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1 Introduction 

Load forecasting is a vital element in the orchestration of 

urban energy management and is especially critical during 

periods of electricity paucity. According to the United 

Nations Human Settlements Programme, urban centers are 

responsible for consuming more than half of the global 

energy resources. Thus, efficient planning and management 

of urban energy are vital for energy conservation. Reaching 

carbon neutrality is a shared goal of humanity [1], 

necessitating accurate energy forecasting, which plays a 

crucial role in achieving these energy goals. 

 

Recent developments in energy prediction have incorporated 

both deep learning and traditional machine learning. A novel 

deep learning structure employing an attention mechanism 

has been proposed by the Transformer model [2]. This model 

allows the system to access historical data irrespective of 

distance and is more adept at handling repetitive patterns with 

long-term dependencies than RNN-based approaches [3]. 

Several variants, including Autoformer [4], Pyformer [5], 

Fedformer [6], and Informer [7], have been developed based 

on this model. The Transformer model primarily utilizes the 

self-attention technique to extract the semantic 

interdependence of item pairs [2], reducing the time and 

space complexity. Various strategies have been suggested to 

enhance its effectiveness, including pyramidal attention [5] 

and loose masks [8]. The Dlinear model, a unique approach 

based on the Transformer model [2], combines the positional 

encoding strategy used in Autoformer [4] and Fedformer [6] 

with a linear layer. However, there is seldom any semantic 

relationship resembling a point between the basic numerical 

data in the time series. 

 

Current research demonstrates that combining decomposition 

methods with certain models can enhance the prediction 

accuracy. For example, Peng's research delved into load 

forecasting utilizing the CEEMDAN and transformer 

methodologies [9], whereas Changchun explored the synergy 

hybrid network [10]. Han's approach centered on the EMD-

Isomap-AdaBoost model [11], while Wang implemented a 

model based on VMD-CISSA-LSSVM for electricity load 

prediction [12]. Commonly, these studies lack robust feature 

selection methodologies, struggle to yield satisfactory 

outcomes when addressing nonlinear time series data, and 

lack an effective solution for the noise issue inherent in 

power load data. In response to these challenges, this paper 

introduces a comprehensive prediction framework based on 

feature processing and hybrid modeling. The contributions of 

this research are delineated as follows: 

 

 To minimize the error in power consumption prediction, 

this paper employs a random forest method for feature 

analysis and selection, uses variational mode 

decomposition (VMD) to decompose power consumption, 

optimizes the IMF component with the WOA algorithm, 

and utilizes a metaheuristic Kalman filter for data 

reconstruction to avoid the impact of data noise. 

 Given the limited improvement in prediction accuracy 

achieved by a single model, this paper introduces a hybrid 

model. This model optimizes input and output using 

efficient normalization and anti-normalization methods, 

narrows feature differences, accelerates convergence, and 

enhances prediction accuracy and efficiency. The TIDE 

model effectively addresses the limitations of linear 

models in modeling nonlinear relationships and external 

variables. 

 To substantiate the efficacy of the proposed methodology, 

this study employs a dataset of power consumption from 

Shanghai's Jinshan district. The findings reveal that our 

predictive approach surpasses current methodologies in 

terms of performance. 

The rest of this article is structured as follows: 

 

In Section 2, the proposed data preprocessing method is 

discussed. Section 3 describes the proposed prediction 

approach. In section 4, the experimental setup and data 

analysis are given. The fifth part summarizes the entire paper. 
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2. Data Preorocess Method 

2.1 Data Preprocessing 

 

Fig. 1. The data preprocessing procedure. 
The overall preprocessing procedure is shown in Fig. 1. 

First, in the case of missing values in the dataset, this paper 

uses linear interpolation to fill the missing data, including 

filtering some dirty data. 

 

Feature engineering is a simpler way to represent uncertain 

data and improve its accuracy. Random forests are used in 

this process because they allow for a more accurate 

assessment of correlations between features. In a random 

forest, each decision tree is based on a different sample, and 

each node is randomly divided in the feature selection 

process to compare errors in different backgrounds. 

 

In this paper, a random forest is used as a feature engineering 

method for feature selection, and the features not closely 

related to the power load are eliminated to improve the 

prediction accuracy. Using the dataset of the JinShan region 

in Shanghai, this paper selected five positive correlation 

features, namely, the maximum temperature and minimum 

temperature. 

2.2 Power Load Data Decomposition 

WOA-VMD decomposes a signal sequence into its natural 

modal components and residuals. This is achieved by 

adapting to actual changes in the signal sequence, iteratively 

finding the ideal frequency center through a whale 

optimization algorithm, and applying a limited bandwidth to 

each mode. The power load time series signal is separated 

into its frequency domain. VMD[13] is capable of 

significantly reducing the number of decompositions 

compared to EMD [14], and the stationary properties and 

frequency scales of the subsequences differ. The two key 

components of VMD[13] technology are the formulation and 

optimization of variational problems (VPs). 

 VMD Module. The center frequency is obtained by 

constantly updating the center frequencies and gradually 

adjusting the frequency band of each mode. The 

variational challenge may be formulated as: 
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where  ̀     ̀      ̀    and  ̀ 
    are the estimated 

values of                 and   
    after the Fourier 

transform,   is the number of iterations, and   is the 

frequency. Figure 4 depicts the VMD [13] calculation 

procedure, and the parameter estimate can be expressed as: 
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Although the VMD [13] method can effectively remove 

noise, the corresponding hyperparameters need to be 

determined in advance. This paper uses the WOA [15] to 

optimize VMD [13] and determine the hyperparameters in 

advance. In later experiments, it was proven that by 

comparing different IMF quantities, the WOA [15] is 

indeed effective 

 WOA Module. The whale optimization algorithm (WOA) 

[15], utilizing the minimal envelope entropy value as its 

fitness function, has been employed for the optimization 

of VMD [13] parameters. First, the position vector [K,a] 

of the whale swarm is initialized. Then, the fitness of each 

whale is calculated using the envelope entropy as the 

fitness function. Finally, the iterative formula is used to 

update the position vector iteratively until the optimal 

VMD [13] parameters are obtained. After VMD [13] is 

used, the noise of each IMF is still not smooth enough, 

which is not conducive to our prediction. Therefore, 
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Kalman [16] was used to smooth the IMF data and reduce 

the cause of inaccurate prediction accuracy caused by 

overdryness. 

 Kalman Filter. The Kalman filter [16] is a method that 

employs the governing equation of a linear system to 

approximate the best state of the input and output 

observation information. It is an effective approach for 

noise reduction and data recovery in data processing. 

The Kalman filter [16] consists of two stages: prediction 

and correction. The process of prediction and correction is 

as follows: 

 Prediction: The initial estimate of the current time 

step   is determined, and the state of the present 

time step   is predicted based on the posterior 

estimate of the preceding time step  -1. 
 ̀ 

    ̀       

  
        

   
        (5) 

    

where  ̀ 
 represents the prior state estimate value at 

time  , and the result at time   predicted according 

to the optimal estimate of the previous time   
   signifies that the state is essentially a 

hypothesized model for the target state transition;   

represents the input control matrix, how does 

external influence translate into state influence;  ̀    

and  ̀ , respectively, a posteriori state estimates of 

the     moment and the   moment, are the results 

of filtering, that is, the updated result, also known as 

the optimal estimate; and   represents a covariance 

matrix for predicting the state 

 Measurements: To adjust estimations made during 

the prediction stage and provide an a posteriori 

estimate for the present. 

In the prediction stage, the Kalman filter [16] computes the 

prior estimates of state variables and error covariance based 

on the state estimates from the previous instant. In the 

correction stage, an improved posterior estimate and 

additional measurement variables are incorporated into the a 

priori estimations to refine the state estimates for the present 

moment. 

 

 

3 The Proposed Forecast Approach 

The components of the WDE model, including TimesBlock 

and the normalized anti-normalized model, are described 

below. 

3.1 TimesBlock 

 
 Fig. 2. The Times Bolck Model. 

As shown in Fig. 2, TimesNet [17] is composed of layered 

TimesBlocks. The input first passes through the embedding 

layer to extract the deep features.    
   

   
      , for layer 

L TimesBlock, its input is    
     

   
       After that,    

convolution is used to extract    timing changes: 

   
            (   

   )     
            (6) 

 

Specifically, TimesBlock consists of the following 

subprocedures: 

 Transform: First, the input one-dimensional timing 

features    
    are extracted, and the period is transformed 

into a two-dimensional tensor to represent a two-

dimensional timing change. The highest 

intensity frequency {       }  corresponds to the most 

significant   period length {       }. 

 The two-dimensional tensor {   
       

         
   }  is 

extracted since it has a two-dimensional locality. 

Therefore, the information is extracted via    

convolution. Here, using the classical Inception model, 

namely: 

 ̂  
             (   
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 Dimensionality reduction: For the extracted temporal 

features, they are converted back to one dimension 

 ̂  
          (                

 ( ̂  
   ))    {     } 

(8) 

    

Among them,  ̂  
     

   
                 means removing 

the 0 added by the padding. )operation in the above. 

 Adaptive Fusion: In the following step, an 

onedimensional representation of { ̂       ̂   }  is 

weighted to sum the intensity of the response frequency to 

obtain the final output. 

3.2 The Forecast Model 

The overall model architecture is shown in Fig. 3. 
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 Fig. 3. The Forcast Model. 

In the prediction model, this paper uses the Dish-Ts [18] 

architecture to integrate TimeBlocks into the model through a 

normalization-anti-normalization process. 

 Conet: unsteady time series are difficult to predict 

accurately. Pilot works measure the distribution and its 

variation by means of statistics (usually means and 

standard deviations) or a distance function. However, 

these operations are not reliably quantifiable and have 

limited expressive power. In this regard, the general 

statement is 

                      (9) 

    

     represents the horizontal coefficient, indicating 

the total length of the input sequence within the window 

          denotes the factor, representing the 

variance scale of  . Typically, the model can be 

configured to any neural architecture for linear or 

nonlinear mapping, endowing it with considerable 

modeling ability and adaptability. 

 Dual-Conet: To mitigate internal space shifts and interval 

space shifts in the aforementioned time series. The 

BACKCONET is specifically designed for 

comprehending the spatial distribution within the input 
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multivariate forecasting, the two CONEts are represented 

as: 
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where     
   

     
   

    is the regressive coefficient of the 

window and     
   

     
   

    is the coefficient of the 

horizontal line at time step number   given a single  th 

variable sequence. Although the same input is       
   

, the 

two CONETS have different goals. 
4 EXPERIMENTAL SETUP AND DATA 

ANALYSIS 

In this chapter, experimental data and several different 

experiments are used to support the findings presented in this 

paper. In the first section, this paper introduces the 

experimental environment and data. In the second section, 

this paper will present the comparison results with the 

transformer class model [2], DLinear model [19], and 

TimesNet [17]. In the third section, this paper will present the 

results of comparisons between different modal 

decomposition  techniques.

 

Fig. 4. (a) 15-day power load data. Yearly seasonality 

load profiles. 

4.1 Experimental environment and load data 

This paper assessed how well the suggested prediction 

techniques performed through a number of experiments. The 

experiment was implemented in Python 3.8, using PyTorch 

version 1.16 and MATLAB 2018 to write the WOA [15] and 

VMD [13] programs, with a computer configured with a Core 

(TM) i7-9700 CPU and 16.00 GB of RAM and a GTX2060 

GPU. Data Set. The dataset is the actual electricity 

consumption of the Jinshan area in Shanghai, as shown in 

Table 1. 

 

 

 

 

Table 1 SUMMARY OF DATASETS. 

 

The purpose of this paper is to predict the power 

consumption of            in the future, so this paper uses 

direct multistep prediction. 

The power load fluctuates due to the unstable output of 

renewable energy. Additionally, power load data are heavily 

polluted by random noise, which is attributed to users' unique 

DataSet Time-Series Time-Points Frequency 

Electricity-Jinshan 7 8760 1 Hour 
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usage patterns. Fig. 4 presents the annual cycle and daily 

cycle data, wherein the noise is visibly significant. 

 

Fig. 5. Modal component of VMD. 
In this paper, the WOA-VMD module is employed to 

reconstruct the data. Fig. 5 displays the modal component 

diagram, where the  -axis represents hours, and the  -axis 

represents the specific load. Here, 2000 hours are taken as an 

example. This indicates that the modal component of VMD 

[13] has a smoother distribution of values than does the 

distribution of the original data. 

Table 2 displays the core frequency of each IMF component, 

delineating a breakdown. When    , the central frequency 

decreases, indicating that the IMF model might not be 

adequately decomposed. When    , IMF5 and IMF6 

exhibit similar modes, demonstrating that     is 

appropriate for the experiment. Additionally, Fig. 6 illustrates 

the calculation process of VMD [13] and the number of IMFs 

calculated by the WOA [15]. 

 

Fig. 6. (a) The calculation process of the optimal 

penalty factor of VMD [13] and (b) the number of IMFs 

calculated by the WOA [15] 
After obtaining each IMF component, the data are 

reconstructed, and the Kalman filter [16] is used for noise 

reduction and smoothing. During the prediction phase, a prior 

estimate of the current state variable, a prior estimate of the 

error covariance, and the estimate obtained from the state at 

the previous moment are calculated. In the revision stage, the 

prior estimate is integrated with the new measurement 

variable to refine the posterior estimate. The final data are 

illustrated in Fig. 7. 

TABLE 2 FUNDAMENTAL FREQUENCY OF EACH-IMF COMPONENTS AT VARIOUS K 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3 COMPARISON WITH TRANSFOMERS AND OTHER METHODS

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 

5 0.02 88.31 46.23 293.41 170.71      

6 0.02 88.30 46.23 213.28 295.42 169.82     

7 0.01 46.43 89.41 169.31 213.44 169.76 379.00    

8 0.01 46.43 89.40 169.32 213.40 295.29 378.77 461.80   

9 0.01 46.45 89.41 169.34 213.38 295.19 333.33 374.47 461.43  

10 0.01 46.44 89.42 169.34 213.29 253.33 296.26 329.93 378.61 461.53 
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Fig. 7. The reconstructed data represent the data after 

VMD, and the Kalman filter represents the smooth 

data after Kalman filtering. 

4.2 Prediction comparison based on Transformer 

architecture models 

In this section, the Transformer [2], Autoformer [4], 

Informer [7], Fedformer [6], Pyformer [5], DLinear [19] and 

TimesNet [17] models are selected for experimental 

comparison. 

models with direct multistep output to predict data at step 

sizes ranging from 12 h to 336 h. 

The experimental results demonstrate that this model 

surpasses  

the Transformer model and other algorithmic models in 

terms of prediction accuracy, with the smallest MAE and 

MSE errors. Notably, the Informer and Pyformer models 

outperform the WDE model when the output step size is 

between 48 h and 72 h. However, as the output step size 

increases, the WDE model exhibits superior performance. 

4.3 Prediction comparison based on modal decomposition 

models 

As depicted in Table 4, this section provides a comparison 

of  

 with other existing modal decomposition models. By 

comparing the MAE and MSE evaluation indices, it is 

demonstrated that WDE model prediction, following WOA-

VMD and Kalman preprocessing, can address the nonlinear 

characteristics of power loads and enhance prediction 

accuracy.

TABLE 4 COMPARED WITH MODAL METHOD

Method WDE TimesNet [17] DLinear [19] Transformer [2] Autoformer [4] Fedformer [6] Pyformer [5] Informer [7] 

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE 

Electricity-Jinshan 12 h 0.131 0.037 0.141 0.05 0.149 0.056 0.145 0.044 0.227 0.112 0.356 0.252 0.133 0.039 0.134 0.037 

 24 h 0.166 0.063 0.18 0.075 0.183 0.078 0.176 0.067 0.241 0.116 0.364 0.259 0.167 0.055 0.159 0.05 

 36 h 0.191 0.077 0.212 0.18 0.223 0.22 0.247 0.114 0.292 0.159 0.372 0.265 0.216 0.089 0.202 0.08 

 48 h 0.106 0.22 0.122 0.238 0.134 0.245 0.235 0.113 0.3 0.17 0.374 0.266 0.219 0.101 0.223 0.097 

 72 h 0.253 0.142 0.268 0.153 0.278 0.161 0.295 0.166 0.339 0.217 0.373 0.264 0.276 0.147 0.272 0.143 

 96 h 0.269 0.157 0.282 0.168 0.296 0.179 0.282 0.172 0.33 0.207 0.377 0.268 0.291 0.172 0.301 0.174 

 
128 

h 
0.281 0.176 0.298 0.191 0.311 0.202 0.327 0.209 0.381 0.279 0.389 0.285 0.306 0.187 0.309 0.189 

 
256 

h 
0.336 0.251 0.349 0.264 0.362 0.268 0.349 0.25 0.387 0.29 0 0.37 0.353 0.284 0.38 0.29 

 
336 

h 
0.355 0.284 0.369 0.298 0.378 0.302 0.401 0.325 0.402 0.331 0.441 0.352 0.39 0.306 0.389 0.304 

Method WDE VMD-Transformer VMD-GRU-TCN VMD-Isomap-AdaBoost [11] VMD-CISSA-LSSVM [12] 

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE 

Electricity-JinShan 12 h 0.131 0.037 0.281 0.176 0.324 0.179 0.162 0.053 0.291 0.187 

 24 h 0.166 0.063 0.306 0.201 0.311 0.202 0.183 0.081 0.299 0.194 

 36 h 0.191 0.077 0.338 0.226 0.382 0.249 0.227 0.094 0.307 0.2 

 48 h 0.106 0.22 0.248 0.364 0.37 0.248 0.235 0.105 0.309 0.201 

 72 h 0.253 0.142 0.394 0.279 0.43 0.301 0.274 0.152 0.308 0.199 

 96 h 0.269 0.157 0.408 0.296 0.417 0.307 0.265 0.142 0.312 0.203 

 128 h 0.281 0.176 0.424 0.317 0.462 0.344 0.316 0.214 0.324 0.22 

 256 h 0.336 0.251 0.475 0.39 0.484 0.385 0.322 0.225 0.371 0.305 

 336 h 0.355 0.284 0.495 0.424 0.536 0.46 0.337 0.266 0.376 0.287 
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5 CONCLUSION 

This paper presents a method that employs feature processing 

and hybrid modeling to enhance the prediction efficiency and 

accuracy. Initially, a random forest was applied for feature 

selection, followed by the use of the WOA-VMD and 

Kalman filter methods for data noise reduction. In the 

subsequent prediction phase, the method employs the WDE 

model, which demonstrates superior predictive performance. 

The effectiveness of this methodology is validated through 

evaluations on various datasets, showing its potential as an 

auxiliary tool in power grid operations. 

Nevertheless, the method presented herein is not without its 

limitations, primarily due to the imperative of processing data 

in real time within the test set prior to executing predictions. 

Our future endeavors will focus on amalgamating advanced 

decomposition techniques with cutting-edge prediction 

models. 
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