为饲用,我国以种植裸燕麦为主,是"大粒裸燕麦"的起源中心^[2]。

燕麦种植区主要分布在华北、西北、西南、东北的高海拔高纬度的干旱、冷凉地区,其中,华北高寒区是主要产区,包括河北省张家口、承德两市的坝上地区及相邻的内蒙古地区,年播种面积达30万~35万 hm²,约占全国的50%,年产裸燕麦6×10⁵t以上,是当地重要的特色农业产业。"十三五"以来,坝上地区成为首都水源涵养功能区和生态环境支撑区建设主战场,灌溉农业逐渐退出历史舞台,旱作农业得到大力发展,抗旱性强适应性广、产业发展迅速的燕麦种植面积大量增加,筛选高产、稳产、适合加工的旱作裸燕麦新品种对区域农业发展与乡村振兴意义重大^[3]。新品种推广之前,须经过严格的作物品种区域试验,对其高产性、稳产性准确评价,为品种发挥其最大价值提供科学依据。关于区试品种数据处理常用的有方差分析法、线性回归分析法、模糊综合评判等等,近年来,AMMI(additive main effects and multiplicative interaction)模型^[4]和 GGE(genotype main effect plus genotype-environment interaction)双标图^[5]在区域试验中逐渐得到应用。

在农业生产中,作物产量主要受到基因型、环境及二者互作效应的影响。在AMMI模型中,方差分析和主成分分析相结合,基因型和环境互作效应被进一步分解为基因型分量和环境分量,同时,使用模型中的双标图对品种和环境互作进行较可靠的分析,找到稳产性较好的品种(系),对作物产量的稳定性能够客观评价^[6]。AMMI模型公式为:

$$y_{
m ge} = \mu + lpha_{
m g} + eta_{
m e} + \sum_{i=1}^N \lambda_{
m n} \gamma_{
m gn} \delta_{
m gn} + heta_{
m ge} + arepsilon_{
m ger}$$

式中: y_{ge} 为基因型g在环境e下的产量; μ 为总体平均值; α_{g} 为基因型平均偏差; β_{e} 为环境平均偏差;N为主成分因子轴的数量; λ_{n} 为第n个主成分分析的特征值; γ_{gn} 为第n个主成分的环境主成分得分; δ_{gn} 为第n个主成分的基因型主成分得分; θ_{ge} 和 ε_{ger} 分别为残差和随机误差。

区别于AMMI模型侧重于考虑基因型和环境的互作效应,并分析品种的稳定性和适应性的特点,GGE 双标图分析利用"丰产性与稳产性"和"理想品种"功能图,同时考虑了品种(G)主效应和品种一环境互作效应(GE),较为直观地展开分析,可以对品种的高产性和稳产性进行综合评价。并且"哪个赢在哪里"和"区分力和代表性"功能图在考虑基因型和环境互作的同时,对试验地点的特征做出综合评价,为品种划分相应的生态区提供了依据[7]。

目前 AMMI 模型和 GGE 双标图已经较为广泛地应用在小麦(Triticum aestivum) [8]、玉米(Zea mays) [9-11]、水稻(Oryza sativa) [12-14]、大豆(Glycine max) [15]、油菜(Brassica napus) [16]、马铃薯(Solanum tuberosum) [17-18]、花生(Arachis hypogaea) [19-20] 等 [21-22] 作物品种丰产稳产性的分析评价上,在燕麦区域试验研究上公开的资料比较少。周启龙等 [23] 用 AMMI 模型对 17 个皮燕麦品种的稳定性和 4 个试点对品种的鉴别力做出了分析评价;柴继宽等 [24] 通过 GGE 双标图法分析了 8 个燕麦品种在甘肃省不同生态区的生产性及适应性,但同时采用 AMMI 模型和 GGE 双标图对华北高寒地区燕麦参试品种和试点进行联合分析评价的研究还未见报道。本研究采用 DPS 9.50

中的AMMI模型和R语言的"GGE Biplot"软件包^[19, 25-26],联合分析华北高寒区的裸燕麦区域试验数据,综合评价 参试裸燕麦品种的丰产稳产性和适应性,以及试点对品种的鉴别力和对生态区的代表性,为本区裸燕麦新品种的 选育推广及试验点的选择提供理论依据。

1 材料与方法

1.1 试验材料

试验测试了 6个裸燕麦品种(系),分别是 2010074-4(G_1)、200910-28-4-3(G_2)、200910-5-2(G_3)、200910-22-1(G_4)、200936-7(G_5)和坝莜 1号(G_6),以坝莜 1号为对照,试验种子均由河北省高寒作物研究所提供。

1.2 试验方法

1.2.1 试验地点 试验于2019年进行,分别在张家口市张北基地、崇礼区狮子沟良种场、康保县良种场、承德市农林科学院、内蒙古太仆寺旗以及乌兰察布市等6点进行,均为旱地栽培,选择前茬一致、地力均匀试验田。生育期间除特殊干旱可浇救命水外,一般不灌溉、不追肥;生育期间中耕锄草1或2次,试验地详情见表1。

表1 2019年裸燕麦区域试验区试点

Table 1 Regional sites of the oats varieties regional trail in 2019

编号	试验地	纬度	经度	Alt	AAT	APP	ST	SF	PC	WT	WTS
Code	Location	Longitude	Latitude	(m)	(\mathcal{C})	(mm)					
E_1	康保县良种场 Kangbao Seed Farm	41°22′N	114°35′E	1391	2.6	347.4	CS	UM	白茶 White tea	0	2
E_2	崇礼区狮子沟原种场 Chongli Shizigou Seed Farm	41°07′N	115°24′E	1472	3. 7	483.3	CS	MU	亚麻Flax	0	2
E_3	内蒙古乌兰察布 Ulanqab of Inner Mongolia	43°14′N	117°42′E	1413	4.4	384.0	CS	M	亚麻Flax	1	2
E_4	内蒙古太仆寺旗 Taibus Banner of Inner Mongolia	42°06′N	115°42′E	1425	2.3	387.2	CS	M	亚麻Flax	0	2
E_5	承德市农林科学院 Chengde Academy of Agriculture and Forestry Sciences	40°57′N	117°51′E	350	4.9	435.4	ABS	M	马铃薯 Potato	1	2
$\mathrm{E}_{\scriptscriptstyle{6}}$	张家口市张北基地 Zhangjiakou Zhangbei base	41°08′N	114°45′E	1450	6.7	376.6	CS	M	豆类 Bean	0	2

Alt: 海拔 Altitude; AAT: 年均温 Annual average temperature; APP: 年降水量 Annual precipitation; ST: 土质 Soil type; SF: 地力 Soil fertility; PC: 前茬作物 Previous crop; WT: 浇水次数 Watering times; WTS: 中耕除草次数 Weeding times; CS: 栗钙土 Chestnut soil; ABS: 潮棕壤 Aquic brown soil; UM: 上中等 Upper medium; MU: 中等上 Medium upper; M: 中等 Medium.

1.2.2 试验设计 试验采用随机区组排列,3次重复,小区面积13.33 m^2 ,6行区,行距30 cm,亩播有效种子30 万粒(4.5×10^6 粒· hm^{-2})。所有试点均严格按照区域试验方案进行试验设计、栽培管理及收获等。

1.3 数据分析处理

采用 Microsoft Excel 2007 软件处理本试验的相关数据;采用 DPS 9.50 进行联合方差分析;采用 AMMI模型和 R语言的"GGE Biplot"软件包对各品种和环境的最佳适应区域,品种的丰产性、稳定性以及试点的代表性及区分力进行分析。

2 结果与分析

- 2.1 参试品种、试点的AMMI模型分析
- **2.1.1** 品种产量的方差分析、线性回归分析和 AMMI 分析 方差分析结果表明(表 2),裸燕麦籽实产量极显著受到基因型(genotype)、环境(environment)以及二者交互作用(genotype×environment)的影响。环境占总变异平方和的比例为 75. 16%,起到了主要作用,然后依次是基因型与环境的交互作用(8. 70%)和基因型效应(8. 12%)。交互作用由线性回归分析做进一步分解,联合回归、基因回归和环境回归合计解释了 40. 23%的交互作用,而残差仍有 59. 77%。采用 AMMI 模型将交互作用进一步分解为 3 个显著的互作效应主成分轴(interaction principle component axis, IPCA),分别占互作效应的 55. 83% (PCA₁)、23. 61% (PCA₂)和 16. 20% (PCA₃),共解释了 95. 64%的互作效应平方和。

表 2 参试品种籽实产量的方差分析、线性回归分析和 AMMI 分析

Table 2 Analysis of variance, linear regression analysis and AMMI model of grain yield of the tested varieties

项目	变异来源	自由度	平方和	均方	百分比 Perce	ntage (%)	F值	概率 Probability	
Item	Source of variation	Degrees of freedom (df)	Sum of square (SS)	Mean square (MS)	占总变异 Of total variation	占交互作用 Of interaction	F-value		
方差分析	总的 Total	107	115157222.60	1076235.73	_	_	_	_	
Analysis of	基因 Genotype (G)	5	9355416.04	1871083.21	8.12	_	14.59**	0	
variance	环境 Environment (E)	5	86549103.10	17309820.62	75. 16	_	134. 98**	0	
	交互作用G×E	25	10019505.21	400780.21	8.70	_	3. 13**	0	
线性回归分析	联合 Joint	1	1151335.44	1151335.43	_	11.49	8. 98**	0.0037	
Linear regres-	基因 Genotype	4	524340.63	131085.16	_	5. 23	1.02	0.4018	
sion analysis	环境 Environment	4	2355814.83	588953.71	_	23.51	4.59**	0.0023	
	残差 Residues	16	5988014.31	374250.89		59.77	_	_	
AMMI分析	PCA_1	9	5594690.29	621632. 25		55.83	5. 71**	0	
AMMI model	PCA_2	7	2365961.21	337994.46		23.61	3. 10**	0.0064	
	PCA_3	3	1623317.70	324663.54		16.20	2.98*	0.0168	
	残差 Residues	4	435536.00	108884.00		4.35	_	_	

^{**:} *P*<0.01; *: *P*<0.05.

2.1.2 AMMI模型的双标图分析及稳定性参数通过统计参试裸燕麦品种的籽粒产量,使用DPS 9.50的AMMI模型对品种进行稳定性分析,以平均产量为横轴、IPCA1值为纵轴绘制AMMI双标图(图1)。在AMMI双标图中,以IPCA1值为0作一条水平线,对供试品种而言,横坐标越大,丰产性越好,其点到IPCA1为0水平线的垂直距离越小,稳定性越好。双标图中品种和试点较为分散的位置,说明二者均存在较大的变异。在试点方面,各试点到X轴的垂直距离表示各试点的区分力,距离越大,区分力越好。结果表明,E4的区分力明显好过其他的试点,而E1的区分力较差。但是在AMMI双标图中,IPCA1主成分变异只占显著成分轴总变异的55.83%,另外2个显著成分轴占有的39.81%比例也须纳入考虑范围,因此,

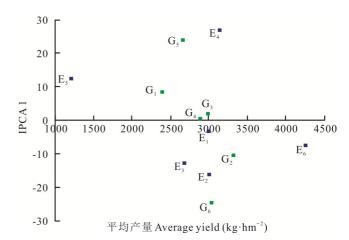


图 1 AMMI 双标图分析品种的丰产性、稳定性及试点的区分力 Fig. 1 Analysis of high-yield and stability of the tested cultivars and discrimination of regional sites by biplot of AMMI model

本研究参照了张泽等^[4]的方法分别计算了品种和区试点的稳定性参数。稳定性参数考虑到了所有达到显著水平的 IPCA 值,得到的结果比只用 IPCA1值更加严谨。

品种丰产性方面,平均产量最高的为 $G_2(表3)$,达到了 $3317.83 \text{ kg·hm}^{-2}$, G_3 和 G_4 的产量略低于对照品种 G_6 , G_5 和 G_1 的产量较低。从品种稳产性方面看,稳定性参数值越低,稳定性越好,表现较好的是 G_4 和 $G_2(表3)$,较差的是 G_5 和 G_6 ,各品种稳定性由高到低的顺序为: G_4 > G_2 > G_3 > G_1 > G_6 > G_5 。综合分析, G_2 的丰产稳产性均比较好, G_3 和 G_4 虽然产量略不及对照 G_6 ,但在稳产性方面展示了较好的优势。

试点的鉴别力结果显示(表 4),各试点的裸燕麦籽粒产量差异较大,就丰产性而言,试点最好的是 E_6 ,达到了 4255. 33 kg·hm⁻²,最差的试点为 E_5 ,仅为 1212. 67 kg·hm⁻²。各试点鉴别力由高到低的排名为: E_4 > E_5 > E_3 > E_2 > E_1 > E_6 ,其结果与 AMMI 双标图基本一致,但整体排序顺序略有不同,这是由于稳定性参数考虑到了 IPCA2 和 IPCA3 的显著性而更加全面。

表 3 区试品种在显著的互作主成分轴上的得分及稳定性参数

Table 3 Scores and stability parameters of the tested varieties in the principal component axis with significant interaction

品种	平均产量 Average	互作主成分	Interaction principal	component	稳定性参数	Di位次	产量位次	
Cultivars	yield (kg·hm ⁻²)	IPCA1 IPCA2		IPCA3	Stability parameter	Di rank	Yield rank	
G_1	2388.71	8. 673	21.409	12. 177	26.11	4	6	
G_2	3317.83	-10.598	-3.660	-11.422	16.01	2	1	
G_3	2991.88	1.939	8.005	-16.584	18.52	3	3	
G_4	2887.42	0.469	-1.287	-1.439	1.99	1	4	
G_5	2660.58	23.987	-17.296	4.719	29.95	6	5	
G_6	3041.17	-24.469	-7.172	12.549	28.42	5	2	

表 4 区试点在显著的互作主成分轴上的得分及稳定性参数

Table 4 Scores and stability parameters of the trial locations in the principal component axis with significant interaction

区试点	平均产量	互作主成分	Interaction princip	al component	稳定性参数	Di位次	产量位次	
Regional sites	Average yield (kg·hm ⁻²)	IPCA1	IPCA2	IPCA3	Stability parameter	Di rank	Yield rank	
E_1	2996.67	-3.147	18.727	-3.752	19.36	5	4	
E_2	3000.00	-16.061	-8.636	8.873	20. 28	4	3	
E_3	2680.42	-12.758	1.972	-17.953	22.11	3	5	
E_4	3142.50	26.878	-11.481	-8.355	30.40	1	2	
E_5	1212.67	12.535	12.494	14. 213	22.70	2	6	
$\mathrm{E}_{\scriptscriptstyle{6}}$	4255. 33	-7.447	-13.076	6.974	16.59	6	1	

2.2 参试品种、试点的GGE双标图分析

2.2.1 参试品种的丰产性和稳产性分析 采用 R语言中的"GGE Biplot"软件包对 6个裸燕麦参试品种和 6个试点进行了分析,构建了"丰产性与稳产性"功能图。带有单箭头的直线是平均环境轴,箭头指向的方向是对试验点分辨力和代表性的综合评价。品种在平均环境轴上的投影越趋近箭头指向方向,该品种产量越高。品种与垂足之间的长度越短则表示品种稳定性越好。本研究构建的 GGE 双标图结果显示(图 2),纵横坐标共计解释了 86.80%的环境和基因环境互作的变异信息,其中横坐标(AXIS1)68.39%,纵坐标(AXIS2)18.41%。丰产性方面,G₂表现最好,且超过了对照品种 G₆;稳产性方面,G₄表现最好,其次是 G₂, G₃, G₂综合表现最好。

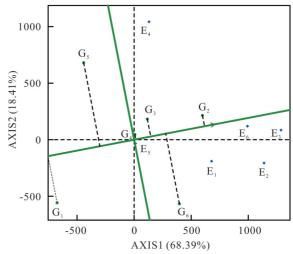


图 2 GGE 双标图的"丰产性与稳产性"功能

Fig. 2 Productivity and stability view of the GGE Biplot

2.2.2 理想品种分析 理想品种是指在区试点内丰产、稳产性兼顾的品种。在图 3"理想品种"功能图中,以平均环境轴箭头所在的点为圆心,品种越理想,其所在的点距离圆心越近。G。最接近理想品种,其次为 G₃、G₄。

2.2.3 参试裸燕麦品种的区域适应性分析 通过 GGE 双标图中的"哪个赢在哪里"功能图(图 4)来鉴定品种的区域适应性。在包含所有品种在内的前提下,连接最远点的品种点构成一个多边形,经过原点作各边的垂线,垂线所划分的扇区即为试验点的环境分组,形成了 4个试验环境,但仅有 3个有试点落入。处于多边形各区域顶点的品种,便是各试验环境内最适宜种植的品种。结果显示, E_1 和 E_5 属于同一个试验环境,该环境下 G_6 适应性最强; E_2 、 E_3 和 E_6 属于一个试验环境,该环境下, G_2 适应性最强; E_4 单独形成一个试验环境, G_5 是该环境内产量最高

第 31 卷第 12 期 草业学报 2022 年 81

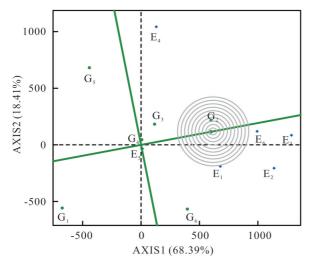


图 3 GGE 双标图的"理想品种"功能

Fig. 3 Ideal genotypes view of the GGE Biplot

的品种。 G_1 所在的环境分组内并没有任何试点落人,可以推断该品种并不适合在本研究所涉及的地域范围内推广种植。

2.2.4 区试点的区分力和代表性分析 采用GGE Biplot中的"区分力和代表性"功能图对本研究中的6个区试点进行区分力和代表性分析(图5)。与之前的功能图一致,带有单箭头的直线为平均环境轴,从圆心出发到各区试点向量的长度与区分力大小呈正比,越长则区分力越好;各向量与正向平均环境轴夹角的大小则与试点的代表性成反比,夹角越小则代表性越强。结果表明,在试点的区分力方面,E₃区分力最好,其次是E₂、E₄和E₆,而E₅和E₁的区分力较差;在试点代表性方面,6个试点与平均环境轴的夹角均为锐角,代表性较好,E₆和E₃的夹角较小,代表性更强,而E₄和E₅的代表性则相对较弱。综合以上信息,

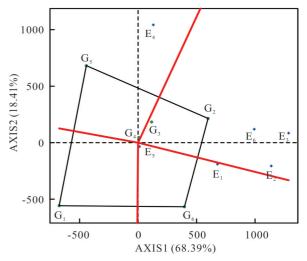


图 4 GGE 双标图的"哪个赢在哪里"功能

Fig. 4 Which-won-where view of the GGE Biplot

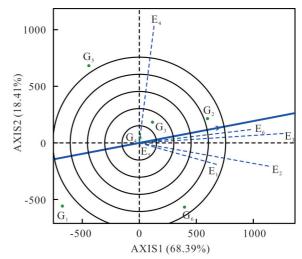


图 5 GGE 双标图的"区分力与代表性"功能

Fig. 5 Discrimination and representative view of the GGE Biplot

区试点 E_3 对参试品种具有较强的区分力,同时对目标生态区具有较好的代表性,是本研究中裸燕麦品种区域试验最理想的试点。 E_2 和 E_6 虽不及 E_3 理想,但作为试点在区分力和代表性上有各自的优势,同时没有明显短板,也是较为理想的试点。

3 讨论

裸燕麦是我国高寒地区的主要禾谷类作物,是当地人民的食粮和牲畜的重要饲草、饲料,对当地社会经济发展有着重要的战略支撑作用,尤其近年来燕麦的营养与保健功能被大众熟知,带动了燕麦产业的长足发展。我国当前的燕麦新品种选育进入到新的研究阶段,研究规模及研究水平有了很大提升。我国的燕麦产区经度、纬度及海拔跨度大,地形多样,造就了丰富的生态类型,也为品种选育提供了难题,如何科学、精准地开展区域试验,成了品种选育成败的关键。之前的燕麦研究中,区域试点设置不合理、代表性不强的现象比较突出,收集的试验数据不全面,得到的结论不系统。研究者主要依靠品种推广后的经验判定品种的适应性,信息反馈滞后,大大降低了育种效率及成果转化率。

21世纪以来,先后有燕麦研究人员利用 AMMI、GGE 等模型在内蒙古[27]、甘肃[24]、西藏[23]等地开展了燕麦品

种的区域适应性分析,有效提升了燕麦育种效率,检验了区域试验的科学性。本研究利用 AMMI 模型和 GGE 双 标图两种方法,对华北高寒区域的裸燕麦籽粒产量的丰产性、稳产性和适应性进行了联合分析,对试点的鉴别力 从区分力和代表性两方面进行了综合评价。两种分析方法结果既有共性,也有差异。共性的方面,首先从互作效 应来看,AMMI稳定性参数解释了95.64%的互作效应平方和,GGE双标图的"丰产性与稳产性功能图"与"理想 品种"功能图得出的结论与之相同;其次,就品种的丰产性和稳产性而言,二者的分析结果也基本一致。而差异在 于,GGE 双标图中的"哪个赢在哪里"功能图,可推断出对应品种的最适宜的种植区,这对品种的选育和推广有重 大的意义。二者的主要差异体现在区试点的鉴别力分析中。选择适当的区试点是鉴别品种的关键,理想的试点 有较好的代表性和较强的品种鉴别能力。在本研究中,AMMI模型结合稳定性参数显示的最佳试点是内蒙古太 仆寺旗(E_a),其余依次为承德市农林科学院(E_b)、内蒙古乌兰察布(E_a)和崇礼区狮子沟原种场(E_b)。而GGE双 标图的"区分力与代表性"功能图表明,内蒙古乌兰察布(E。)为本研究中裸燕麦籽粒产量的理想试点,崇礼区狮子 沟原种场(E_e)和张家口市张北基地(E_e)次之,在AMMI模型中表现较好的内蒙古太仆寺旗(E_e)反而并不突出,两 种分析结果不尽相同。究其原因,主要是两个模型的侧重点不同。AMMI模型将交互作用(GE)分解为多个主成 分的基因型和环境的乘积和,结合方差分析,能够全面地解释全部达到显著水平的互作效应主成分,因此对于品 种稳定性分析,采用 AMMI 模型结合稳定性参数方法所得到的综合评价更为准确,但对品种的适宜种植区域划 分有一定的局限性。而GGE 双标图将数据中心化后,基因型(G)与基因型和环境(GE)的互作效应也被纳入考 虑范围,反映的是效应(G+GE),在试点分析评价方面更占据优势,这与郭敏杰等[19]的结论类似。AMMI模型和 GGE 双标图两种分析方法在区域试验中用途广泛、简便易行,本研究将两种方法结合使用,二者相互补充,提高 了分析结果的科学性和准确性,为更加客观、全面地评价裸燕麦新品种及合理布置区域试验点提供了理论依据。 本研究结论与用两种方法对玉米[11]、水稻[12,14]、油菜[16]等作物区试的结论趋势一致。

4 结论

本研究利用 AMMI模型和 GGE 双标图对华北高寒地区的裸燕麦品种区域试验进行了分析讨论,得到如下结论:1)在品种区域适应性研究方法上,应该综合运用多种方法进行分析,避免单一方法带来的缺陷,以便更好地掌握品种的实际表现;2)在品种区域适应性试点选择来看,内蒙古乌兰察布试点既有很好的代表性,又有较强的鉴别力,为最理想的试点,崇礼区狮子沟原种场和张家口市张北基地作为试点较为理想;3)在本次参试品种中,200910-28-4-3是参试品种中综合表现最好的品种。今后本研究将扩大试点范围,使之能覆盖整个华北燕麦种植区,为科学合理的布局试点,鉴定品种的适应能力提供理论依据,为更好地开展新品种选育奠定基础。

参考文献 References:

- [1] Ren C Z, Hu Y G. Chinese oatology. Beijing: China Agriculture Press, 2013: 3-6. 任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013: 3-6.
- [2] Zheng D S, Zhang Z W. Discussion on the origin and taxonomy of naked oat (*Avena nuda* L.). Journal of Plant Genetic Resources, 2011, 12(5): 667–670.
 - 郑殿升, 张宗文. 大粒裸燕麦(莜麦)(Avena nuda L.)起源及分类问题的探讨. 植物遗传资源学报, 2011, 12(5): 667-670.
- [4] Zhang Z, Lu C, Xiang Z H. Variety stability analysis based on AMMI model. Acta Agronomica Sinica, 1998, 24(3): 304—309. 张泽,鲁成,向仲怀. 基于AMMI模型的品种稳定性分析. 作物学报, 1998, 24(3): 304—309.
- [5] Yan W K. Optimal use of biplots in analysis of multi-location variety test data. Acta Agronomica Sinica, 2010, 36(11): 1805—1819.
 - 严威凯. 双标图分析在农作物品种多点试验中的应用. 作物学报, 2010, 36(11): 1805-1819.
- [6] He Q X, Zhou Y M. On application of AMMI model in regional trail of maize in Chongqing. Journal of Southwest China Normal University (Natural Science Edition), 2017, 42(9): 109-115.

- 贺清秀, 周彦民. AMMI模型在重庆市玉米区域试验中的应用. 西南师范大学学报(自然科学版), 2017, 42(9): 109-115.
- [7] Yan W K, Sheng Q L, Hu Y G, *et al.* GGE biplot an ideal tool for studying genotype by environment interaction of regional yield trail data. Acta Agronomica Sinica, 2001, 27(1): 21–28.
 - 严威凯,盛庆来,胡跃高,等.GGE叠图法一分析品种×环境互作模式的理想方法.作物学报,2001,27(1):21-28.
- [8] Liu N, Cao D, Wang S H, *et al.* Yield stability and testing-site representativeness of regional trials for spring wheat lines in Gansu based on GGE-biplot. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(4): 39—48. 柳娜,曹东,王世红,等.基于GGE双标图的甘肃春小麦区试品系稳产性和试点代表性分析.西北农林科技大学学报(自然科学版), 2018, 46(4): 39—48.
- [9] Yue H W, Li C J, Li Y, *et al.* Comprehensive analysis of yield stability and testing site discrimination of spring sowing maize variety in Hebei province. Journal of Nuclear Agricultural Sciences, 2018, 32(7): 1267—1280. 岳海旺,李春杰,李媛,等.河北省春播玉米品种产量稳定性及试点辨别力综合分析.核农学报,2018,32(7): 1267—1280.
- [10] Lv Z W, Zhang Y J, Zhong Y H, *et al.* Yield stability and test-site representativeness in regional trials of maize varieties by GGE biplot. Hubei Agricultural Sciences, 2014, 53(15): 3487—3491. 吕泽文,张友君,钟育海,等.区域试验玉米品种(系)产量稳定性和适应性的GGE双标图分析. 湖北农业科学, 2014, 53(15): 3487—3491.
- [11] Zhu Y B, Sun J C, Wang X, et al. Application of AMMI model and GGE-biplot based on Genstat in the analysis of maize regional experiment. Journal of Anhui Agricultural Sciences, 2021, 49(6): 49-53. 朱艳彬, 孙九超, 王显, 等. 基于 Genstat 的 AMMI 模型和 GGE 双标图在玉米区域试验分析中的应用. 安徽农业科学, 2021, 49(6): 49-53.
- [12] Li X, Ding Y F, Zuo S M, *et al.* Evaluation and analysis of the results from the regional trial of medium japonica hybrid rice of Jiangsu Province in 2018 based on the AMMI model and GGE biplot. Hybrid Rice, 2021, 36(3): 96—102. 李雪, 丁逸帆, 左示敏, 等. 基于 AMMI 模型和 GGE 双标图对 2018年江苏省水稻杂交中粳品种区域试验结果的评价分析.杂交水稻, 2021, 36(3): 96—102.
- [13] Lu Z G, Ding Y F, Xu M, *et al.* Evaluation analysis for the regional trail of late japonica hybrid cultivars in Jiangsu Province using GGE biplot. Journal of Yangzhou University (Agricultural and Life Science Edition), 2020, 41(5): 9—14. 陆志刚, 丁逸帆, 许明, 等. 基于GGE双标图对江苏省杂交晚粳品种区域试验的评价分析. 扬州大学学报(农业与生命科学版), 2020, 41(5): 9—14.
- [14] Cao Y Y, Ding Y F, Zuo S M, *et al.* Analysis of yielding ability and stability of rice varieties tested in Jiangsu Province based on GGE biplot and AMMI model. Seed, 2021, 40(6): 38-43, 51. 曹元元,丁逸帆,左示敏,等. 基于 GGE 双标图和 AMMI 模型对江苏省水稻区试品种的丰产性和稳定性分析.种子, 2021, 40(6): 38-43, 51.
- [15] Zan K, Chen Y G, Xu S X, et al. Application of GGE biplot based on R language in soybean regional test. Soybean Science & Technology, 2019(4): 16-20.
 - 昝凯, 陈亚光, 徐淑霞, 等. 基于R语言的GGE 双标图在大豆区试中的应用. 大豆科技, 2019(4): 16-20.
- [16] Huang D M, Xie X Z, Bai G P, *et al.* Application of AMMI model and GGE biplot in rape regional trial of Hubei. Hubei Agricultural Sciences, 2018, 57(12): 24-29. 黄大明,谢雄泽,白桂萍,等. AMMI模型和GGE双标图在湖北省油菜区域试验中的应用. 湖北农业科学, 2018, 57(12): 24-29.
- [17] Yan L, Zhang Y X, Gao J H, *et al.* Analysis of stability and adaptability of the tested varieties based on AMMI model in Hubei Province. Seed, 2020, 39(9): 76-79. 闫雷,张远学,高剑华,等. 利用 AMMI 模型分析湖北省区试品种稳定性和适应性. 种子, 2020, 39(9): 76-79.
- [18] Li Y J, Li D M, Fan S J, *et al.* Analysis of variety adaptability and yield stability of potato evaluating GGE-biplot application. Journal of Lanzhou University (Natural Sciences), 2016, 52(5): 617—622. 李亚杰,李德明,范士杰,等. GGE双标图在马铃薯品种适应性及产量稳定性分析中的应用评价. 兰州大学学报(自然科学版), 2016, 52(5): 617—622.
- [19] Guo M J, Deng L, Ren L, *et al.* Application of R language base on AMMI model and GGE biplot on regional trial of peanut varieties. Journal of Peanut Science, 2017, 46(2): 24-31. 郭敏杰, 邓丽, 任丽, 等. 基于R语言的AMMI和GGE双标图在花生区试中的应用. 花生学报, 2017, 46(2): 24-31.
- [20] Liu W X, He Q L, Zhang F Y, et al. AMMI model analysis on regional trials of large-seeded peanut varieties. Crops, 2020(2):

60 - 64.

- 刘卫星, 贺群岭, 张枫叶, 等. 大粒花生品种区域试验的 AMMI模型分析. 作物杂志, 2020(2): 60-64.
- [21] Chen C J, Zhang S P, Shi S L, *et al.* Comprehensive evaluation of fertility and stability of alfalfa varieties based on GGE-biplot. Acta Agrestia Sinica, 2021, 29(5): 912—918.
 - 陈彩锦,张尚沛,师尚礼,等.基于GGE双标图对苜蓿品种丰产性和稳定性综合评价.草地学报,2021,29(5):912-918.
- [22] Luo J, Zhang H, Deng Z H, et al. Analysis of yield and quality traits in sugarcane varieties (lines) with GGE-biplot. Acta Agronomica Sinica, 2013, 39(1): 142-152.
 - 罗俊, 张华, 邓祖湖, 等. 应用 GGE 双标图分析甘蔗品种(系)的产量和品质性状. 作物学报, 2013, 39(1): 142-152.
- [23] Zhou Q L, Duoji D Z, Liu Y F, *et al*. Analysis of yield stability and adaptability of forage oat hay based on AMMI model. Seed, 2020, 39(6): 79–82.
 - 周启龙,多吉顿珠,刘云飞,等.应用AMMI模型分析饲用燕麦干草产量稳定性和适应性.种子,2020,39(6):79-82.
- [24] Chai J K, Mu P, Zhao G Q. Study on yield stability and test site representativeness of eight oat varieties in Gansu Province. Acta Agrestia Sinica, 2016, 24(5): 1100-1107.
 - 柴继宽, 慕平, 赵桂琴. 8个燕麦品种在甘肃的产量稳定性及试点代表性研究. 草地学报, 2016, 24(5): 1100-1107.
- [25] Frutos E, Galindo M P, Leiva V. An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stochastic Environmental Research and Risk Assessment, 2014, 28(7): 1629—1641.
- [26] Gabriel K R. Least squares approximation of matrices by additive and multiplicative models. Journal of the Royal Statistical Society: Series B (Methodological), 1978, 40(2): 186—196.
- [27] Zhang Z F, Fu X F, Liu J Q, *et al.* Analysis on site discrimination and yield stability of oat varieties. Acta Agronomica Sinica, 2010, 36(8): 1377—1385.
 - 张志芬,付晓峰,刘俊青,等.用GGE双标图分析燕麦区域试验品系产量稳定性及试点代表性.作物学报,2010,36(8):1377-1385.