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Abstract

Accurately modeling and simulating complex human mobility is pivotal for evidence-based
socioeconomic planning, yet remains under-explored in the era of Large Language Models
(LLMs). We introduce the Return Migration Simulation (RMS) task, which focuses on pre-
dicting individual decisions to move from urban back to rural regions—a process critical for
understanding urban–rural dynamics and formulating balanced development policies. The key
to the RMS task lies in the in-depth reasoning over multimodal features to capture human inten-
tion and predict the individual decision. To this end, we present RMS-Agent, an LLM-powered
agent endowed with latent reasoning capability. RMS-Agent first encodes multimodal features
through the heterogeneous data tokenizer, where we specifically design a tabular tokenizer to
convert structured table features into dense vectors compatible with the LLM. To achieve com-
prehensive and in-depth reasoning, we propose using multiple meta-queries to probe the LLM
to reason and uncover latent intention and predict migration decision. Extensive experiments
on three real-world datasets demonstrate that RMS-Agent significantly outperforms competitive
machine-learning and deep-learning baselines across accuracy, F1, and AUC metrics, verifying
its capacity to capture nuanced migration drivers. To summarize, this work (i) formulates a novel
return migration simulation task, (ii) proposes a generalizable LLM-based agent architecture
for multimodal latent reasoning, and (iii) provides a comprehensive benchmark with substan-
tial empirical exploration for this socially significant problem, laying the groundwork for richer
human-mobility modeling with LLMs in the future.

Keywords: LLM-based Agent; Multimodal Data Modeling; Heterogeneous Data Tokenization;
Human Behavior Simulation; Latent Reasoning

1. Introduction

Understanding the mechanisms behind complex human behaviors and forecasting future tra-
jectories represent fundamental challenges in computational social science. Human behavior
simulation with neural models has emerged as a transformative paradigm to address the chal-
lenges [1, 2]. Crucially, the fidelity of human behavior simulation depends on the model’s capac-
ity to capture the fundamental mechanisms driving such behavior. As such, through high-fidelity
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behavioral simulation, researchers can uncover latent behavioral patterns, infer causal relation-
ships, and predict future behavioral dynamics. Existing human behavior simulations span a
broad spectrum of applications, including but not limited to modeling social interactions [3, 4],
consumption behaviors [5, 6], and urban mobility patterns [7]. These efforts provide valuable
insights for social and economic sciences, offering significant implications for understanding
complex societal systems and formulating public policies.

Technically speaking, existing human behavior simulation approaches have evolved through
three significant stages:

• Machine Learning-based Behavior Simulation: Early work primarily employs machine
learning techniques such as Naı̈ve Bayes classifiers and shallow neural networks for be-
havior prediction in several constrained domains like web search and browsing behavior.
While computationally efficient, these approaches exhibit limited simulation performance
due to their inability to capture complex behavioral patterns.

• Deep Learning-based Behavior Simulation: The advent of deep learning introduces more
powerful models, for example, Recurrent Neural Network variants (e.g., GRU [8], LSTM [9]),
Transformer [10], and pre-training techniques [11]. These enable superior behavioral rep-
resentation learning across broader simulation scenarios such as consumption patterns [12],
social interactions [3], and urban mobility [7]. Nevertheless, previous deep learning mod-
els such as LSTM [13] and BERT [11] still lack rich world knowledge and strong reasoning
and generalization capabilities.

• LLM-powered Agent for Behavior Simulation: With the emergence of Large Language
Models (LLMs), modern simulation agents demonstrate unprecedented capabilities in con-
textual understanding, deliberative reasoning, and independent interactions with environ-
ments. For instance, Park et al. (2023) [14] and Wang et al. (2023) [15] demonstrated
that LLM-based agents can simulate realistic human behaviors and social phenomena
through memory-enhanced planning and controllable sandbox environments. At the multi-
agent level, frameworks like CAMEL [16] and AgentSociety [17] demonstrate how LLM-
powered agents can simulate complex social dynamics and collective behaviors.

However, existing studies on LLM-powered agents for human behavior simulation have pre-
dominantly focused on simulating social media interactions, urban transportation, conversation,
or consumption behaviors. They notably neglect the essential simulation of human mobility
behaviors, especially the migration between urban and rural areas. Spatial migration behav-
iors constitute the physical substrate that affects all location-dependent activities, such as social
interactions, urban transportation, and commercial behaviors. More importantly, simulating hu-
man migration is indispensable for elucidating fundamental migration mechanisms, informing
evidence-based socioeconomic policy design, and optimizing urban-rural infrastructure [18]. In
recent years, some developing nations (particularly China) have increasingly focused on return
migration, the reverse movement of the population from urban to rural areas, investigating its
underlying drivers, and then implementing targeted policies to promote coordinated urban-rural
development [19].

To bridge this research gap, we propose the task of utilizing LLM-powered agents to simulate
human return migration behaviors. Specifically, as shown in Figure 1, this task predicts indi-
vidual return migration decisions (urban→ rural) through multimodal reasoning across hetero-
geneous features, including tabular demographic attributes, textual semantic descriptions (e.g.,
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Tabular demographic attributes
(e.g., income, age)

Textual language descriptions
(e.g., self-introduction)

Multimodal urban/rural features
(e.g., policy, position)

LLM-based Agent Return or not

City

Village

Figure 1: Illustration of the task of using the LLM-based agent for return migration simulation. It integrates the mul-
timodal features of individual, family, urban area, and rural area to predict the human’s return migration decision from
urban to rural areas.

profile or policy statements), and multimodal urban/rural characteristics. The key to this task is
to reason over these heterogeneous features from individual, family, and regional perspectives
to infer latent human intentions and decision-making policies. However, directly applying ex-
plicit Chain-of-Thought (CoT) reasoning of LLMs to this task presents significant challenges:
the absence of verifiable human feedback prevents reliable supervision of the reasoning process
for uncovering genuine migration intentions.

To address the challenge, we propose RMS-Agent: an LLM-based agent with latent reason-
ing ability for Return Migration Simulation (RMS). The RMS-Agent first encodes multimodal
features through heterogeneous data tokenizers and then performs latent reasoning via the LLM
to deeply infer heterogeneous signals, thereby predicting individual intentions and migration de-
cisions. In particular, we design a tabular tokenizer through a Multi-Layer Perception (MLP)
to translate non-semantic tabular data (e.g., anonymous IDs and categorical features) or other
multimodal input (e.g., image) into dense vectors for LLM understanding. Thereafter, multiple
meta-query vectors are fed into an LLM for in-depth multi-step reasoning for intention discovery
and return migration prediction. We conduct extensive experiments on three real-world datasets,
demonstrating the significant effectiveness of our proposed RMS-Agent. We release our code
and data to facilitate future research.

To sum up, the contributions of this work are threefold:

• We first propose the task of utilizing LLM-based agents for return migration simulation,
highlighting the significance and challenges of modeling return migration dynamics.

• We propose RMS-Agent, an LLM-based agent to execute latent reasoning over the multi-
modal and heterogeneous features for return migration simulation.

• We conduct extensive experiments on three datasets under various settings, validating the
superior performance over traditional machine learning and deep learning baselines.
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2. Related Work

In this section, we review three key stages in the development of human behavior modeling
and simulation: early approaches based on traditional machine learning, subsequent advances
driven by deep learning models, and recent progress in human behavior simulation enabled by
LLMs and agents.

2.1. Machine Learning for Behavior Simulation

In recent years, with the rapid development of machine learning techniques, behavior predic-
tion has become an increasingly important direction in user modeling. By learning patterns from
historical behavioral data, machine learning models can effectively anticipate users’ future ac-
tions. This approach captures evolving user interests and behavioral trends and has been widely
applied in personalized recommendation, search optimization, human-computer interaction, and
user behavior simulation.

With advances in artificial intelligence and machine learning, academic efforts in behavior
modeling have gradually shifted from heuristic rules to data-driven approaches. In the early stage
of user modeling, Jennings and Higuchi (1993) pioneered the use of neural networks in building
personalized news services, demonstrating the potential of neural models to continuously learn
user preferences [20]. Lieberman (1995) developed the Letizia system, a web browsing assis-
tant that proactively recommended hyperlinks by tracking and predicting user interests, marking
an important step toward intelligent and personalized web agents [21]. In 1997, Pazzani and
Billsus proposed a user modeling algorithm based on the Naı̈ve Bayes classifier, which enabled
incremental learning from user feedback and became a widely adopted technique due to its ef-
ficiency [22]. In 1998, Davison and Hirsh introduced an algorithm for predicting sequences of
user actions, demonstrating strong performance on large UNIX command datasets [23]. That
same year, Horvitz et al. proposed the Lumiere Project, which applied Bayesian networks to
infer user intentions, serving as the foundation for Microsoft Office 97’s Office Assistant and
representing a key milestone in the commercialization of behavior modeling [24]. The year
2001 marked an important stage in the theoretical formalization of this field. Webb et al. sys-
tematically established a machine learning framework for user modeling, emphasizing the need
for dynamic model updates to accommodate changes in user behavior [25]. In parallel, Zuker-
man and Albrecht proposed a predictive statistical modeling paradigm, offering a probabilistic
foundation for user modeling and strengthening the theoretical underpinnings of statistical ap-
proaches [26]. Together, these contributions laid a systematic methodological framework for
behavior prediction. As research evolved, focus shifted from explicit modeling to the infer-
ence of latent behavior in complex environments. In 2002, Bonabeau introduced agent-based
modeling (ABM), which emphasized individual-level interactions and system-level dynamics,
opening new directions for modeling complex social behaviors [27]. In 2005, Shen et al. pro-
posed a user modeling method based on implicit feedback, analyzing click behavior and contex-
tual signals [28]. Their UCAIR client-side search agent demonstrated significant improvements
in personalized search performance. In 2008, Ziebart et al. introduced a framework based on
maximum entropy inverse optimal control, framing user behavior as a context-sensitive decision-
making process [29]. By learning conditional probabilistic models, their approach enhance both
the accuracy and interpretability of human behavior predictions and expanded the theoretical
boundaries of behavior modeling. In 2018, Rabinowitz et al. introduced the concept of “Ma-
chine Theory of Mind,” proposing the ToMnet neural architecture that enables machines to infer
the mental states of other agents based on observed behavior [30]. This work markes a shift in
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user modeling from surface-level behavioral prediction toward modeling cognitive mechanisms,
initiating a new phase in artificial intelligence that emphasizes understanding human intentions
and contextual adaptation. In subsequent developments, Abri et al. (2020) systematically cat-
egorized user modeling methods for personalized web search, analyzing the characteristics and
application scenarios of various techniques and providing a comprehensive reference for future
research [31].

Overall, user behavior modeling and prediction have progressed from early methods based
on Naı̈ve Bayes and shallow neural networks to more sophisticated techniques such as sequence
modeling and Bayesian inference. The field has gradually embraced agent-based simulations,
implicit feedback learning, and cognitive modeling to improve the explanatory power and gen-
eralizability of behavior models. While these advancements have led to significant progress,
limitations remain. Early models such as Naı̈ve Bayes and shallow neural networks struggle
to capture complex nonlinear relationships and contextual dependencies. Moreover, traditional
models often rely on static features, making them inadequate for modeling the dynamic evolution
of user preferences over time. As Abri et al. (2020) pointed out, early user modeling methods
tend to overlook the sequential and temporal nature of behavior, limiting their real-world appli-
cability [31].

2.2. Deep Learning for Behavior Simulation

In response to the limitations of traditional machine learning in capturing complex behav-
ioral patterns, deep learning-based behavior modeling has emerged. Deep neural networks, with
their strong nonlinear modeling capabilities, have shown remarkable performance in behavior se-
quence prediction, cross-domain modeling, and capturing the evolution of user interests. In par-
ticular, recurrent neural networks (RNNs) such as LSTM and GRU, along with attention mecha-
nisms and Transformer architectures, have significantly enhanced the expressiveness and adapt-
ability of behavior models, leading to improvements in both accuracy and generalization [32, 12].

In recommendation systems, Elkahky et al. (2015) proposed a multi-view deep learning
framework for cross-domain user modeling, improving recommendations for cold-start users [33].
Zhou et al. (2018) introduced the ATRank model with attention mechanisms to identify the most
relevant segments of a user’s historical behavior, significantly boosting recommendation accu-
racy [32]. That same year, the Deep Interest Network model (DIN) was proposed to capture the
diversity and dynamics of user interests, demonstrating industrial applicability in click-through
rate prediction [34]. Gu et al. (2020) proposed the Hierarchical User Profile (HUP) model using
a pyramid-style RNN to capture multi-granular interest evolution [12]. Guo et al. (2018) ex-
tended modeling boundaries by integrating text and image information into a unified multimodal
framework [35]. In social media and security contexts, Agarwal et al. (2022) and Toshevska et
al. (2023) applied graph neural networks to detect spam behavior and antisocial content [3, 4], re-
spectively. Meanwhile, variants of RNNs have been widely used to model the temporal dynamics
of behavior sequences. Zhu et al. (2017) proposed Time-LSTM to capture both short- and long-
term preferences using temporal intervals [13]. Building on this, Ren et al. (2019) developed
a lifelong sequential modeling approach with a hierarchical memory network for personalized
long-term behavior modeling [36]. More recently, Transformer-based architectures have become
mainstream in user modeling. Qi et al. (2022) proposed the FUM model for news recommen-
dation, using Fastformer to balance modeling accuracy with computational efficiency [37]. Wu
et al. (2021) introduced TRISAN, a tri-relational spatiotemporal attention network that incorpo-
rates location information into behavior modeling for location-based search tasks [7].
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Despite these advances, deep learning models for behavior prediction face several persistent
challenges. First, current models are often task-specific (e.g., CTR prediction or product recom-
mendation), limiting their generalization and transferability across domains [38]. Second, their
black-box nature and lack of interpretability hinder their adoption in sensitive decision-making
scenarios [39].

To address these limitations, recent research has explored the application of LLMs in behav-
ior modeling and prediction. With strong capabilities in knowledge representation, transfer learn-
ing, and generalizable reasoning, LLMs offer a promising alternative to traditional approaches.
Unlike rule-based or shallow learning systems, LLM-powered simulation agents exhibit sophisti-
cated contextual understanding, reasoning, and interactive abilities. A growing body of work has
demonstrated the potential of LLMs to simulate cognitive, emotional, and behavioral patterns,
enabling a paradigm shift from “scripted agents” to “human-like agents”.

2.3. LLMs for Behavior Simulation

Research on LLMs for behavior simulation can be divided into three main categories. The
first focuses on dialog simulation. For example, Mysore et al. (2023) introduced the LACE
model with editable user profiles for controllable and interpretable text recommendation [40].
Zhang and Balog (2020) designed a framework to simulate user-system dialog interactions, of-
fering a standardized method for evaluating conversational systems [41]. PlatoLM [42] used
simulated users to train LLMs, achieving improved multi-turn dialog modeling. The second cat-
egory explores social behavior simulation. Xie et al. (2024) examined whether GPT-4 agents can
replicate human trust behavior and found a high level of behavioral alignment [43]. Park et al.
(2023) proposed the “Generative Agents” architecture, equipping agents with memory, reflec-
tion, and planning to reproduce complex social interactions [14]. Piao et al. (2025) developed
the “AgentSociety” platform with over 10,000 LLM agents to study social phenomena such as
polarization and misinformation [17]. Gao et al. (2023) used the S³ system to simulate emo-
tion contagion and gender bias in social networks [44]. Li et al. (2023) employed the CAMEL
framework for multi-agent cooperation [16]. Park et al. (2022) and Mou et al. (2024) provided
systematic classifications of individual, scene-based, and society-level modeling [45, 46]. Aher
et al. (2023) and Argyle et al. (2023) used LLMs to replicate classical psychology and political
science experiments, highlighting their potential as proxies for human participants in the social
sciences [5, 6]. The third category focuses on economic and policy simulation. Horton (2023)
proposed the concept of “homo silicus”, showing that LLMs can reproduce many behavioral
biases in economic decision-making [47]. Chu et al. (2023) trained LLMs on curated “media
diets” to predict public opinion, offering a novel modeling tool for social science research [48].

Overall, these studies have addressed key bottlenecks in traditional behavior modeling, such
as the lack of interpretability in user profiles, the inability to reconstruct group behavior, and the
difficulty of linking individual actions to broader social dynamics. By serving as high-capacity,
cognitively capable agents, LLMs enable user modeling to progress from shallow behavior fitting
to deep cognitive simulation. Despite these advances, the current use of LLMs in behavior
modeling has largely centered around domains such as social communication, dialog interaction,
consumption patterns, and urban mobility. However, spatial migration—particularly movements
between urban and rural areas—remains relatively underexplored in this line of research. As
a core component of human spatial behavior, migration underpins a wide range of location-
dependent activities and directly impacts regional planning, infrastructure allocation, and social
policy design. In particular, return migration—where individuals move from cities back to rural
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areas—has gained increasing attention in both policy and academic circles due to its implications
for balanced regional development.

To extend the scope of LLM-driven behavior modeling, this paper introduces a novel simu-
lation task focused on return migration. We explore how LLM-powered agents can be applied to
capture the dynamics and motivations behind this form of spatial mobility, aiming to support the
understanding of migration behavior and inform data-driven decision-making in population and
urban-rural planning contexts.

3. Problem Formulation

In this section, we present the task formulation of utilizing LLM-based agents for return
migration simulation. Formally, given an individual u in an urban area, we formulate the return
migration simulation as a decision prediction task using an LLM-based agent. The goal is to
predict whether u will migrate back to their rural origin, based on multimodal contextual features.
The input multimodal contextual features include, but are not limited to:

• Individual traits: Demographic and economic attributes (e.g., age, income, education).

• Family factors: Household composition and ties (e.g., number of dependents, family occupa-
tion, household wealth).

• Urban context: City-specific push factors (e.g., living cost, job satisfaction).

• Rural context: Village-specific pull factors (e.g., economic opportunities, policy incentives).

The heterogeneous features mentioned above mainly cover tabular modality Xtabular and textual
modalityXtext. We leave more data modalities to future exploration1. Xtabular includes some table
data with anonymous IDs and categorical features, whileXtext covers some semantic features and
descriptions. Formally, the LLM-based agent first needs to tokenize heterogeneous inputs into
the text representation space of LLMs for reasoning and prediction:

yu = LLMθ(Tokenize(Xtabular,Xtext)), (1)

where the LLM performs deep reasoning over tokenized multimodal features to discover human
intention and predict the migration decision yu ∈ [0, 1]. The ground-truth label of yu is

y =

1 (Return to rural area),
0 (Stay in urban area).

(2)

4. Method

In this section, we detail how the proposed RMS-Agent harnesses multimodal tabular data
(Xtabular) and textual data (Xtext) to perform deep reasoning over human intention and predict the
return migration behavior. Specifically, we introduce the tokenization of heterogeneous multi-
modal data in Section 4.1, followed by Section 4.2, which presents how RMS-Agent leverages
meta-queries for latent reasoning over return migration intention.

1Although RMS-Agent is capable of tokenizing additional modalities such as images, we leave this for future work
due to the absence of such data in existing datasets.
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Tabular dataTextual data
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City Village
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tokenizerLLM tokenizer

𝒒𝟏 𝒒𝟐 𝒒𝟑 𝒒$

Meta-query

…
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Figure 2: Illustration of RMS-Agent, which integrates the task prompt, textural data, and tabular data for in-depth
reasoning with meta-query vectors to achieve return migration simulation.

4.1. Heterogeneous Data Tokenization

As shown in Figure 2, given the tabular data Xtabular and textual data Xtext, which contain
individual, family, urban, and rural features, we employ two separate tokenizers to encode the
heterogeneous inputs. For the textual modalityXtext, we use the tokenizer of the LLM itself (e.g.,
the SentencePiece for Qwen3 [49]) to align with the pre-trained semantic space, thereby enabling
better utilization of its rich world knowledge. Formally, we concatenate the task prompt p with
Xtext, and feed it into the LLM tokenizer to obtain a token vector sequence:

{t1, . . . , tM} ← LLM Tokenizer([p;Xtext]), (3)

where Xtext covers the textual data such as self-introduction and rural/urban policy. Besides,
we implement the task prompt p using the following template to illustrate the task of return
migration simulation:

For tabular data Xtabular, many features are represented as anonymized codes and categorical
features (e.g., regions or years), which are often not semantically meaningful in the LLM’s pre-
training space. Directly applying the LLM’s tokenizer may result in these codes being split into
subwords with irrelevant meanings, leading to potential information loss. To address this, we
design a separate neural network to learn a dedicated tabular tokenizer. Specifically, we convert
the tabular features of each individual through one-hot encoding and organize them into a single
column vector, and then feed it into the tabular tokenizer to produce a dense token vector v:

v← Tabular Tokenizer(Xtabular),

where the tabular tokenizer is instantiated by an MLP in this work, and v encodes the tabular
information with the same dimensionality as the token vectors in {t1, . . . , tM}.
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• Task prompt: “You are a sociologist studying rural labor migration. Your task is to deter-
mine, based on an individual’s basic information, whether this person is a “returnee”—that is,
whether they will return to live or work in their original rural hometown after working in the
urban area.
Please decide whether this individual is a “returnee” based on the given features. Your answer
must be strictly “Yes” or “No”. Do not include any explanations, reasons, or additional words.

Below is the individual’s profile: Gender: values[“gender”];
Age: values[“age”];
Years of Education: values[“education”];
Household Registration Type: values[“hukou”];
Marital Status: values[“marriage”];
Physical Condition: values[“physical condition”];
Work Experience: values[“work”];
After-Tax Monthly Wage (RMB): values[“wage”] ;
Type of Pension Insurance: values[“old age insurance”];
Type of Medical Insurance: values[“medical insurance”];
Hospitalization Expenses Last Year (RMB): values[“hospitalization expenses”];
Unemployment Insurance: values[“unemployment insurance”];
Housing Provident Fund: values[“housing fund”];
Household Size: values[“hh size”];
From a Low-Income Household: values[“poor hh”];
Housing Type: values[“house type”];
Number of Cars Owned: values[“count car”];
Phone Type: values[“phone type”];
Total Household Assets (RMB): values[“total asset”];
Total Household Income (RMB): values[“total income”];
Total Household Debt (RMB): values[“total debt”];
Total Household Consumption (RMB): values[“total consumption”];
...{other semantic features}

Based on the above information, is this person a “returnee”? Please answer only with “Yes” or
“No”.”

4.2. Latent Reasoning
Given the tokenized sequences {t1, . . . , tM} and v, we feed them into the LLM and leverage

meta-queries to guide the LLM in performing in-depth reasoning from multiple perspectives
within the latent space; thereafter, the LLM makes the final prediction for the return migration
behavior. Formally, we have

h← LLMθ(t1, . . . , tM , v,q1, . . . ,qN), (4)

where h denotes the hidden state of the last layer of the LLM corresponding to the last meta-
query token. {q1, . . . ,qN} is the sequence of N meta-queries, which are randomly initialized
learnable vectors. Such meta-queries are initialized with randomness to maintain diversity, which
encourages the LLM to reason over the inputs {t1, . . . , tM} and v from multiple perspectives
through the self-attention in Transformer [10]. As illustrated in Figure 3, different meta-queries
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Meta-query
𝒕𝟏 𝒕𝟐 … 𝒕𝑵 𝒗 𝒒𝟏 𝒒𝟐𝒕𝟑 𝒕𝟒

…

Tabular dataTextual data

Self-attention for 𝒒𝟏 and 𝒒𝟐

Figure 3: An example of attention weight visualization for meta-queries q1 and q2 only. Note that the attention weights
for other vectors such as t1 and v are omitted for simplicity. Due to the different initialization, q1 and q2 can attend to
different features for in-depth reasoning in the latent space.

attend to distinct subsets of features, enabling the LLM to perform comprehensive and in-depth
reasoning. Finally, h encodes the reasoning results of the LLM to predict the return migration
behavior:

yu = σ(Linear(h)), (5)

where Linear(·) represents a linear projection layer with learnable parameters W and b; and yu

denotes the predicted return migration behavior. Besides, σ(·) is the Sigmoid function to restrict
the prediction within [0, 1].

Training. Given the training data {(Xi
text,X

i
tabular, yi)}Ii=1, we optimize the following parame-

ters of RMS-Agent: meta-queries {q1, . . . ,qN}, the LLM’s θ, W, and b. We use the cross-entropy
loss function as follows:

−
1
I

I∑
i=1

[
yi log(yu,i) + (1 − yi) log(1 − yu,i)

]
, (6)

where yu,i is the prediction of RMS-Agent for the feature input Xi
text and Xi

tabular; and yi is the
ground truth behavior label.

5. Experiment

5.1. Experimental Settings

• Datasets. We utilize data from the China Household Finance Survey (CHFS), a nationally
representative household-level survey administered by the Survey and Research Center for China
Household Finance at Southwestern University of Finance and Economics 2. Specifically, we use

2https://chfser.swufe.edu.cn/datas/Products/Datas/DataList/.
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Table 1: Datasets Statistics.
Dataset # Samples # Positive Samples # Negative Samples

CHFS-2015 18,396 7,201 11,195
CHFS-2017 23,225 10,295 12,930
CHFS-2019 21,182 9,190 11,992

three survey waves: 2015, 2017, and 2019. For each wave, we extract a set of variables harmo-
nized across years to ensure consistency in our analysis, containing rich information including
but not limited to the following categories:

• Individual traits: gender, age (restricted to 16–60), years of education, marital status, physi-
cal condition, household size, and phone type.

• Family factors: poverty status, house ownership type, number of cars owned, total household
assets, income, debt, and consumption.

• Urban and Rural context: employment status, wage, type of old-age pension, medical insur-
ance, unemployment insurance, and housing fund participation.

To ensure robustness and prevent potential information leakage, we perform several data
cleaning steps. First, we remove three post-return variables (i.e., the number of years since re-
turn, the province lived in before return, and the job type before return). Second, we exclude
individuals who have never migrated, as our study focuses on return migration behavior. Lastly,
we discard noisy samples that are simultaneously marked as both returnee and migrant, which in-
dicates logical inconsistencies. After preprocessing, we randomly split the samples into training,
validation, and testing sets with a ratio of 8:1:1. The final cleaned datasets used for experiments
and analysis are summarized in Table 1.

• Baselines. We compare RMS-Agent with competitive baselines, including traditional ma-
chine learning methods (Logistic Regression, Random Forest, Gradient Boosting, XGBoost,
SVM), deep learning-based methods (MLP, BERT), and LLM-based methods (Prompt, SFT).

Traditional machine learning methods. 1) Logistic Regression [50] is a widely used linear
model for binary classification. 2) Random Forest [51] is an ensemble of decision trees that
captures non-linear feature interactions through bagging. 3) Gradient Boosting [52] improves
prediction by sequentially correcting errors of weak learners. 4) XGBoost [53] is an optimized
gradient boosting framework with regularization. 5) SVM (Support Vector Machine) [54] is a
margin-based classifier effective in high-dimensional feature spaces.

Deep learning-based methods. 6) MLP [55] is a multi-layer perceptron that encodes tabular
features into deep latent representations for classification. 7) BERT [11] is a pre-trained language
model adapted to this task by finetuning on input prompts that combine textual and structured
features, enabling the model to leverage contextual understanding.

LLM-based methods. 8) Prompt reformulates the classification task as language modeling
and performs zero-shot inference using a pre-trained LLM. 9) Supervised Fine-Tuning (SFT)
further trains the LLM on labeled decision data using task-specific prompts, enabling the model
to specialize for the migration prediction task. In this work, we utilize Qwen3 [49] as the back-
bone to implement the above two methods.
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• Evaluation Metrics. We adopt five widely used metrics to evaluate the models, including 1)
Accuracy measures the proportion of correctly predicted instances among all samples; 2) Preci-
sion indicates the proportion of true positives among all predicted positives; 3)Recall reflects the
proportion of true positives that are correctly identified among all actual positives; 4)F1 Score is
the harmonic mean of precision and recall, balancing both metrics; 5) AUC evaluates the model’s
ability to distinguish between classes across different thresholds.

• Implementation Details. For traditional machine learning baselines, we adopt standard
implementations from scikit-learn3. Logistic regression uses L2 regularization with the de-
fault solver. Random Forest and Gradient Boosting are configured with 100 estimators, and the
learning rate for XGBoost is fixed at 0.1. All input features are preprocessed via median im-
putation and standardization for numerical features, and most-frequent imputation with one-hot
encoding for categorical features. For deep learning baselines, we employ a two-layer MLP
with hidden sizes of 126 and 64, trained using Adam with a fixed learning rate of 1 × 10−3. For
the transformer-based BERT model, the input embedding dimension is 128, the batch size is
64, and the encoder uses multi-head self-attention with 2 heads. Parameters are initialized using
Xavier and Kaiming schemes. For RMS-Agent, we use Qwen2.5-1.5B-Insturct4 as the backbone
LLM and adopt parameter-efficient tuning method LoRA [56] to fine-tune the model. For the
tabular input, we use a one-layer MLP with 128 hidden size followed by the hidden dimension
of the backbone LLM. The learning rate is set at 1 × 10−3, and we tune the number of meta-
query vectors N in {2, 3, 4, 5, 6, 8}. The best hyper-parameters are selected based on validation
performance.

5.2. Overall Performance

The overall performance comparison between baselines and our proposed RMS-Agent is
presented in Table 2, from which we have the following observations:

• Traditional machine learning methods, including logistic regression, random forests, and boosting-
based models, demonstrate moderate performance across all datasets. Among the traditional
machine learning models, ensemble-based methods (i.e., Random Forest and XGBoost), gen-
erally outperform simpler linear models, reflecting their capacity to capture non-linear inter-
actions among structured features. However, their improvements remain limited, suggesting
challenges in modeling more complex behavioral patterns inherent in return migration deci-
sions. This aligns with expectations given the structured nature of the input but also highlights
the limitations of relying solely on static decision boundaries.

• Deep learning baselines, particularly MLP and BERT, exhibit stronger performance than tra-
ditional methods in most cases, especially on CHFS-2015 and CHFS-2019. MLP benefits
from its capacity to learn higher-order feature interactions, while BERT shows potential in in-
corporating semantic context despite being primarily designed for textual data. Nevertheless,
their results are not consistently superior across all datasets, and both models occasionally
underperform in recall or AUC, indicating sensitivity to dataset characteristics and possible
underutilization of contextual signals.

3https://scikit-learn.org/stable/.
4https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct.
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Table 2: Overall performance comparison between baselines and our proposed RMS-Agent. The best results are in bold,
and the second-best results are underlined. The results highlight the superiority of our proposed RMS-Agent over these
baselines across three datasets.

Dataset Method Accuracy Precision Recall F1 Score AUC

CHFS-2015

Logistic Regression 0.7859 0.7754 0.6428 0.7029 0.8627
Random Forest 0.8092 0.7766 0.7241 0.7495 0.8872
Grandient Boosting 0.7891 0.7573 0.6841 0.7188 0.8717
XGBoost 0.7962 0.7660 0.6952 0.7289 0.8775
SVM 0.7951 0.7458 0.7283 0.7369 0.8661

MLP 0.8125 0.7827 0.7255 0.7530 0.8878
BERT 0.8033 0.7227 0.8124 0.7649 0.8697

Prompt 0.6429 0.6349 0.2207 0.3275 0.7823
SFT 0.7163 0.5818 0.9959 0.7345 0.7792

RMS-Agent 0.8625 0.8164 0.8400 0.8280 0.9331

CHFS-2017

Logistic Regression 0.7090 0.7065 0.8273 0.7621 0.7606
Random Forest 0.7305 0.7207 0.8518 0.7808 0.8038
Grandient Boosting 0.7107 0.7094 0.8243 0.7625 0.7724
XGBoost 0.7193 0.7206 0.8197 0.7670 0.7733
SVM 0.7150 0.7161 0.8189 0.7641 0.7915

MLP 0.7335 0.7796 0.7349 0.7566 0.8189
BERT 0.7223 0.7283 0.8090 0.7666 0.7867

Prompt 0.5562 0.5826 0.7487 0.6553 0.5349
SFT 0.5635 0.6485 0.4920 0.5595 0.5739

RMS-Agent 0.7628 0.7445 0.8816 0.8073 0.8286

CHFS-2019

Logistic Regression 0.7664 0.7333 0.7130 0.7230 0.8478
Random Forest 0.7768 0.7253 0.7693 0.7467 0.8601
Grandient Boosting 0.7683 0.6895 0.8333 0.7546 0.8529
XGBoost 0.7688 0.6894 0.8355 0.7555 0.8551
SVM 0.7735 0.6976 0.8300 0.7581 0.8509

MLP 0.8023 0.7560 0.7936 0.7744 0.8758
BERT 0.6535 0.7218 0.6264 0.6708 0.6988

Prompt 0.5819 0.5085 0.6611 0.5749 0.6262
SFT 0.7249 0.6681 0.7086 0.6877 0.7228

RMS-Agent 0.8150 0.7672 0.8146 0.7901 0.8816

• Our proposed RMS-Agent consistently achieves the best overall performance across all datasets
and evaluation metrics. The improvements are particularly notable in terms of balanced classi-
fication metrics such as F1 and AUC, underscoring the model’s ability to integrate multimodal
features and perform context-aware reasoning. These results support the hypothesis that LLM-
based agents are better equipped to simulate human decisions in complex social contexts, as
they can capture subtle dependencies and latent factors beyond surface-level correlations.

• In addition to achieving strong overall performance, RMS-Agent maintains a favorable bal-
ance across precision, recall, and AUC. Unlike methods that exhibit extreme biases, such as
high recall at the cost of precision, RMS-Agent delivers stable and well-rounded results, which
is critical in decision-making tasks where both false positives and false negatives carry signif-
icant implications. This consistency across metrics and datasets demonstrates the model’s
robustness and suitability for real-world return migration simulation.

• Beyond the general trends across model families, we observe that performance differences
are more pronounced on CHFS-2015 and CHFS-2019 than on CHFS-2017. This may reflect

DataIntelligence 13



Multimodal LLM-Based Agents for Human Behavior Simulation: Modeling Return Migration
Dynamics

0.75

0.83

0.91

CHFS-2015

F1 Score AUC

w/o Query
Vector

w/o MLP
Embedding

w/o Text
Input

RMS-Agent

(a)

0.7

0.75

0.8

CHFS-2017

F1 Score AUC

w/o Query
Vector

w/o MLP
Embedding

w/o Text
Input

RMS-Agent

(b)

0.45

0.6

0.75

0.9
CHFS-2019

F1 Score AUC

w/o Query
Vector

w/o MLP
Embedding

w/o Text
Input

RMS-Agent

(c)
Figure 4: Ablation study on three datasets. The results validate the effectiveness of using meta-queries, MLP encoding,
and textual data in RMS-Agent.

temporal or data quality variations, such as richer contextual features or clearer migration
patterns in certain years.

• We evaluate prompt-based inference and SFT to assess the adaptability of vanilla LLMs.
While SFT improves over prompting in recall and F1, both methods underperform compared to
traditional and deep learning baselines. This highlights the limitations of using generic LLMs
without structured alignment or reasoning. The results confirm the necessity of our design in
RMS-Agent, which tightly integrates multimodal tokenization with task-specific reasoning.

5.3. In-depth Analysis
5.3.1. Ablation Study

To assess the effectiveness of each component in RMS-Agent, we conduct an ablation study
on the three datasets. Specifically, we consider three ablated variants of our model: 1) w/o
Query Vector, which removes the task-specific meta-query vector used for latent reasoning; 2)
w/o MLP Embedding, which excludes the structured tabular input by omitting its MLP-based
encoding; and 3) w/o Text Input, which removes the textual context provided to the LLM. These
variants are compared against the full RMS-Agent model to examine the relative importance of
each component. We evaluate performance using the representative F1 score and AUC to capture
both classification accuracy and ranking capability.

From the results reported in Figure 4, we can find that 1) each component plays a critical
role in the overall effectiveness of RMS-Agent. Removing the meta-query vector leads to a con-
sistent drop in both F1 and AUC across all datasets, highlighting its importance for guiding the
model’s reasoning process. 2) The absence of MLP embedding, which removes structured tabular
data, results in a more significant performance degradation—particularly in F1—indicating that
individual- and household-level features are crucial for accurate return migration prediction. 3)
Notably, removing textual input causes the most substantial decline, especially on CHFS-2017
and CHFS-2019, suggesting that rural-urban contextual descriptions provide key information
that complements structured attributes. These patterns reinforce the importance of multimodal
integration and justify our design of a unified architecture that combines tabular inputs, textual
context, and query-guided reasoning.

5.3.2. Token Generation versus Disrciminative Prediction
To study the effectiveness of the discriminative binary classifier to align with the task objec-

tive, we compare the settings of 1) generative head and 2) discriminative head. Precisely, for
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Accuracy Precision Recall F1 Score AUC
Discriminative 0.8141 0.7391 0.8166 0.7759 0.8932CHFS-2015 RMS-Agent 0.8625 0.8164 0.8400 0.8280 0.9331

Discriminative 0.6642 0.6393 0.9274 0.7569 0.6259CHFS-2017 RMS-Agent 0.7628 0.7445 0.8816 0.8073 0.8286

Discriminative 0.7381 0.6618 0.7925 0.7212 0.7450CHFS-2019 RMS-Agent 0.8150 0.7672 0.8146 0.7901 0.8816

Table 3: Performance comparison between token generation (discriminative) and discriminative prediction (RMS-Agent)
on three datasets.
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Figure 5: Effect of the meta-query number.

the generative head setting, we utilize the original LLM generation head to generate the token of
“yes” and “no”. The LLM is optimized via log likelihood maximization. For the discriminative
head setting, we utilize a binary classifier in our RMS-Agent, optimized by the cross-entropy
loss as in Eq. (6). The goal is to assess whether explicitly modeling binary decisions improves
alignment between reasoning and prediction, which is particularly relevant for structured tasks
like return migration.

From the results, we can observe that 1) the discriminative head consistently outperforms the
generative one across all datasets, especially in F1 and AUC. This suggests that direct supervision
helps the model focus on decision boundaries, while the generative approach may dilute learning
signals due to vocabulary-wide token prediction. Additionally, 2) the generative head tends to
favor high recall but suffers from low precision, indicating less controlled decision calibration.
Therefore, we empirically hypothesize that task-specific heads are crucial for classification tasks
with reasoning components.

5.3.3. Effect of Meta-query Number
To study the effect of query number, we evaluate our model with different numbers of query

vectors from 2 to 8 on three datasets. The experimental results are shown in Figure 5. We can
find that: 1) increasing the number of queries generally leads to improved AUC, particularly on
CHFS-2015 and CHFS-2019. This suggests that using more query vectors enhances the model’s
ability to perform in-depth reasoning. 2) However, the F1 score does not always increase with
more queries. In fact, performance often peaks at moderate values (e.g., 4 or 5 query vectors),
suggesting that too many queries may introduce redundancy or noise. This trade-off highlights
the importance of selecting an appropriate number of queries for balanced classification perfor-
mance. Overall, we empirically find that the number of queries is a critical factor that affects
model performance, and tuning it appropriately can significantly improve both discrimination
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Table 4: Performance comparison between RMS-Agent using Qwen2.5 of different model sizes.

Model Size Accuracy Precision Recall F1 Score AUC

1.5B 0.8625 0.8164 0.8400 0.8280 0.9331
3B 0.8560 0.7662 0.9131 0.8332 0.9334
7B 0.8625 0.8057 0.8579 0.8310 0.9315

Table 5: Generalization ability of RMS-Agent on CHFS-2017 and CHFS-2019. “RMS-Agent-2015”, “RMS-Agent-
2017”, and “RMS-Agent-2019” denote RMS-Agent trained on 2015, 2017, and 2019, respectively.

Accuracy Precision Recall F1 Score AUC

CHFS-2017

Random Forest 0.6403 0.6782 0.7198 0.682 0.6753
SVM 0.6375 0.6788 0.7013 0.6732 0.6691
RMS-Agent-2017 0.7628 0.7445 0.8816 0.8073 0.8286
RMS-Agent-2015 0.6625 0.692 0.7227 0.707 0.7058
Relative Decline 13.15% 7.05% 18.02% 12.42% 14.82%

Accuracy Precision Recall F1 Score AUC

CHFS-2019

Random Forest 0.677 0.6406 0.5854 0.6259 0.7681
MLP 0.663 0.6412 0.5801 0.627 0.7422
RMS-Agent-2019 0.815 0.7672 0.8146 0.7901 0.8816
RMS-Agent-2015 0.7225 0.6963 0.6225 0.6573 0.7841
Relative Decline 11.35% 9.24% 23.58% 34.27% 11.06%

(AUC) and calibration (F1) metrics.

5.3.4. Effect of LLM Size
To investigate whether larger model sizes bring stronger reasoning capability, we compare

RMS-Agent based on Qwen2.5 models with 1.5B, 3B, and 7B parameters. From the results
in Table 4, we observe that 1) scaling up from 1.5B to 3B leads to performance gains in F1
score and AUC, suggesting that larger models benefit from richer pre-training data and greater
expressiveness, enabling stronger reasoning over user features. 2) However, further scaling to
7B does not yield consistent improvements. This is possibly due to the use of LoRA, which
may limit fine-tuning capacity to bridge the task gap between next-token generation and binary
classification. This indicates that scaling model size alone is not sufficient; more data or superior
alignment methods are needed for superior performance scaling in the future.

5.3.5. Generalization Ability of RMS-Agent
To study the generalization ability of RMS-Agent across different distributions, we trained

the RMS-Agent on 2015 data and evaluate it on the CHFS-2017 and CHFS-2019. We denote
RMS-Agent trained on CHFS- 2015, 2017, and 2019 data as “RMS-Agent-2015”, “RMS-Agent-
2017”, and “RMS-Agent-2019”, respectively. The results are shown in Table 5. From the results,
we can observe that: 1) RMS-Agent trained on the 2015 data demonstrates stronger generaliza-
tion ability compared to other baselines. This can be attributed to the rich world knowledge
encoded in LLMs, which enables the model to capture more robust decision features rather than
relying on superficial correlations. Nevertheless, 2) RMS-Agent-2015 struggles to compete with
RMS-Agent-2017 and RMS-Agent-2019 on the 2017, and 2019 data, respectively. This is rea-
sonable since there might be a temporal data distribution shift from 2015 to 2019. The relative
performance decline of RMS-Agent-2015 compared with RMS-Agent-2017 (on data 2017) and
RMS-Agent-2019 (on data 2019) partially explains this, i.e., the relative decline on 2017 data is
generally smaller than that on 2019.
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Figure 6: Performance comparison across different age and gender groups.

Table 6: Performance comparison between MLP, RMS-Agent, and RMS-Agent using additional temporal modality data
(RMS-Agent-T) on CHFS-2015 dataset.

Models Accuracy Precision Recall F1 Score AUC
MLP 0.8125 0.7827 0.7255 0.7530 0.8878
RMS-Agent 0.8625 0.8164 0.8400 0.8280 0.9331
RMS-Agent-T 0.8631 0.8079 0.8428 0.8316 0.9365

5.3.6. User Group Analysis
To further analyze the influential features that drive the return migration, we evaluate RMS-

Agent on different user groups, according to gender and age, respectively. From the results
in Figure 6, we can observe that male migrants, middle-aged individuals (39–49), and elderly
individuals (50–60) show higher model performance. This could be because the return migration
behaviors of these demographic groups are more predictable, partly validating the necessity of
incorporating these demographic features.

5.3.7. Effectiveness of Multimodal Data
To study whether additional multimodal data help RMS-Agent achieve better simulation,

we incorporate temporal data as an additional modality into our RMS-Agent. Specifically, we
use the individual living trajectory, which contains provinces each individual have stayed in,
in a chronological order. From the results shown in Table 6, we can find that incorporating
temporal data further enhances the performance of RMS-Agent in most cases, which verifies the
effectiveness of other modalities for return migration simulation. This further strengthens our
statements on the effectiveness of using meta-queries to capture different subsets of multimodal
features and extract the influential information for prediction.

6. Conclusion and Future Work

To simulate return migration behaviors, this work presents RMS-Agent, a novel LLM-powered
agent with latent reasoning capability over heterogeneous and multimodal features. RMS-Agent
integrates multimodal data, such as tabular and textual data, via the heterogeneous data tok-
enizer. Besides, it employs multiple meta-queries to perform in-depth reasoning and uncover
latent migration intention. Extensive experiments on real-world datasets demonstrate substantial
performance gains over existing baselines, highlighting the potential of LLMs in high-fidelity hu-
man behavior simulation. This study lays a foundation for leveraging LLMs to model complex
socio-spatial phenomena and simulate human mobility behaviors due to LLMs’ richer contextual
understanding and generalization capabilities.
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Moving forward, we aim to extend RMS-Agent in several directions. First, incorporating
richer multimodal data such as temporal dynamics and longitudinal mobility data could enhance
the agent’s capacity to model evolving intention. Second, integrating explicit human feedback or
preference signals in the right way might improve the interpretability and controllability of the
reasoning of the RMS-Agent. Third, leveraging the agent’s retrieval tools to gather additional
information about urban and rural regions from the real-world websites could further enrich the
simulation context. Fourth, we plan to develop additional benchmark datasets on human physical
mobility behaviors to support future research, for instance, rural-to-urban migration, inter-city
migration, and rural-to-rural migration. We can also explore the effectiveness of RMS-Agent
across these diverse tasks.

Code and Data Availability

To facilitate reproduction, we release our code and data at https://github.com/Linxyhaha/
RMS-Agent.
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