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Abstract

Multilingual Automatic Speech Recognition (MASR) systems have inherent difficulties in bal-
ancing computational efficiency and modeling phonetic similarities between different languages.
This study proposes a MASR framework based on a Mixture-of-Experts (MoE) architecture,
which incorporates a dynamic Top-k expert routing strategy. This method dynamically selects
the optimal expert subnetwork based on the input speech features, thereby achieving more effi-
cient and accurate language modeling. To address the ambiguity in expert selection caused by
phonetic similarities between different languages, we further proposes a Token-Level Realign-
ment (TLR) method that accurately aligns language representations with expert groups at the
framework level, effectively alleviating the cross-language interference problem. The experi-
ments achieved excellent recognition performance in four languages (English, Chinese, Khalkha
Mongolian, Chahar Mongolian), with WERs/CERs of 12.88%, 5.49%, 7.64%, and 19.30%, re-
spectively.

Keywords: multilingual automatic speech recognition; mixture-of-experts; dynamic routing;
token-level realignment; mongolian language

1. Introduction

Multilingual Automatic Speech Recognition (MASR) has garnered significant research in-
terest in recent years, driven by increasing demands for cross-lingual communication. While
traditional MASR systems require separate models for each language, modern end-to-end (E2E)
approaches enable unified multilingual modeling. Benefiting from self-supervised learning and
large amounts of training data, representative Automatic Speech Recognition (ASR) models, like
Whisper [1], Google USM [2], and MMS [3], demonstrate remarkable multilingual capabilities
spanning over a thousand languages while maintaining competitive performance metrics. How-
ever, the practical deployment of such models poses challenges, particularly in optimizing the
trade-off between computational efficiency and cross-lingual interference mitigation.

To address these limitations, several approaches have been investigated to enhance recogni-
tion performance in multilingual settings, such as multi-task learning [4, 5], language informa-
tion integration [6, 7], and Mixture-of-Experts (MoE) [8, 9]. The MoE paradigm fundamentally
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differs from conventional monolithic architectures that process all linguistic inputs through a uni-
fied shared parameter. MoE employs a dynamic routing mechanism to distribute input features
to language-specific processing paths to reduce cross-lingual interference and maintain com-
putational efficiency. For example, the LR-MoE framework [10] introduced language-specific
routing through MoE-based Feed-Forward Networks (FFNs) to mitigate cross-lingual interfer-
ence, and activate only one expert at a time during training and inference for computational
efficiency. BLR-MoE [11] advances LR-MoE architectures by extending MoE to both FFN and
self-attention layers to reduce language confusion, while enhancing router robustness through
expert pruning and augmented language identification (LID) classification.

However, both architectures lack the hierarchical granularity of intra-language semantic mod-
eling. To address this issue, DLG-MoE [12] introduces a hierarchical routing mechanism that
combines explicit language modeling with implicit attribute learning, which has been empirically
validated to achieve superior performance in code-switching speech recognition (CS-ASR) tasks.
The DLG-MoE framework first uses language routers to explicitly identify inputs and route them
to the corresponding language expert groups, and then uses unsupervised routers within each ex-
pert group to implicitly capture finer-grained language differences such as dialects, accents, and
domains, enabling more nuanced processing of code-switching speech.

Inspired by the above, based on DLG-MoE [12], we propose a multilingual speech recog-
nition modeling approach based on the hierarchical routing mechanism. which comprises three
fundamental components: (1) a language identification router for multilingual discrimination;
(2) a lower-level expert routing network that integrates feedforward neural networks with local
attention mechanisms to model the acoustic features of each language; and (3) an upper-level
expert routing network based on multi-head attention mechanisms to capture common structural
information across languages. Our main contributions are as follows:

• To more effectively learn the acoustic features and common language structures of different
languages, we adopted a hierarchical expert routing network and introduced a Token-Level
Realignment mechanism to achieve frame-level precise alignment, effectively reducing
cross-language interference and alleviating language confusion issues.

• To achieve the optimal balance between computational efficiency and model performance
in multilingual speech recognition, we introduced a dynamic top-k routing strategy in the
expert selection process.

• We systematically evaluated the impact of expert count and inference strategies on model
performance, validating robust recognition performance in mixed speech scenarios and
multilingual streaming speech recognition tasks.

2. Related Work And Motivation

2.1. Mixture-of-Experts based MASR
In recent years, the MoE mechanism has made significant progress in MASR. For example,

[13, 14, 15] research utilizing shared embedding networks and hierarchical MoE representations
has improved the expert routing mechanism. Although these methods have enhanced the perfor-
mance of multilingual systems, they still face challenges in handling cross-lingual interference
and optimizing computational efficiency.

To further improve the cross-lingual performance of MASR, language-specific expert rout-
ing strategies have gained attention. MoLE [16] proposes activating language-specific experts
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and aggregating them with language-agnostic experts, demonstrating its applicability for low-
resource languages. M-MoE [17] introduces a dual-layer MoE structure, with routing mecha-
nisms designed for both known and unknown languages, supporting a wide range of languages.
These approaches [18, 19] can be seen as information-driven expert models that rely on lan-
guage information to select the corresponding experts. [20] improved the performance of the
language model by introducing prompt information. Additionally, due to the scarcity of Mon-
golian language resources, [21, 22] provides a standardized lexical framework for low-resource
languages. With the growing demand for streaming speech recognition tasks, MoE-Conformer
[23] combines the advantages of streaming ASR and MoE by activating a fixed number of ex-
perts, thereby improving the efficiency of multilingual streaming ASR. Building on the work of
these researchers, we extend the adaptability of MoE-based models to low-resource languages,
such as Khalkha Mongolian (kMN) and Chahar Mongolian (cMN).

2.2. Motivation

Many MoE-based architectures have achieved success in handling multilingual recognition
through shared language embedding networks and multi-layer MoE designs. However, these
methods still face challenges in mitigating cross-lingual interference and optimizing computa-
tional efficiency. To address these issues, researchers in recent years have proposed language-
specific expert routing mechanisms and multi-language expert selection strategies. These meth-
ods have significantly improved the recognition ability of multilingual speech and enhanced the
model’s performance in multilingual tasks. In particular, MoE-based expert networks dynam-
ically select and activate the most relevant experts by assigning appropriate sub-networks to
different languages, thus reducing cross-lingual interference and improving cross-lingual adapt-
ability.

However, existing MoE architectures still face the issue of complex hierarchical structures,
especially when dealing with acoustic similarities between different languages. For instance,
when handling mixed-language speech, the model may misrecognize speech of similar languages
as belonging to another language. To solve this problem, we propose a Token-Level Realignment
(TLR) method, which filters candidate tokens at each frame to ensure that only tokens from the
target language are selected, effectively reducing cross-lingual interference.

Based on this, we propose a TLR method for multilingual speech recognition, optimizing
adaptability for low-resource languages. Through an improved dynamic routing strategy and
language identity recognition, we aim to enhance the model’s computational efficiency and cross-
lingual adaptability, better handling multilingual speech recognition tasks, particularly for low-
resource languages.

3. The Proposed Approach

In the overall architectural design, we introduce a fundamental model variant: the Byte Pair
Encoding based Mixture-of-Experts model, as illustrated in Figure 1. This model adopts a uni-
fied encoder-decoder framework. The model is built upon a standard sequence-to-sequence ar-
chitecture, where the encoder consists of multiple stacked Conformer blocks. We integrate a
MoE structure within each Conformer layer composed of multiple FFNs. A multilingual speech
sharing router (MSSR) mechanism allows the model to automatically detect the language of the
speech input and dynamically route it to the most appropriate expert subnetworks. This design
aids in the grouped and multi-scale modeling of language-specific acoustic features. Dynamic
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expert selection not only enhances the model’s representational capacity but also significantly im-
proves its adaptability in cross-lingual transfer tasks. Given the acoustic similarities across lan-
guages, we have designed the TLR method to effectively eliminate language confusion, thereby
enhancing the distinguishability of speech.
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Language 
Expert Group
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LID
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Attention 
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Encoder

Decoder
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Figure 1: Overview of the model architecture, which includes a shared language route in the encoder, and a dynamic
language expert route for each language. The Token-Level Realignment refers to a schematic for realigning non-target
language tokens during the decoding process.

3.1. Multilingual Speech Sharing Router

To improve the linguistic discrimination of speech in the multilingual speech recognition
model, we design a Multilingual Speech Sharing Router (MSSR), which achieves a fine-grained
grouping and routing of speech frames by introducing a language category supervisory signal,
thus improving the overall system’s ability to model mixed multilingual inputs.

Specifically, the input speech features are first modeled using a conformer-based speech en-
coder, and the hidden states obtained from the last layer of the conformer encoder for the input
speech features are denoted as x = (x1, x2, . . . , xT ), xt ∈ RD, where xt represents the t-th frame,
and D is the dimensionality of the hidden feature vector. To train MSSR, we assign each frame
a language token sequence y = (y1, y2, . . . , yL) corresponding to its textual transcription. Each
token is replaced with its language label, such that yi ∈ {1, 2, . . . ,K}, where L is the length of the
label sequence and K is the number of language categories (e.g., 4 classes: English (EN), Chinese
(ZH), Khalkha Mongolian (kMN), and Chahar Mongolian (cMN)). Each frame representation xt

is then fed into a language classifier for prediction: P = Softmax(Wxt + b), P ∈ RT×K , where
W ∈ RK×D and b ∈ RK are learnable parameters. To train the language classifier, we adopt
the CTC loss to align the predicted sequence with the ground-truth label sequence. Suppose the
batch contains B samples, and the b-th sample has a predicted distribution y(b) with ground-truth
label sequence y∗(b), then the total loss is defined as (1):

LLID = −
1
B

B∑
b=1

log
∑

π∈B−1(y∗(b))

P(π|x(b)), (1)
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where B−1(y∗(b)) denotes all valid CTC alignment paths corresponding to y∗(b). By exploiting the
CTC loss, the model learns to assign the most appropriate language labels to the speech features
along the temporal dimension, thus aligning the speech frames with the corresponding language
expert groups for multilingual speech recognition and routing. Meanwhile, in each language
expert group, the predicted linguistic information is introduced into the MoE routing mecha-
nism as a priori knowledge, which allows the in the language expert group can be freed from
the heavy task of speech differentiation to capture the fine-grained features of acoustic features
(e.g., accent, dialect) in an unsupervised manner, which not only enhances the model’s adaptabil-
ity to different languages, but also promotes the dynamic collaboration among the experts and
improves the overall recognition performance. We use the joint loss function proposed by [24],
which integrates the alignment capability of CTC and the modeling capability of Attention, and
the total loss is as follows (2):

Ltotal = (1 − λ)Latt + λLctc +LLID (2)

3.2. Multi-scale MoE
In MASR tasks, there are significant differences between languages in terms of speech mor-

phology, rhythmic features, and pronunciation patterns. In order to capture these differences
more efficiently and improve the cross-lingual modeling capability, we introduce a multi-layer
MoE module in the encoder to achieve multi-scale and multi-granularity modeling of speech
features in different languages.

When the input speech signal is encoded into an intermediate representation x, the system
calculates the matching probabilities with each language expert through a router based on the
language attributes of each frame feature, denoted as P(x) = (p1, p2, . . . , px). The top-k function
is then applied to select the experts with the highest probabilities to participate in the com-
putation. Each frame feature is assigned to the most appropriate group of experts, while the
remaining experts are masked. The final weight vector of all experts is obtained by applying
G(x) = Softmax(Topk(P(x), k)), and the output of the MoE layer is obtained by weighting the
representations of different experts Ei(x) using the weight Gi(x) of the i-th expert (3):

y =
n∑

i=1

Gi(x)Ei(x) (3)

where top-k function is given by (4):

Topk(v j, k) =

v j, v j in top k elements of v
−∞, otherwise

(4)

During training, the maximum number of experts is set to Kmax, which represents a trade-off
between model performance and computational efficiency. At each forward pass, an integer k
is randomly sampled from a discrete uniform distribution U[1,Kmax] to determine the number
of active experts for that computation. This strategy encourages each expert to become more
independent and robust.

3.3. Token-Level Realignment
Although the Multilingual Speech Sharing Router (MSSR) is able to route speech to the

correct language group, as shown in Figure 2b, the model still suffers from frequent lexical-
element-level language confusions when dealing with languages with highly similar acoustic
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features such as Khalkha Mongolian (kMN) and Chahar Mongolian (cMN), as shown in Fig-
ure 2a. To solve this problem, we propose the Token-Level Realignment method, which does
not require frame-level linguistic annotations for the input audio at the decoding stage. The
acoustic features are mapped to probability distributions over a shared vocabulary, and the beam
search strategy is constrained by predefined language boundaries to minimize interference from
non-target languages. The recognition errors are effectively corrected and the model’s ability to
discriminate between similar languages is significantly improved, as shown in Figure 2c.

utt: MS2565_0320

heuhed -u'd eimu baihv -d'agan tagaran_a

WER: 83.33 % N=6 C=1 S=4 D=1 I=0

lab: heuhed -u'd eimu baihv -d'agan tagaran_a

rec: heuhed ийм байх даа та

Text ᠬᠡᠦᠬ ᠦᠬ᠋ ᠡᠢᠮᠦ ᠪᠢᠢᠬ ᠳ᠋ᠠ᠋ᠠ ᠲ᠋ᠠ᠋ᠷ᠋ᠨᠠ᠋

Reference heuhed -u'd eimu baihv -d'agan tagaran_a

w/o TLR heuhed ийм байх даа та

w/ TLR heuhed -u'd eimu baihv da da

(a) Recognition example

(b) Language router probabilities

(c) TLR correction visualization

Figure 2: Illustration of the language confusion problem and the effect of the proposed Token-Level Realignment (TLR)
method.

Specifically, V denotes the shared vocabulary across all languages, and L is the set of sup-
ported languages. For each language l ∈ L, we define a language-specific subvocabularyVl ⊆ V.
To enforce language boundary filtering, we introduce an indicator function as follows (5):

IVl (v) =

0 if v ∈ Vl

−1 otherwise
(5)

At each frame t, instead of directly selecting the top-k tokens with the highest posterior
probability from the entire vocabulary, we apply a language-aware score adjustment using a
penalty term λ (6):

ṽt = arg max
v∈V

log pt(v|X) + λ · IVl (v) (6)

where X represents the input feature sequence and λ is used to control the penalty strength for out-
of-language tokens, which is defined over the interval [0,+∞). In the extreme case λ→ +∞, any
out-of-language token receives an infinitely large negative score and is thus completely excluded
from the beam search.

If the number of valid candidates is less than k, we augment the candidate set by selecting
additional high-confidence tokens from the target sub-vocabulary Vl, ensuring the beam size
remains unchanged (7):

T ∗t = arg max
S⊆Vl, |S |=k

∑
v∈S

log pt(v|X) (7)

Finally, decoding is performed within the constrained search space defined by the target
language (8):
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Yl :=
{
Y = (v1, . . . , vT ) ∈ VT

l

}
, Ŷ = arg max

Y∈Yl

P(Y |X) (8)

This strategy ensures that the output sequence strictly adheres to the target language vo-
cabulary, improving recognition robustness in multilingual scenarios involving closely related
languages.

4. Experiments and Analysis

4.1. Datasets

Our experiments utilize a multilingual speech recognition dataset comprising four distinct
languages: English (EN), Chinese (ZH), Khalkha Mongolian (kMN), and Chahar Mongolian
(cMN).
English: The English consists of the 100-hour training subset from LibriSpeech [25], a widely
adopted benchmark in speech recognition research. This dataset contains read speech derived
from audiobooks, featuring clean recordings with high-quality transcriptions. The development
and test data sets are come with its own and are split into “clean” and “other” subsets.
Chinese: For Chinese data, we employ the AISHELL-1 [26] corpus, which offers approximately
178 hours of Mandarin speech recordings. Collected in quiet environments by 400 native speak-
ers, this dataset covers a broad vocabulary and various speaking styles. We used about 150 hours
of speech for training, about 18 hours of speech for development, and about 10 hours of speech
for test.
Khalkha Mongolian: The Khalkha Mongolian corpus contains of about 290 hours of speech
data, a total of 192,711 Khalkha audio, with a sampling frequency of 16 kHz, including 416
speakers from different parts of Mongolia. In our experiments, the dataset was divided into three
parts: training set, validation set, and test set, and was not duplicated. The training set is about
278 hours, the validation set is about 8 hours, and the test set is about 4 hours.
Chahar Mongolian: The Chahar Mongolian data consists of about 345 hours of speech sampled
at 16 kHz that were collected from 10 domains, including trending, news, education, tourism,
and so on [27]. The training set contains 325 hours of speech and involves 889 speakers. The
development set contains 4,665 utterances ( ∼ 8 hours). The test set contains 7,643 utterances (
∼ 12 hours).

4.2. Experimental Setup

Basic settings : We conducted multilingual speech recognition experiments based on the WeNet
[28] framework, utilizing a hybrid decoding architecture that combines CTC and attention mech-
anisms. The input acoustic features are 80-dimensional log-Mel filterbanks (FBank), extracted
with a frame shift of 10 ms and a window length of 25 ms. We use audio speed-Perturbation
[29] and SpecAugment [30] for data augmentation. The audio speed-Perturbation is changing
the speed of the audio signal, producing 3 versions of the original signal with speed factors of
0.9, 1.0 and 1.1. The SpecAugment method sets the frequency mask width to 27 and the time
mask width to 100. Both frequency masking and time masking are used twice.

The model architecture consists of a 12-layer encoder, where the first 6 layers are standard
Conformer blocks and the last 6 layers are MoE layers enhanced with expert routing mechanisms.
Each MoE layer includes multiple feedforward sub-networks with a hidden dimension of 2048,
supporting both top-2 and dynamic top-k expert selection strategies. We designed two variants
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of the model: Expert4 and Expert6. The encoder is configured with a model dimension of
dmodel = 256, number of attention heads nheads = 4, and feedforward dimension dff = 2048.
The activation function used is swish, and the encoder integrates relative positional encoding
as well as convolutional modules with a kernel size of 31. The decoder adopts a bidirectional
Transformer structure, consisting of 3 forward and 3 backward layers, with 4 attention heads in
each direction.

Training and Inference settings : we use Adam algorithm [31] with β1 = 0.9, β2 = 0.98, ϵ =
10−9 and Noam learning rate schedule to optimize the models [32]. The maximum learning rate
is set to 0.001, with a linear warm-up strategy applied over the first 25,000 steps. A static batch
strategy is used during training, with batch size set to 8. Gradient accumulation is employed
with a step size of 8, and gradient clipping with a threshold of 5.0 is applied to improve training
stability.

During inference, we employ two inference approaches: (1) a simple greedy approach to
report the 1st pass results directly, and (2) a two-stage attention rescoring method that first gen-
erates N-best candidate sequences via CTC prefix beam search, and then applies attention-based
decoding to utilize more extensive contextual information for more accurate sequence-level scor-
ing. We obtained the recognition error with SCLITE toolkit [33]. The results are performed in
terms of character error rate (CER in %) for ZH task, and word error rate (WER in %) for EN,
kMN, and cMN tasks.

Table 1: Comparison of MASR performance under different Expert configurations and decoding methods. indicates
that Language Gating inference is not used. indicates the use of Language Gating inference. All experiments were
conducted using top-2 inference settings.

Model Train Language Gating ID Decoding Method EN ZH kMN cMN

Expert4

Top2

(1) CTC 17.31 6.82 12.67 25.46

(2) Attention Rescoring 14.67 6.01 9.81 22.49

(3) CTC 17.30 6.81 12.48 23.16

(4) Attention Rescoring 14.67 6.00 9.60 20.16

Dynamic

(5) CTC 14.89 6.38 11.29 23.48

(6) Attention Rescoring 12.91 5.75 8.78 20.91

(7) CTC 14.94 6.40 11.13 22.37

(8) Attention Rescoring 12.93 5.77 8.61 19.75

Expert6

Top2

(9) CTC 15.34 6.60 11.24 23.93

(10) Attention Rescoring 13.21 5.88 8.59 21.15

(11) CTC 15.34 6.39 11.23 23.07

(12) Attention Rescoring 13.21 5.81 8.58 20.15

Dynamic

(13) CTC 14.86 6.02 9.98 23.32

(14) Attention Rescoring 12.88 5.49 7.76 20.81

(15) CTC 14.90 6.02 9.87 22.25

(16) Attention Rescoring 12.88 5.49 7.64 19.61
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4.3. Experimental Results and Analysis
4.3.1. Analysis of Evaluation Results under Different MoE Configurations

Table 1 presents the performance of different MoE configurations on MASR tasks across four
languages: EN, ZH, kMN, and cMN.
Effect of Top-k Strategy : Using top-2 inference with the same number of experts and model
structure, the dynamic Top-k routing strategy demonstrates superior performance compared to
the fixed Top-2 approach (e.g., 1—4 and 5—8, or 9—12 and 13—16). In the Expert4 architec-
ture, (5) achieves results of 14.89%, 6.38%, 11.29%, and 23.48% for EN, ZH, kMN, and cMN.
Compared to (1), the recognition accuracy was improved by 13.98%, 6.45%, 10.89%, and 7.78%,
respectively. This performance gain benefits from the flexibility of dynamic routing, which can
adaptively determine the number and combination of activated experts, thereby enhancing the
model’s ability to capture complex speech patterns and better accommodate cross-lingual vari-
ations. To further analyze computational trade-offs, we additionally compared top-1 and top-2
inference on the Expert6-Dynamic model. As summarized in Table 2, we report GFLOPs, real-
time factor (RTF) and latency: the increased computational overhead of the top-2 strategy relative
to top-1 underscores the inherent trade-off between achieving higher performance and maintain-
ing computational efficiency.
Effect of the Number of Experts : Introducing a larger number of experts (e.g., 1—8 and
9—16) significantly improves the model’s ability to capture multilingual acoustic details. By
increasing the number of expert sub-networks, the Expert6 architecture outperforms Expert4 in
both language modeling and recognition accuracy. In the comparison between (4) and (12), the
overall result decreases from (EN: 14.67%, ZH: 6.00%, kMN: 9.60%, and cMN: 20.16%) to
(EN: 13.21%, ZH: 5.81%, kMN: 8.58%, and cMN: 20.15%).

We visualized the internal routing behavior of the model for different numbers of experts for
the example in Figure 2a. In the Expert4 model (shown in Figure 3a), we observe that its routing
pattern is relatively centralized. A small number of experts (e.g., expert3) are continuously acti-
vated with high probability, and it is not only responsible for recognizing a small number of real
characters, but also takes on the task of outputting a large number of <blank>. In contrast, the
routing behavior of the Expert6 model (shown in Figure 3b) exhibits a clearer division of spe-
cialization, where expert2 is responsible for outputting high-probability <blank>, and expert4 is
activated at different time steps to focus on recognizing and distinguishing more challenging real
speech characters. A larger number of experts can accurately capture and model more complex
acoustic details, improving the model’s generalization ability and cross-linguistic adaptability.

(a) Expert4 (b) Expert6

Figure 3: Effect of the number of experts

Effect of Decoding Method : Across all experimental settings, the Attention Rescoring method
consistently outperforms the traditional CTC decoding approach. Comparing the results of (15)
(EN: 14.90%, ZH: 6.02%, kMN: 9.87%, cMN: 22.25%) with those of (16) (EN: 12.88%, ZH:
5.49%, kMN: 7.64%, cMN: 19.61%), we observe a significant improvement in recognition
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performance across all four languages(13.55%, 8.80%, 22.59%, 11.87%), achieving the best
capability of the model. This is primarily attributed to the Attention mechanism’s ability to
incorporate contextual information and perform global alignment, which compensates for CTC’s
limitations in local modeling and effectively reduces acoustic confusion and language boundary
ambiguity.

Table 2: Comparison of computational efficiency for the Expert6-Dynamic model under different top-k inference settings,
reporting GFLOPs, real-time factor (RTF), and latency.

Model Inference ID Decoding Method GFLOPs RTF Latency

Expert6-Dynamic
top-1

(1) CTC 3.16 0.0052 29.9

(2) Attention Rescoring 3.16 0.0294 167.21

top-2
(3) CTC 3.46 0.0159 89.91

(4) Attention Rescoring 3.46 0.0541 307.46

4.3.2. Analysis of Cross-Lingual Stability and Streaming Capability
Cross-lingual Stability and Robustness Evaluation : We randomly sampled 500, 1000, and
2000 utterances for each of the four languages to construct mixed speech inputs, and compared
the performance of two MoE models under different inference strategies. As shown in Table 3,
increasing the number of sampled utterances per language from 500 to 2000 significantly im-
proved overall recognition performance, especially under the Attention Rescoring strategy. In
the Expert6-Dynamic model, the overall results decreased from 11.99% (8) to 11.74% (12), in-
dicating that richer training data enables the model to better learn cross-lingual acoustic features,
thereby enhancing its multilingual modeling capabilities. Furthermore, with the same amount of
data, case (12) with 11.74% outperformed case (6) with 11.95%, further confirming that increas-
ing the number of experts positively contributes to improving recognition accuracy in multilin-
gual scenarios.

Table 3: MASR performance in different random sampling conditions

Model Mixed Speech ID Decoding Methond EN ZH kMN cMN Overall

Expert4-Dynamic

shuffle 500
(1) CTC 14.86 6.55 11.90 23.27 14.16

(2) Attention Rescoring 12.58 5.92 9.37 20.70 12.18

shuffle 1000
(3) CTC 14.91 6.38 10.96 23.87 14.07

(4) Attention Rescoring 12.93 5.75 8.46 21.26 12.20

shuffle 2000
(5) CTC 14.78 6.07 11.32 23.02 13.79

(6) Attention Rescoring 12.82 5.54 8.80 20.43 11.95

Expert6-Dynamic

shuffle 500
(7) CTC 14.73 6.23 10.65 22.94 13.74

(8) Attention Rescoring 12.73 5.75 8.52 20.46 11.99

shuffle 1000
(9) CTC 14.96 5.97 9.43 23.09 13.54

(10) Attention Rescoring 13.02 5.48 7.41 20.53 11.81

shuffle 2000
(11) CTC 14.81 5.68 10.36 22.30 13.37

(12) Attention Rescoring 13.01 5.21 8.20 20.05 11.74
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Multilingual Streaming ASR Capability Analysis : Table 4 presents the performance of the
Expert6-Dynamic model under different chunk sizes in MASR tasks, comparing streaming and
non-streaming inference modes. In the same model structure, the non-streaming configuration
consistently achieved the best recognition performance. When the chunk size was set to 16
(2), the performance dropped to (EN: 14.31%, ZH: 6.06%, kMN: 9.10%, and cMN: 21.56%).
This suggests that the streaming mode, due to segmenting inputs into limited windows, leads to
context truncation, thereby affecting recognition accuracy. As the chunk size was further reduced
to 8 (3), performance worsened to (EN: 15.02%, ZH: 6.44%, kMN: 9.65%, and cMN: 22.48%),
which marks the worst result among all tested configurations. These findings indicate that in
streaming ASR tasks, the chunk size setting has a significant impact on recognition performance,
and overly small windows severely limit the model’s capacity to model context.

Table 4: The performance of different chunk sizes in streaming speech recognition across various languages.

Model ID Chunk Size EN ZH kMN cMN

Expert6-Dynamic
(1) Non-Streaming 12.88 5.49 7.64 19.61

(2) 16 14.31 6.06 9.10 21.56

(3) 8 15.02 6.44 9.65 22.48

4.4. Discussion

Due to the high acoustic similarity between cMN and kMN, the model tends to confuse the
two languages when recognizing cMN, resulting in a decline in recognition performance. Figure
4 presents the reference and recognized transcripts under different model configurations. We first
compare the performance of the model without language expert routing (w/o Expert) and with
language-specific experts (w/ Expert). In Cases 1, 2, and 3, the model mistakenly recognizes
cMN as kMN, while the inclusion of specific language experts effectively resolves this issue.
However, in Cases 4, 5, and 6, recognition errors still occur even with language expert routing,
indicating that expert selection alone is insufficient to fully eliminate language confusion.

To address this problem, we design an ablation study that incorporates both the language-
specific expert module and a TLR strategy. As shown in Table 5, the introduction of language-
specific experts significantly enhances the model’s discriminative capability, reducing the WER
to 19.61%(2). Furthermore, by integrating the TLR method, the model achieves the best recog-
nition performance on Chahar Mongolian, reducing the WER to 19.30%(3) and an improvement
of 7.26% over 20.81%(1). These results demonstrate that fine-grained TLR is effective in miti-
gating recognition errors caused by phonetic overlap across languages.

Table 5: Ablation study of Expert6-Dynamic with expert selection and TLR on cMN.

Configuration ID CTC Attention Rescoring
Expert6-Dynamic(w/o Expert) (1) 23.32 20.81

w/ Expert (2) 22.25 19.61

w/ Token-Level Realignment (3) 21.81 19.30

DataIntelligence 11



Dynamic Language Routing Mixture of Experts Model for Multilingual Speech Recognition

1 

Text ᠨᠢ� �ᠳ᠋ᠦᠭᠦᠨ �ᠬ � �ᠣ�ᠠᠷ ᠲᠤᠭ᠋ᠤᠯ ᠲᠠᠢ �ᠤᠳ᠋ᠠᠯᠳ᠋ᠤ� � 

Reference nige budugun bvh_a hqyar tvgvl -tai hvdaldvn_a 

w/o Expert nige budugun bvh_a хоёр тугалтай худалдана 

w/ Expert nige budugun bvh_a hqyar tvgvl -tai hvdaldvn_a 

2 

Text � �ᠷᠢᠮᠵᠢ� � �ᠷ ᠶᠠᠷᠢᠵᠤ ᠴᠢᠳ᠋ᠠᠬᠤ ᠦᠭᠡᠢ ��� � 

Reference bi barimjiy_a -bar yarijv cidahv ugei bain_a 

w/o Expert bi баримжаа_a -bar yarijv cidahv ugei bain_a 

w/ Expert bi barimjiy_a -bar yarijv cidahv ugei bain_a 

3 

Text ᠨᠢ� �ᠳ᠋ᠦᠭᠦᠨ �ᠬ � �ᠣ�ᠠᠷ ᠲᠤᠭ᠋ᠤᠯ ᠲᠠᠢ �ᠤᠳ᠋ᠠᠯᠳ᠋ᠤ� � 

Reference nige budugun bvh_a hqyar tvgvl -tai hvdaldvn_a 

w/o Expert nige budugun bvh_a хоёр тугалтай худалдана 

w/ Expert nige budugun bvh_a hqyar tvgvl -tai hvdaldvn_a 

4 

Text � ᠰᠠᠶᠢ �ᠤᠰᠢᠭ᠋ᠤᠨ ᠳᠡᠭᠡᠷ � ᠢᠷᠡᠭ᠍ᠰᠡᠨ ��� � 

Reference bi sayi hvsigvn deger_e iregsen bain_a 

w/o Expert би sayi hvsigvnуун deger_e iregsen байна_a 

w/ Expert bi sayi hvsigvn deger_e iregsen байна_a 

w/ Token-Level Realignment bi sayi hvsigvn deger_e iregsen bain_a 

5 

Text ᠵᠠ ᠲᠠ ᠨᠠᠷ ᠣᠳ᠋ᠣ ᠶᠠᠭ᠋ᠤ �ᠵᠦ ��� � � ᠣᠳ᠋ᠣ ᠶᠣᠰᠣᠲᠠᠢ ᠮᠤᠨᠳ᠋ᠠᠭ �ᠯᠴᠢᠬᠠᠭᠰᠠᠨ ᠰᠢᠦ 

Reference ja ta nar qdq yagv hiju bain_a bi qdq yqsqtai mvndag bqlcihagsan siu 

w/o Expert ja та нар одоо юу hiju байна_a bi одоо ёстой мундаг bqlcihagsan шүү 

w/ Expert ja ta нар одоо юу hiju bain_a bi qdq yqsqtai mvnдаг bqlcihagsan siu 

w/ Token-Level Realignment ja ta nar qdq yagv hiju bain_a bi qdq yqsqtai mvndag bqlcihagsan siu 

6 

Text �ᠤᠸ᠋ � ᠲᠠᠢ ᠳᠠᠰᠬᠠᠯ �� ᠦᠭᠡᠢ ᠦ 

Reference gvw_a -tai dashal hihu ugei uu 

w/o Expert гоотай   dashal хийх ugei uu 

w/ Expert гоо_a -tai dashal hihu ugei uu 

w/ Token-Level Realignment gvw_a -tai dashal hihu ugei uu 

 
Figure 4: The impact of different inference methods on the recognition accuracy of cMN.

5. Conclusion and Future Work

In this work, we introduce a flexible multilingual speech recognition MoE model, which in-
corporates a dynamic top-k expert routing strategy within the MoE framework, aiming to achieve
a better trade-off between computational efficiency and recognition performance. We leverage a
multilingual speech sharing router to facilitate routing across multiple languages and thoroughly
investigate the impact of varying expert counts and top-k strategies on the model’s performance.
However, issues such as language confusion due to phonetic similarities between languages re-
main a challenge. To address this, we propose a Token-Level Realignment method, which pre-
cisely aligns input frames with the corresponding language expert modules. The integration
of language-specific experts has significantly improved recognition accuracy, and the proposed
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Token-Level Realignment strategy further enhances the system’s ability to distinguish between
similar languages. In the future, we plan to explore more fine-grained modeling techniques for
low-resource languages to improve speech recognition capabilities.
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