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The optimization of key process parameters for the transformation of agrowastes into biofertilizer has been dem-
onstrated using response surface methodology (RSM). Biofertilizer was produced by composting using 120 L ca-
pacity drum made of polyethylene as the composter. Composting time (X1), dosage ratio (X2) and moisture
content (X3) were the independent factors while percentage nitrogen, phosphorus and potassium (N.P.K)
were the response factors. The outcomes exhibited that composting time, dosage ratio and moisture content
all significantly affects themineralization of N.P.K at probability value of 0.0001. The coefficients of determination
also called regression coefficients of 98.60%, 99.79% and 97.80% for nitrogen, phosphorus and potassiumobserved
between the predicted and the real value are obvious that the developed regression models can fit the experi-
mental data well. It was seen from the optimization studies that the pinnacle value of N.P.K from the ideal con-
ditions are 9.62%, 8.97% and 5.62. Characterization of the composite uncovered that biofertilizer produced has a
high potential for commercial application on agricultural land. It can be concluded that combination of sawdust,
sewage sludge and vegetablewaste is a goodmixture for biofertilizer synthesis. Also, the nutrients release by the
compost materials during the process of composting may be maximized when process conditions are circum-
spectly managed within the reported optimal value.
© 2019 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In any emerging or modern society, waste management and control
is dependably a characteristic piece of such society. Wellsprings of resi-
dential and commercial wastes have developed widely in Nigeria over
the previous decade. The by-product of agricultural exercises is gener-
ally alluded to as “Agricultural Wastes” (Westerman and Bicudo,
2005). These wastes essentially appear as harvest deposits (leftover
stalks, straw, leaves, roots, husks, shells etcetera) and animal waste (ex-
crement). Agricultural wastes can be overseen by changing over to al-
ternative manures (bio-fertilizer) through proper composting (Oltjen
and Beckett, 2006). The management of solid wastes has dependably
CD, central composite design; N,
ociety for Testing andMaterials;
OC, total organic carbon; R2, co-
on.; AAS, atomic absorption
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been amajor issue tomost urban areas in Nigeria. Aside Pyrolysis, burn-
ing in incinerator and storage, a large portion of the natural wastes from
human, creature, rural and mechanical foundations presenting genuine
ecological andmedical issues can be overseen by anaerobic/aerobic fer-
mentation producing biogas and biofertilizer individually through
proper composting. These procedures are exceptionally worthwhile re-
membering that, they limit harm to the earth and createmonetarily sig-
nificant items from wastes (Ogazi and Omueti, 2000; stentiford, 1996).
As indicated by (Stentiford, 1996; Dumitrescu et al., 2009), Composting
is defined as biological oxidative degradation of organic matter in
wastes under controlled conditions which allows the growth of micro-
organisms that convert biodegradable natural wastes into an end prod-
uct that is adequately stable for application in agricultural land without
antagonistic ecological impacts. The end product of composting has
been observed to be more valuable to plants and soil biodiversity
Rasapoor et al.,(2009). Carbon dioxide, water, mineral particles and
humus are the primary products of aerobic composting. The procedure
decimates pathogens due the accelerated temperature by microbial ex-
ercises. Likewise, nitrogen fixing bacteria converts nitrogen from
ommunications Co., Ltd. This is an open access article under the CC BY-NC-ND license
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Table 1
Coded and un-coded values of the independent factors.

Code Actual value of
independent
variable

−α Xmin

−1 ðα−1ÞXmax þ ðα þ 1ÞXmin

2
0 Xmax þ Xmin

2
+1 ðα−1ÞXmin þ ðα þ 1ÞXmax

2
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unstable ammonia to stable natural structures. The procedure for the
most part decreases the volume of waste. For the reason that
composting is an effective strategy for reusing waste, this investigation
has an extraordinary importance for most developed and developing
nation that needs to deal with, consistently, bigger amounts of biode-
gradable waste, for example, a waste administration organization
(Enugu State Waste Management Agency) in Enugu State Nigeria over-
saw both as local waste (86,883 tons in 2010) and sewage sludge
(53,750 tons in 2010). Sludge rich in natural and mineral mixes, for ex-
ample, (nitrogen and phosphorus) and in lipids is created by treating
modern effluents. At the point when sludge is arranged without treat-
ment, it turns into a wellspring of contamination (Ilegbune, 2006).
With the end goal to avert genuine natural issues, for example, sullying
of groundwater by leachate, contamination of the air with foul gases
and so forth, Sludge must be stabilized by chemical, organic and bio-
chemical methods (Mowoe, 2001; Jimoh, 2005).

Optimization is a strong decision makingwhich is the act of produc-
ing the best results under certain conditions (Datta, 2011). The main
components of optimization are; (i) The objective function, (ii) The var-
iables and (iii) The constraints. Optimization problems can be stated to
maximize or minimize that is subject to the constraints. Optimization
problems could be constrained optimization problems which are sub-
ject to constraints or unconstrained optimization problems which is
subject to no constraints considering the nature of the equations for
the objective functions and constrains. Optimization problems can be
linear, non linear, geometric and quadratic programming problems.

Essential of process streamlining of key process parameters involved
in the conversion of agro wastes cannot be overemphasized. The reason
for statistically designing an experiment is to gather regular connection
between different components influencing the procedure towards find-
ing the most appropriate conditions. Process optimization was done in
this work using response surface methodology (RSM). It is a statistical
tool used mainly for optimization. RSM is for the most part utilized to
study about the impact of independent factors on the response(s). It is
additionally used to ponder the impacts of multiple variables and their
cooperation. These different elements are the independent factors
while the response(s) are the dependent variables (Datta, 2011). RSM
relates item properties by utilizing regression equation that portrays in-
terrelations between information factors and itemproperties (Adeyanju
et al., 2016). Themost prevalent and regularly utilized type of RSM is the
central composite design (CCD) and Box Behnken design. In this work,
central composite design was utilized for the process optimization.
These designs are rotatable or near rotatable. The factors studied were
composting time, moisture content (water solid ratio) and dosage
ratio. Therefore, this research aims at contributing to waste manage-
ment by converting some agro waste into biofertilizer through
composting and afterward, optimize the key process parameters in
composting using response surface methodology.

2. Materials and method

2.1. Materials

Rawmaterials used in this research were; sawdust, dewatered sew-
age sludge and vegetable wastes (comprising of different left over of
fresh green leaves, watermelon, cabbage, lettuce, cucumber etc). The
sawdust was sourced from local sawmill, the vegetable wastes was
sourced from the local market and were shredded and homogenized
with a cutter to improve decomposition during composting. Dewatered
sewage sludgewas sourced fromwastewater treatment plant ofWilson
Industry Nigeria Limited Nsukka.

2.2. Design of composting drums

The composting was done in polyethylene drums of 120 L capacity.
The drums were reasonably changed for air dissemination. The drums
were changed by giving 10mmequidistant gaps in six layers on the pe-
riphery of the drumsutilizing a handdriller to encourage the air dissem-
ination inside the drums. Two inspecting windows (one each at center
and base part) were given in the drums to gather the intermittent sam-
ples for investigation. The arrangements for the leachate collection from
the base of the drums were likewise given.

2.3. Composting operations

The composting process was carried out in open space to allow the
natural aeration. The drumwas supported on the bricks and the plastic
tray was kept below the drum for the collection of leachate. For the
study, 90 kg of the homogenized wastes samples at different dosage ra-
tios as shown in Table 3 were added into the drums. Aeration was
achieved bymanual turning of the composts once daily. Various operat-
ing and product quality parameters such as pH, temperature, organic
matter and total carbon were monitored as the compost last. Samples
were taken from the drum after every 5 days for laboratory analysis.
The moisture content was monitored and maintained using electronic
moisture meter (Reotemp 648(800) San Diego CA).

2.4. Physiochemical characterization of the samples

TheASTMD2974-07was used in the analysis of the percentage com-
position of organic matter, ash content and moisture content (ASTM,
2007). The nitrogen content was estimated by Kjeldahl's method
Sobiecka et al. (2007). Phosphorus and potassium contents were ana-
lyzed using Atomic Absorption spectrophotometer (AAS) (Model
2010, VGPmanufacturer USA). pHwas measured in the filtrate solution
using pH-meter 340I/SET (Texcare Instrument, New Delhi India, Preci-
sion /sensitivity 0.01/−59.16 mV/pH @25°C). Method for the determi-
nation of total organic carbon (TOC) in soil and sediment was used for
organic carbon content determination (Schumacher, 2003).

2.5. Statistical analysis and mathematical modeling

In order to examine if there is a relationship between the dependent
and independent variables, the data gathered were subjected to regres-
sion analysis utilizing response surface methodology of Design expert
version 8.0.7.1. Regression analysis was utilized to show a response
(Yi) as a scientific capacity of a couple of consistent elements. Every re-
sponse (Yi) was represented by mathematical equation that relates the
response surfaces. The response was represented as second-order poly-
nomial equation as indicated by Eq. (1).

Yi ¼ f yð Þ ¼ β0 þ∑k
i¼1βiXi þ∑k

i¼1βiiX
2
i þ∑k

i¼1∑
k
i¼1βijXiX j þ ε ð1Þ

where Yi is the predicted response used to relate the independent vari-
ables, k is the number of independent variablesXi(i=1,2,3); while β is
a constant coefficient and βi, βij and βiiis the linear, interaction and
square terms respectively and ε is the random error term. Multivariant
regression analysis withmodel Eq. (1)was carried out on data using de-
sign expert 8.0.7.1 software to yield Eq. (2) which was used to optimize



Table 2
Factor levels of independent variables for the synthesis of biofertilizer.

Independent factors −α (Axial) Low level Medium level High level +α (Axial)

−1.68 −1 0 +1 + 1.68

Process duration X1 21.59 25 30 35 38.41
Dosage ratio X2 2.32 (1:2:1) 3 (1:1:1) 4 (2:1:1) 5 (2:2:1) 5.68 (3:1:1)
Moisture content X3 46.59 50 55 60 63.41

Table 4
Real value of independent factors with responses.

Std Run Factor
1
X1:
Time
(days)

Factor 2
X2:
Dosage
ratio (w:
w)

Factor 3
X3:
Moisture
content
(%)

Response
1
Nitrogen
(%)

Response 2
Phosphorus
(%)

Response3
Potassium
(%)

9 1 21.59 4.00 55.00 9.62 8.01 4.64
3 2 25.00 5.00 50.00 9.45 8.27 5.08
14 3 30.00 4.00 63.41 8.61 7.28 4.49
1 4 25.00 3.00 50.00 9.01 7.43 3.95
17 5 30.00 4.00 55.00 9.31 8.63 4.45
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the product responses.

Y ¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β11X
2
1 þ β22X

2
2 þ β33X

2
3 þ β12X1X2

þ β13X1X3 þ β23X2X3 þ ε ð2Þ

The model developed for every determination was then inspected
for significance and lack of fit, while response surface plot was struc-
tured after removal of the non-significance terms with the same soft-
ware. RSM was utilized in enhancing the procedure parameters for
composting. The composting times (X1), dose ratio (X2) and moisture
content (X3) were the independent variables studied to optimize the
yield (Y) of nitrogen, phosphorus and potassium. The independent fac-
tors were coded to lie at±1 for the factorial point, 0 for the center point
and ± balphaN for the axial points as demonstrated in Table 1. The fac-
tors were signified by Eq. (3);

Z j ¼
Xi−X j

Δ j
; i ¼ 1;2;3 ð3Þ

where Zj are the coded values of the independent variables;while Xi and
Xj are its real values and real value at the central point respectively. Δj is
the step change of the variable Xi. The coded levels of the independent
variables used in the RSM design were as shown in Table 2.

2.6. Statistical design and data interpretation

The central composite design (CCD)was utilized to contemplate the
impacts of the factors towards their responses and subsequently in op-
timization studies. This technique is appropriate for fitting a quadratic
surface and it improves the viable parameters with a minimal number
of experiments, and in addition to investigate the association between
the parameters. In order to describe the impacts of composting time,
dosage ratio, and moisture content on the synthesis of biofertilizer,
batch experiment were performed which was dependent on the CCD.
In order to define the experimental range, preliminary experiment
were first performed. As the structure ranges were built up, they were
coded to lie at ±1α for the factorial point, 0 for the center point
and±1α for the axial points. The codeswere ascertained as an element
of the scope of enthusiasm of each factor as appeared in Table 1. In this
investigation, a small scale composting was conducted utilizing a mix-
ture of sawdust, dewatered sewage sludge and vegetable wastes to cre-
ate biofertilizer. The plan depended on five dimensions of the three
factors as appeared in Table 2. The independent factors considered
were composting time (25-35 days), dosage ratio (3–5 w:w) and
Table 3
Physiochemical properties of the raw materials before composting.

Parameters Organic waste

Sawdust Vegetable waste Sewage sludge

Moisture content (%) 23.3±6.5 37.8±6.5 33.6±6.5
Total Organic carbon (%) 58.2±0.5 23.6±0.5 24.2±0.5
Ash content (%) 24.3±0.1 17.8±0.1 22.8±0.1
Nitrogen (N) (%) 0.9±0.1 4.34±0.1 3.36±0.1
Phosphorus (P) (%) 1.04±0.1 6.4±0.1 3.2±0.1
Potassium (K) (%) 0.6±0.1 4.7±0.1 1.89±0.1
pH 5.87±1.0 7.15±1.0 7.23±1.0
Organic matter (%) 65±1.0 77±1.0 86.4±1.0
moisture content (50–60%). Every single other parameter were kept
constant. The working extents and five institutionalized dimensions
were built up after a few fundamental runs. In light of CCD, the test
runs contain 20 trials (8 factorial points, 6 center points and 6 axial
points). Every one of the treatment were perfumed in randomized
order. RSM and second order of three factors (composting time (X1),
dosage ratio (X2) and moisture content (X3), five level combination
coded as −1.68, −1, 0, +1, and +1.68 as demonstrated by
(Nahemiah et al., 2015; Snedecor and Cochran, 2008), was adopted to
decide the impacts of the independent factors on the responses (N.P.
K). Utilizing the coded dimensions, the typical dimensions were com-
puted and delineated in Table 4, including 20 trial runs and diverse for-
mulation compositions. The independent factors having the least P-
value (or the most noteworthy F-ratio) demonstrates the most critical
(P b 0.05) impact on the reliant factors (Samaram et al., 2015; Yolmeh
et al., 2014). The non-significant terms (P N 0.05) were expelled from
the created model in this investigation, with the exception of in a cir-
cumstance whereby a quadratic or collaboration impact including that
factorwould be critical (Samaram et al., 2015). Examination on the pro-
ductivity of the model was finished by the assurance of the number of
significant terms, regression equation P-value, lack offit P-value and co-
efficient of regression (R2) Yolmeh et al., 2014.

The outcome with R2 values near 1 demonstrates that the model is
more exact. The high value of adjusted and predicted coefficient of de-
termination is additionally a sign of the sufficiency of the model fits
for the experimental data, Yolmeh et al. (2014). The process optimiza-
tion was done utilizing graphical and numerical advancement methods
to decide the optimum composting conditions. The interaction impact
was likewise considered utilizing the three dimensional (3D) surface
plots obtained from the final model (Samaram et al., 2015). The yield
of N.P.K would be compared with the predicted response values got
from the final reduced model in order to demonstrate both the viability
12 6 30.00 5.68 55.00 9.21 7.87 5.62
5 7 25.00 3.00 60.00 9.24 8.05 5.41
16 8 30.00 4.00 55.00 9.31 8.61 4.45
6 9 35.00 3.00 60.00 9.38 8.97 5.13
4 10 35.00 5.00 50.00 8.23 7.08 4.97
20 11 30.00 4.00 55.00 9.31 8.62 4.45
2 12 35.00 3.00 50.00 8.74 7.73 4.54
13 13 30.00 4.00 46.59 8.03 6.91 4.18
11 14 30.00 2.32 55.00 9.42 8.9 5.27
19 15 30.00 4.00 55.00 9.31 8.64 4.45
10 16 38.41 4.00 55.00 8.72 7.78 4.36
15 17 30.00 4.00 55.00 9.31 8.7 4.45
18 18 30.00 4.00 55.00 9.31 8.63 4.45
7 19 25.00 5.00 60.00 9.03 7.49 5.37
8 20 35.00 5.00 60.00 8.6 6.7 4.47
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and unwavering quality of the regression fitted for the expected re-
sponses (Samaram et al., 2015).

3. Results and discussion

3.1. Nutrient composition in the raw materials

Percentage composition of nitrogen in sawdust as shown in Table 3
showed that sawdust must be blended with other nitrogen rich organic
wastes before composting to maintain some level of nitrogen in the
compost which would sustain the organisms responsible for biodegra-
dation. Sewage sludge and vegetable wastes contained reasonable per-
centage nitrogen 4.34% and 3.36% as shown in Table 3. The values agree
closely with the work done by Okon (2000), which reported that the
value of nitrogen in dewatered sewage sludge and vegetable wastes be-
fore aerobic composting are 3.85% and 4.79%. These results showed that
these wastes can supply the amount of nitrogen which can initiate the
growth of microbes and enhance biodegradation. The organic matter
was observed to be high in all the raw materials as presented in
Table 3. The results agree with the report by Gajalakshmi and Abbasi
(2008); which states that high percentage of organic matter in waste
samples is an indication that they are good substrates for bio-fertilizer
production.

3.2. Experimental design and model formulations

Table 2 shows the experimental parameters, ranges and level of in-
dependent variables examined in this work and the results are shown
in Table 4. As regards to regression analysis, model fitting is the process
of developing a probabilistic model that best describes the relationships
between the dependent and independent variables. RSMwas applied in
developing the model and optimization of the process by first
performing series of experimental runs (Table 4) to adequately and re-
liably measure the variables response before developing mathematical
model of second order response surface best fit, and finally determine
the optimal set of experimental parameters producing the optimal re-
sponse value Damirel and Kayan (2012). In this study, effect of
composting time (X1), dosage ratio (X2), and moisture content (X3)
and their interactions each at three levels on the yield of N.P.K were in-
vestigated. Observed response data (in triplicates) from experimental
runs (Table 4)were used to developmodels (Table 5) using least square
techniques as described by Filli et al., (2010). The three (3) response
variables (nitrogen N, phosphorus P and potassium P) were correlated
with the independent variables using the second order polynomial as
represented by Eq. (2). X1, X2, and X3 represents the composting time,
dosage ratio and moisture content respectively. The coefficient with
one factor (X1, X2, and X3) represents the sole effects of that particular
factor, while coefficients with two factors (X1X2, X1X3 and X2X3) and
those with second order terms (X11, X22, and X33) represents the inter-
action between the three factors and the squared effect respectively. A
positive value of the regression terms indicates a synergistic effect,
while negative sign indicates an antagonistic effect Filli et al., (2010).

3.2.1. ANOVA analysis and model fitting
The Analysis of Variance (ANOVA) was utilized to translate the cen-

tral composite design. The nitty gritty table of insights looks at the Se-
quential P-value, the Lack of fit P-value, the adjusted R-squared and
Table 5
Second order polynomial equation obtained for the three responses.

Response variables Second order polynomial models

N +9.31-0.24 * X1-0.10 * X2+0.13*X3-0.19*X1*X2+0.15*X
P +8.64-0.084*X1-0.32*X2+0.097*X3-0.40*X1*X2+0.13*X
K +4.45-0.086*X1+0.11*X2+0.17*X3-0.16*X1*X2-0.21*X1
the Predicted R-squared value. The synopsis of P-value shows that a
quadratic model fitted the ANOVA examination and subsequently it
was recommended (Table 5). The linear and 2FI models were not pro-
posed. The Cubic model is constantly associated on the grounds that
the CCD does not contain enough runs to help a full cubic model (Filli
et al., 2010; Trinh and Kang, 2010). An significant level of 95% was uti-
lized henceforth all termswhose P-value are b0.05 are viewed as signif-
icant terms.

The F-value tests were performed utilizing the ANOVA to ascertain
the significance of each sort of model. Besides evaluating the signifi-
cance, the adequacy of the models was evaluated by applying the
lack-of-fit test. This test is utilized in the numerator in an F-trial of the
null hypothesis and shows that a proposed model fits well or not. The
test for lack of-fit contrasts the variation around the model with pure
variationwithin the replicated observations. This test estimated the am-
pleness of the diversemodels dependent on response surface investiga-
tion (Manpreet et al., 2011). Henceforth, the quadratic model with the
most reduced insignificant model lack of fit was proposed.

Table 6 for N.P.K demonstrates the regression coefficients of the in-
tercept, linear, quadratic and interactive terms of the models. The out-
comes demonstrated that over 98% of the general framework factors
can be explained by the quadraticmodel equations (Table 4). The signif-
icance of every coefficient in the models was checked from the P-value
(P b 0.05) of the terms. The lower the models P-value (higher F-value)
the better the significance of the input variable effect on the responses
(Shrivastsvs et al., 2008).

From Table 6, the P-value for the models were (b0.0001) for nitro-
gen and additionally phosphorus and potassiumwhichmeant high sig-
nificance in the prediction of the response factors and also the model
appropriateness. The F-value was 59.37, 536.89 and 49.31 for nitrogen,
phosphorus and potassium individually. These qualities were moder-
ately high, accordingly showing that themodels were exceptionally sig-
nificant at above 95% confidence level. Their P-value built up the
importance of the considerable number of coefficients as appeared in
Table 6. From Table 6, every single liner term of time (X1), dose ratio
(X2) and moisture content (X3), the quadratic term of moisture content
(X3

2) and in addition the interactive term among time and dosage ratio
(X1X2), time and moisture content (X1X3) and between dose ratio and
moisture content were all significant with P-value b 0.05 for nitrogen.
From Table 6 additionally, all linear terms of time (X1), dose ratio (X2)
and moisture content (X3), the quadratic term of time (X1

2), dosage
ratio (X22), moisture content (X3

2) and the interactive term among time
and dose proportion (X1X2), time and moisture content (X1X3) and be-
tween dose ratio and moisture content were all significant with P-
values b 0.05 for potassium, while every single liner term of time (X1),
dose ratio (X2) and moisture content (X3), the quadratic term of dose
proportion (X2

2) and also the interactive term among time and dosage
ratio (X1X2), time and moisture content (X1X3) and between dosage
ratio and moisture content (X2X3) were all significant with P-value
under 0.05 for potassium. The values of the coefficient of determination
(R2) were 98.16% for nitrogen, 99.79% for phosphorus and 97.80% for
potassium, accordingly a sign that the models fit the experimental
data. Likewise, the values of the adjusted coefficient of regression (Adj
R2) and predicted coefficient of regression (Pred R2) were 96.51% and
85.24% for nitrogen, 99.61% and 98.67% for phosphorus and 95.81%
and 83.26% for potassium individually which indicates the model's sig-
nificance and sensible accuracy of the fitted models respectively.
Regression coefficient

R2 Radj
2

1*X3-0.11*X2*X3-0-0.34*X3
2 98.16 96.51

1*X3-0.38*X2*X3-0.27*X1
2-0.095*X2

2-0.55*X3
2 99.79 99.61

*X3-0.28*X2*X3+0.37*X3
2 97.80 95.81



Table 6
Analysis of variance (ANOVA) for full quadratic model for the response variables.

Source Sum of
squares

df Mean
square

F value P-value
Prob N F

Nitrogen
Model 3.45 9 0.38 59.37 b 0.0001
X1-Time 0.79 1 0.79 123.08 b 0.0001
X2-Dosage ratio 0.15 1 0.15 22.66 0.0008
X3-Moisture content
0.24

1 0.24 36.57 0.0001

X1X2 0.29 1 0.29 44.75 b 0.0001
X1X3 0.18 1 0.18 27.89 0.0004
X2X3 0.11 1 0.11 16.39 0.0023
X1
2 0.022 1 0.022 3.47 0.0921

X2
2 2.022E-003 1 2.022E-003 0.31 0.5880

X3
2 1.67 1 1.67 258.05 b 0.0001

Residual 0.065 10 6.454E-003
Lack of Fit 0.28 10 0.028 0.19 0.9920
Pure Error 0.000 5 0.000
Cor Total 3.51 19
Std. Dev. 0.080 R-Squared 0.9816
Mean 9.06 Adj R-Squared 0.9651
C.V. % 0.89 Pred R-Squared 0.8524
PRESS 0.52 Adeq Precision 25.996
Phoshorus
Model 9.22 9 1.02 536.89 b 0.0001
X1-Time 0.096 1 0.096 50.48 b 0.0001
X2-Dosage ratio 1.40 1 1.40 733.69 b 0.0001
X3-Moisture content
0.13

1 0.13 67.10 b

0.0001
X1X2 1.28 1 1.28 670.91 b 0.0001
X1X3 0.13 1 0.13 68.17 b 0.0001
X2X3 1.14 1 1.14 597.55 b 0.0001
X1
2 1.04 1 1.04 543.13 b 0.0001

X2
2 0.13 1 0.13 68.04 b 0.0001

X3
2 4.38 1 4.38 2293.21 b 0.0001

Residual 0.019 10 1.908E-003
Lack of Fit 0.014 5 2.799E-003 2.75 0.1453
Pure Error 5.083E-003 5 1.017E-003
Cor Total 9.24 19
Std. Dev. 0.044 R-Square 0.9979
Mean 8.02 Adj R-Squared 0.9961
C.V. % 0.54 Pred R-Squared 0.9867
PRESS 0.12 Adeq Precision 71.078
Potassium
Model 3.89 9 0.43 49.31 b 0.0001
X1-Time 0.10 1 0.10 11.46 0.0069
X2-Dosage ratio 0.15 1 0.15 17.54 0.0019
X3-Moisture content
0.41

1 0.41 46.62 b

0.0001
X1X2 0.22 1 0.22 24.87 0.0005
X1X2 0.34 1 0.34 39.33 b 0.0001
X2X3 0.64 1 0.64 72.90 b 0.0001
X1
2 0.019 1 0.019 2.12 0.1764

X2
2 1.97 1 1.97 225.23 b 0.0001

X3
2 7.276E-003 1 7.276E-003 0.83 0.3835

Residual 0.088 10 8.758E-003
Lack of Fit 0.019 5 3.787E-003 2.96 0.1295
Pure Error 0.000 5 0.000
Cor Total 3.97 19
Std. Dev. 0.094 R-Squared 0.9780
Mean 4.71 Adj

R-Squared
0.9581

C.V. % 1.99 Pred
R-Squared

0.8326

PRESS 0.67 Adeq
Precision

25.534

Table 7
Responses with predicted values of nitrogen for biofertilizer synthesis.

Standard
order

Nitrogen Phosphorus Potassium

Actual
value

Predicted
value

Actual
value

Predicted
value

Actual
value

Predicted
value

1 9.01 9.00 7.43 7.38 3.95 3.98
2 8.74 8.60 7.73 7.76 4.54 4.56
3 9.45 9.40 8.27 8.30 5.62 5.67
4 8.23 8.24 8.05 7.07 4.97 5.00
5 9.24 9.19 7.08 8.08 5.41 5.31
6 9.38 9.39 8.97 8.96 5.13 5.05
7 9.03 9.14 7.49 7.48 5.37 5.29
8 8.62 8.57 6.70 6.77 4.47 4.37
9 9.62 9.60 8.01 8.02 4.64 4.69
10 8.72 8.79 7.78 7.74 4.36 4.40
11 9.21 9.52 8.90 8.91 5.27 5.32
12 8.03 8.06 7.87 7.83 5.08 5.09
13 8.61 8.13 6.91 6.92 4.18 4.09
14 9.31 8.57 7.28 7.24 4.49 4.60
15 9.28 9.31 8.70 8.64 4.45 4.45
15 9.33 9.31 8.61 8.64 4.44 4.45
17 9.31 9.31 8.63 8.64 4.43 4.45
18 9.27 9.31 8.63 8.64 4.46 4.45
19 9.32 9.31 8.64 8.64 4.45 4.45
20 9.31 9.31 8.62 8.64 4.43 4.45
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Consequently, from these outcomes, it could be recommend that both
liner and quadratic terms were the primary deciding factors for the
yield of N.P.K. Adjusted R2 is a measure of the variation around the
mean clarified by the model, balanced for the quantity of terms in the
model (Taran and Aghaie, 2015). The Adjusted R2 diminished as the
quantity of terms in the model increments if those extra terms do not
increase the value of the model (Taran and Aghaie, 2015).
The tests for adequacy of the regression models, significance of indi-
vidual of model coefficients and the lack of fit test were performed uti-
lizing the same statistical package. The P-value were utilized as an
apparatus to check the essentialness of every one of the coefficients,
which thus are important to comprehend the example of the common
collaborations between the test factors (Shrivastsvs et al., 2008). Higher
the F-test value and small P-value indicates high significance of the re-
lating coefficient (Taran and Aghaie, 2015). The adequate precision
measures the signal to noise ratio and compares the range of the pre-
dicted value at the design points to the average prediction error. The
adquate predicion ratio above 4 indicates adequate model efficacy
(Taran and Aghaie, 2015). Hence, the adquate precision ratios of
25.996, 71.078 and 25.534 for N.P.K indicate adquate signal. This indi-
cates that an adequate relationship of signal to noise ratio exists. The
C.V called coefficient of variation which is defined as the ratio of the
standard deviation of estimate to the mean value of the observed re-
sponse is independent of the unit. It is also a measure of reproducibility
and repeatability of the models (Chen et al., 2011). The calculations in-
dicated the C.V value of 0.89% for nitrogen, 0.54% for phosphorus and
1.99% for potassium which showed that the model can be considered
reasonably reproducible (because its CV was not N10%) (Chen et al.,
2011). The response values obtained by inserting the independent
values are the predicted values of themodel. These values are compared
to the actual experimental values. The result of this comparison is
shown in the Table 7. From the table, it is seen that there is a close cor-
relation between the actual experimental response and the predicted
response. This confirms the effectiveness of the process for biofertilizer
synthesis.

3.2.2. Model adequacy check
It is very important in RSM that the developedmodels (Table 5) pro-

vide an adequate approximation for application in real system, and
there are principally two methods used for this check, these are graph-
ical and numerical method Filli et al. (2010). The graphical technique
considers the idea of the nature of the residuals (distinction between
the observed values and its fitted) of the model while the numerical
method utilizes the coefficient of determination (R2) and adjusted R2

(Radj2 ). For the most part, it is imperative to check the fitted model to
guarantee that it gives the estimate to the genuine framework. On the
off chance that the model does not demonstrate a sufficient fit, further
examination and improvement of the fitted response surface may give
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poor or deluding results as stated by Li and Fu (2005). The residuals
from least square fits to assume a fundamental job in making a decision
about model adequacy (Myers and Montgomery, 2002). Fig. 1A (a, b
and c), shows the distribution of the predicted value against the actual
experimental values for nitrogen, phosphorus and potassium. From
the plots, each of the observed values was compared to the predicted
values calculated from the models.

The regression coefficients of 98.16%, 99.79% and 97.80% observed
between the predicted and real values for the response factors are
proof that that the regression model can represent to the experimental
data well. It could be seen that that the points on the diagrams were
sensibly dispersed almost a straight line demonstrating that the funda-
mental supposition of typicality in this examination was proper and
along these lines approve the models developed. The Normal plot of re-
siduals as appeared in Fig. 1B (d, e and f), was utilized to checkwhether
the points will pursue a straight line in which we presume that the re-
siduals pursue a typical dissemination. It was seen that the points
were firmly conveyed to the straight line of the plot. This affirms the
great connection between the trial values and the predicted values of
the response, however some little disperse like a “S” shape is constantly
anticipated. This observation shows that the central composite design is
well fitted into the model and thus can be used to perform the optimi-
zation operation for the process. Also, the straight line formed by the
data points is an indication that neither response transformation is re-
quired nor there was any apparent problemwith normality assumption
of the regressionmodel equations. This is in harmonywith the report by
Damirel and Kayan, (2012).

The R2 measures howmuch of the observed variability in the exper-
imental data could be accounted for by the models; while Radj

2 on the
other handmodifies R2 by taking into account the number of predictors
in the model. R2 and Radj

2 are calculated using Eqs. (4) and (5).

R2 ¼ Sum of square residual
Model sum of squareþ Sum of square residual

ð4Þ

R2
adj ¼ 1−

n−1
n−p

1−R2
� �

ð5Þ

where n is the number of experimental runs, and p is the quantity of in-
dicators in the model, not including the steady term. Kooche et al.,
(2009), recommended that for a decent fitted model, R2 ought not be
under 80%,while Chauhan and Gupta (2004), announced R2more note-
worthy than 78% as worthy for fitting a model. In this examination, the
models created showed R2 going somewhere in the range of 97.80% and
99.79% while R2adj extends somewhere in the range of 95.81 and
99.61% connotingfitness of the developedmodel equations in anticipat-
ing nutrient release in the compost during composting when the three
independent factors are mathematically combined.

The R2 and R2
adj values are near unity. (Lee and Wang, 1997;

Zaibunnisa et al., 2009), detailed that when R2 is nearer to solidarity,
the better the exact model fit the experimental data. It is not any
more news that adding extra factor to the model will dependably
build R2, not considering of whether the extra factor is statistically sig-
nificant or not. Consequently, a large R2 does not always necessitate ad-
equacy of the model. For this reason, Koocheki et al. (2009) declare that
it is more fitting to utilize R2

adj of over 90% to assess themodel adequacy.
Higher R2

adj demonstrated that non-critical terms have not been incor-
porated into themodel as obvious in this investigation. The general im-
pression is that the residuals (Fig. 1) diffuse haphazardly in plain view,
proposing that the fluctuation of the first perception is steady for all
value of responses(Y). Since the plots in Fig. 1 are agreeable, it very
well may be reasoned that the model is satisfactory to depict the
Fig. 1. A: (a, b, c) Plots of predicted value vs experimental value for nitrogen, phosphorus and po
and potassium.
mineralization of critical soil supplement amid composting of agricul-
tural wastes for biofertilizer synthesis.

3.2.3. Factors and interactive effects on the mineralization of nitrogen dur-
ing composting

The interactive relationship between the independent and depen-
dent variables are depicted by plotting 3-D graphs known as response
surface graphs generated by the models. These plots were used to
show the effect of process parameters on the yield of nitrogen, phospho-
rus and potassium (Lee and Wang, 1997). The linear, quadratic and in-
teraction terms of the models (Table 5) were applied to create 3-D
response surface graphs. Every margin on the graph denotes a specific
value for the heights of the surface above the plane define for the com-
bination of the levels of the independent variables (Liu et al., 2011). The
3-D response surfaces were generated by keeping one variables at its
zero level (null point or midpoint) and carefully varying the other two
variables within the experimental range.

Table 6 showed that the interaction of dosage ratio and time when
themoisture contentwere kept constant at 55%were statistically signif-
icant as evident from the P-values (P b 0.0001 for nitrogen and phos-
phorus and P b 00005 for potassium). It was observed from Fig. 2A.(a-
c), that as the dosage ratio were varied at different fractions, percentage
nitrogen, phosphorus and potassium increases with increase in number
of days (time) until it reaches an optimal point. Increase in both variable
beyond the optimal point resulted to decrease in the percentage yield.
At dosage ratio slightly above 5w:w and time above 33 days, the yield
starts to decrease. The observation shows that dosage ratio and time
has a significant effect on the mineralization of important soil nutrients
from agro wastes during composting which is in harmony with the re-
port by Gajalakshmi and Abbasi (2008). The shape of the contour lines
in Fig. 2A.(a-c), is also an indication of strong interaction effect between
dosage and time. The contours are somewhat curve which depicts the
fact that the line will meet at a certain point and interaction would
take place.

The interaction effect between moisture content and time were ob-
served to be statistically significant at P-value (P b 0.0004 for nitrogen
and P b 0.0005 for phosphorus) but not significant for potassium and
was removed as shown in Table 6. It was observed from Fig. 2B. (d-f),
that keeping the dosage ratio constant at dosage ratio of 4w: w, the
yield of nitrogen and phosphorus increased by varying the moisture
content between 50 and 60% with increase in number of days (time).
The curve nature of the contour lines in Fig. 2B.(d-f), shows that interac-
tion of the two factors is imminent and nutrient release certain. The per-
centage nitrogen and phosphorus was observed to have decreased at
moisture content above 60% and moisture content below 50%. This
trend is in harmony with the report by (Rasapoor et al., 2009;
Stentiford, 1996) which states that excess moisture content impedes
the entrance of oxygen to the compost system thereby changing the
system from the desired aerobic co-fermentation to anaerobic co- fer-
mentation; also lowmoisture content inhibits the growth andmultipli-
cation of microorganisms and hence prolongs the rate of nutrient
release during composting.

Furthermore, the interaction effect of moisture content and dosage
ratio were statistically significant at P b 0.05 (0.0023 for nitrogen,
0.0001 for phosphorus and potassium) as shown in Table 6. It was ob-
served from Fig. 2C. (g), that the contour lines are somewhat parallel,
which signifies poor interaction between moisture content and dosage
ratio. From Fig. 2C.(h and i), the contour lines are mostly curve and
not parallel to each other which is an indication of good interaction
and positive influence on the yield. Keeping the time constant at
30 days, the yield of nitrogen, phosphorus and potassium increased at
verifying moisture content and dosage ratio within the experimental
range. The increase in the release of nitrogen at varying dosage ratio
tassium. B: (d, e and f) Plots of normal probability plot of residual for nitrogen, phosphorus
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could be attributed to the component of the organicmixtureswhich has
a great influence in the range of carbon to nitrogen ratio, which is the
one of the key performance indicator in composting. Agro wastes
must be blended at a certain dosage to maintain the carbon to nitrogen
ratio from 15:1 to 35:1 for proper composting. López et al. (2010), sug-
gested that C/N of around 20:1–35:1 are normally advisable, but good
results have been obtained with values out of this range. In general, at
higher C/N ratios (above 35:1), the composting process is thought to
be delayed through lack of nitrogen, whereas smaller C/N ratios
(b15:10) leads to excessive nitrogen loss and eventually to microbial
toxicity due to high level of ammonia. Mixing of different materials is
commonly necessary to achieve adequate C/N ratio for composting
through proper dosage ratio (López et al., 2010).

3.2.4. Process optimization and validation of the composting process
As quoted by Josh et al. (2014), it is not possible to define a single op-

timum for a process since it can change depending on the level of other
factors; however one of the optimum solutions was selected at desir-
ability of 1 for the process composting. The consequences of the confir-
mation of the ideal numerical arrangement demonstrated that the ideal
arrangement anticipated the genuine arrangement intently. The devia-
tion of the test yield of nitrogen, phosphorus and potassium from the
anticipated yield was a nearby match. The diagram of the predicted
values against experimental (real values) as appeared in Fig. 1 likewise
affirmed the closeness of the predicted and real value. The data points of
the optimization runs falls along the inclining of the squared chart dem-
onstrating the cozy relationship of the predicted and real points and all
things considered, the quadratic model was satisfactory for the
examination.

The developed model for the process parameters was streamlined
utilizing response optimizer software that is available in design expert
version 8.7.0.1. The software provides ideal answers for the input vari-
able combinations. The optimization is additionally interactive and con-
siders bargain among the different independent factors and the
response(s) (Agu et al., 2015). The RSMwas utilized to portray the con-
nection between the process parameters and response factors (% yield)
for the composting procedure. These process parameters are
composting time, dosage ratio and moisture content while N.P.K is the
response. The ideal setting is determined by characterizing the con-
straints and the objective function of the dependent factors. This way,
the best values for both the input and response parameters are deter-
mined (Myers andMontgomery, 2002; Agu et al., 2015). In this research
(work), the objective function of the response factors expands the rate
yield of N.P.K. This is subject to the accompanying constraints:
Composting time (time) (21.59 ≥ 38.41 days), dosage ratio
(2.32 ≥ 5.68 w:w) and moisture content (46.59 ≥ 63.41%). The devel-
oped models were utilized by the response optimizer to provide the
ideal outcomes for the responses and the independents factors.

The ideal conditions for the for maximum yield of nitrogen, phos-
phorus and potassium from the compost (mixtures of sawdust + sew-
age sludge + vegetable waste) concerning the proposed second order
polynomial equations were: Composting time of 22 days, dosage ratio
of 4 w:w and moisture content of 55% for nitrogen. At this condition,
the predicted yield of nitrogen was 9.60%. Utilizing the ideal states of
22 days, 4w:w and 55%, the rate yield of nitrogen was tentatively vali-
dated. The outcome from the validation studies demonstrated a rate
yield of 9.58%, which is relatively near the model's anticipated value.
For phosphorus, the ideal condition was: Composting time of 35 days,
dosage ratio of 3 w:w and moisture content of 60%. The anticipated
rate yield of phosphorus was 8.96%. Utilizing the ideal state of 35 days,
3 w:w and 60%, the rate yield of phosphorus was validated. The
Fig. 2. A: (a, b and c), 3-D response surface plots showing the relationship between independe
potassium). B: (d, e and f) 3-D response surface plots showing the relationship between in
phosphorus and potassium). C: (h, i and j) 3-D response surface plots showing the relations
variables (nitrogen, phosphorus and potassium).
outcomes from the validation experiment showed a rate yield of phos-
phorus was 8.91%, which moderately concurs with the model antici-
pated value. The ideal condition for potassium was: Composting time
of 25 days, dosage ratio of 5w:w andmoisture content of 50%. The antic-
ipated rate yield for potassium at this condition was 5.67%. Utilizing the
ideal state of 25 days, 5 w:w and 50%, the rate yield of potassium was
tentatively validated. The consequence of the validation demonstrates
that the rate yield was 5.69%, which was moderately near the model's
anticipated value. The closeness of the validated value and predicted
or anticipated rate yield of N.P.K shows the authenticity of the models.
Additionally, a comparatively high R2 value (98.16% for N, 99.79% for P
and 97.80% for K) demonstrated the closeness between the tentatively
validated experimental values and the anticipated or predicted values
as appeared in Table 7. This further checks the accuracy of the proposed
model.

3.3. Comparison of the results with prior results

The yield of nitrogen, phosphorus and potassium from the afore-
mentioned examination was observed to be 9.62%, 8.97% and 5.62% re-
spectively. The result of the percentage nitrogen was higher when
compared with 4.7% nitrogen reported for the composting of mixture
of sawdust and dewatered sewage sludge by Bazrafshan et al. (2006).
The results was analyzed using Box Behnken Design and Validated at
predicted value of percentage nitrogen 4.75%with regression coefficient
of 95.6%. Also, 4.9%, 5.6% and 2.3% for nitrogen, phosphorus and potas-
sium reported for the composting of mixture of sawdust plus chicken
litter by Egbuna et al. (2016), which was the optimized results using
CCD method of analysis and validated at predicted value of 4.95, 5.8,
and 2.4 with regression coefficients of 92.5%, 94.2% and 91.7%. More-
over, 5.5%, 6.1% and 3.4% for nitrogen, phosphorus and potassium re-
ported by Dumitrescu et al., (2009), after composting a mixture of
sawdust plus sewage sludge plus dry leaves and analyzed with CCD
and validated at the predicted values of 5.6%, 6.3% and 3.9%with regres-
sion cofficients of 91.8%, 93.6% and 90.8%. Nevertheless, after analysis
with BBD, 7.84% nitrogen was reported by Olayinka and Adebayo
(1989) after composting a mixture of sawdust plus cowdung and vali-
dated at the predicted value of 7.95% with regression coefficient of
96.7%, thus indicating the potential of the biofertilizer produced in this
contest for commercial application. The difference in N.P.K yield ob-
tained by prior researchers and that obtained in this research work
could be attributed to factors such as substrate type (nature of the nitro-
gen rich agro-wastes), carbon to nitrogen ratio of the composting mix-
ture, compsting time (process duration), degradability of the substrates
and the nature of autochtonous microbes that aids the decomposition
(Haug, 2009). Other perceived factors could be aeration rate (depending
on rate of compost agitation), compost temperature and compost pH
(Trinh and Kang, 2010).

4. Conclusion

The use of response surfacemethodology and central composite de-
sign was helpful in determination of the ideal working conditions for
composting of organic wastes for biofertilizer synthesis. It was built up
that the second order polynomialmodelwas adequate to define and an-
ticipate the process responses to variation of input variables within the
experimental range. The validity of the models was demonstrated by
fitting the estimations of the factors to the model equations and carry-
ing out experiments utilizing the same values. The graphical optimiza-
tion utilized to locate the ideal conditions for the composting of agro
wastes was characterized by the composting time of 22 days, dosage
nt variables (time and dosage ratio) and dependent variables (nitrogen, phosphorus and
dependent variables (moisture content and time) and dependent variables (nitrogen,
hip between independent variable (moisture content and dosage ratio) and dependent
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ratio of 4w:w andmoisture content of 55% with 9.62% yield of nitrogen,
composting time of 35 days, dosage ratio of 3w:wandmoisture content
of 60% with 8.97% yield of phosphorus and composting time of 30 days,
dosage ratio of 6 w:w and moisture content of 55% with 5.62% yield of
potassium. Characterization of the composite demonstrated its possibil-
ities for commercial application on agricultural land.
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