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1 Introduction

Load forecasting is a vital element in the orchestration of
urban energy management and is especially critical during
periods of electricity paucity. According to the United
Nations Human Settlements Programme, urban centers are
responsible for consuming more than half of the global
energy resources. Thus, efficient planning and management
of urban energy are vital for energy conservation. Reaching
carbon neutrality is a shared goal of humanity [1],
necessitating accurate energy forecasting, which plays a
crucial role in achieving these energy goals.

Recent developments in energy prediction have incorporated
both deep learning and traditional machine learning. A novel
deep learning structure employing an attention mechanism
has been proposed by the Transformer model [2]. This model
allows the system to access historical data irrespective of
distance and is more adept at handling repetitive patterns with
long-term dependencies than RNN-based approaches [3].
Several variants, including Autoformer [4], Pyformer [5],
Fedformer [6], and Informer [7], have been developed based
on this model. The Transformer model primarily utilizes the
self-attention  technique to extract the semantic
interdependence of item pairs [2], reducing the time and
space complexity. Various strategies have been suggested to
enhance its effectiveness, including pyramidal attention [5]
and loose masks [8]. The Dlinear model, a unique approach
based on the Transformer model [2], combines the positional
encoding strategy used in Autoformer [4] and Fedformer [6]
with a linear layer. However, there is seldom any semantic
relationship resembling a point between the basic numerical
data in the time series.

Current research demonstrates that combining decomposition
methods with certain models can enhance the prediction
accuracy. For example, Peng's research delved into load
forecasting utilizing the CEEMDAN and transformer
methodologies [9], whereas Changchun explored the synergy
hybrid network [10]. Han's approach centered on the EMD-
Isomap-AdaBoost model [11], while Wang implemented a
model based on VMD-CISSA-LSSVM for electricity load
prediction [12]. Commonly, these studies lack robust feature

selection methodologies, struggle to vyield satisfactory
outcomes when addressing nonlinear time series data, and
lack an effective solution for the noise issue inherent in
power load data. In response to these challenges, this paper
introduces a comprehensive prediction framework based on
feature processing and hybrid modeling. The contributions of
this research are delineated as follows:

e To minimize the error in power consumption prediction,
this paper employs a random forest method for feature
analysis and selection, wuses variational mode
decomposition (VMD) to decompose power consumption,
optimizes the IMF component with the WOA algorithm,
and utilizes a metaheuristic Kalman filter for data
reconstruction to avoid the impact of data noise.

e Given the limited improvement in prediction accuracy
achieved by a single model, this paper introduces a hybrid
model. This model optimizes input and output using
efficient normalization and anti-normalization methods,
narrows feature differences, accelerates convergence, and
enhances prediction accuracy and efficiency. The TIDE
model effectively addresses the limitations of linear
models in modeling nonlinear relationships and external
variables.

e To substantiate the efficacy of the proposed methodology,
this study employs a dataset of power consumption from
Shanghai's Jinshan district. The findings reveal that our
predictive approach surpasses current methodologies in
terms of performance.

The rest of this article is structured as follows:

In Section 2, the proposed data preprocessing method is
discussed. Section 3 describes the proposed prediction
approach. In section 4, the experimental setup and data
analysis are given. The fifth part summarizes the entire paper.
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2. Data Preorocess Method

2.1 Data Preprocessing
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Fig. 1. The data preprocessing procedure.
The overall preprocessing procedure is shown in Fig. 1.
First, in the case of missing values in the dataset, this paper
uses linear interpolation to fill the missing data, including
filtering some dirty data.

Feature engineering is a simpler way to represent uncertain
data and improve its accuracy. Random forests are used in
this process because they allow for a more accurate
assessment of correlations between features. In a random
forest, each decision tree is based on a different sample, and
each node is randomly divided in the feature selection
process to compare errors in different backgrounds.

In this paper, a random forest is used as a feature engineering
method for feature selection, and the features not closely
related to the power load are eliminated to improve the
prediction accuracy. Using the dataset of the JinShan region
in Shanghai, this paper selected five positive correlation
features, namely, the maximum temperature and minimum
temperature.

2.2 Power Load Data Decomposition

WOA-VMD decomposes a signal sequence into its natural
modal components and residuals. This is achieved by
adapting to actual changes in the signal sequence, iteratively

finding the ideal frequency center through a whale
optimization algorithm, and applying a limited bandwidth to
each mode. The power load time series signal is separated
into its frequency domain. VMD[13] is capable of
significantly reducing the number of decompositions
compared to EMD [14], and the stationary properties and
frequency scales of the subsequences differ. The two key
components of VMDI[13] technology are the formulation and
optimization of variational problems (VPs).

e VMD Module. The center frequency is obtained by
constantly updating the center frequencies and gradually
adjusting the frequency band of each mode. The
variational challenge may be formulated as:
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and the new modal components are denoted by:
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where f(w),;(w), A(w) and uP* are the estimated
values of f£(t),u.(t),A(t) and up** after the Fourier
transform, n is the number of iterations, and w is the
frequency. Figure 4 depicts the VMD [13] calculation
procedure, and the parameter estimate can be expressed as:
wne1 Iy wlig(@)Pde
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Although the VMD [13] method can effectively remove
noise, the corresponding hyperparameters need to be
determined in advance. This paper uses the WOA [15] to
optimize VMD [13] and determine the hyperparameters in
advance. In later experiments, it was proven that by
comparing different IMF quantities, the WOA [15] is
indeed effective

o WOA Module. The whale optimization algorithm (WOA)
[15], utilizing the minimal envelope entropy value as its
fitness function, has been employed for the optimization
of VMD [13] parameters. First, the position vector [K,a]
of the whale swarm is initialized. Then, the fitness of each
whale is calculated using the envelope entropy as the
fitness function. Finally, the iterative formula is used to
update the position vector iteratively until the optimal
VMD [13] parameters are obtained. After VMD [13] is
used, the noise of each IMF is still not smooth enough,
which is not conducive to our prediction. Therefore,



Kalman [16] was used to smooth the IMF data and reduce
the cause of inaccurate prediction accuracy caused by
overdryness.

o Kalman Filter. The Kalman filter [16] is a method that
employs the governing equation of a linear system to
approximate the best state of the input and output
observation information. It is an effective approach for
noise reduction and data recovery in data processing.

The Kalman filter [16] consists of two stages: prediction

and correction. The process of prediction and correction is

as follows:

e Prediction: The initial estimate of the current time
step k is determined, and the state of the present
time step k is predicted based on the posterior
estimate of the preceding time step k-1.

X, = Axy_, + By,
Py = AP, AT +Q ®)
K — Alfk-1

where x, represents the prior state estimate value at
time k, and the result at time k predicted according
to the optimal estimate of the previous time k —
1,A signifies that the state is essentially a
hypothesized model for the target state transition; B
represents the input control matrix, how does
external influence translate into state influence; x;,_,
and x;,, respectively, a posteriori state estimates of
the k — 1 moment and the k moment, are the results
of filtering, that is, the updated result, also known as
the optimal estimate; and Q represents a covariance
matrix for predicting the state

e Measurements: To adjust estimations made during
the prediction stage and provide an a posteriori
estimate for the present.

In the prediction stage, the Kalman filter [16] computes the

prior estimates of state variables and error covariance based

on the state estimates from the previous instant. In the
correction stage, an improved posterior estimate and

additional measurement variables are incorporated into the a

priori estimations to refine the state estimates for the present

moment.

3 The Proposed Forecast Approach

The components of the WDE model, including TimesBlock
and the normalized anti-normalized model, are described
below.

3.1 TimesBlock
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Fig. 2. The Times Bolck Model.
As shown in Fig. 2, TimesNet [17] is composed of layered
TimesBlocks. The input first passes through the embedding
layer to extract the deep features. X%, € R %motel | for layer

L TimesBlock, its input is X! € R"*%model After that, 2D

convolution is used to extract 2D timing changes:

X!p = TimesBlock(X!p') + Xipt  (6)

Specifically, TimesBlock consists of the

subprocedures:

e Transform: First, the input one-dimensional timing
features X! ! are extracted, and the period is transformed
into a two-dimensional tensor to represent a two-
dimensional timing change. The highest
intensity k frequency {fy, -+, fi.} corresponds to the most
significant k period length {p,, ---, p}.

o The two-dimensional tensor {X5p, X2, .., X558} is
extracted since it has a two-dimensional locality.
Therefore, the information is extracted via 2D
convolution. Here, using the classical Inception model,
namely:

following

XL = Inception(X5) @

e Dimensionality reduction: For the extracted temporal
features, they are converted back to one dimension
X4 = Trunc (Reshapel_(pixfi) (212]’))) Ji€{l,,k}
®)

Among them, X4 € R™ *model | Trunc(-) means removing
the 0 added by the padding. )operation in the above.

e Adaptive Fusion: In the following step, an
onedimensional  representation of {X“1,-. X!k} s
weighted to sum the intensity of the response frequency to
obtain the final output.

3.2 The Forecast Model
The overall model architecture is shown in Fig. 3.
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Fig. 3. The Forcast Model.

In the prediction model, this paper uses the Dish-Ts [18]
architecture to integrate TimeBlocks into the model through a
normalization-anti-normalization process.

e Conet: unsteady time series are difficult to predict
accurately. Pilot works measure the distribution and its
variation by means of statistics (usually means and
standard deviations) or a distance function. However,
these operations are not reliably quantifiable and have
limited expressive power. In this regard, the general
statement is

BACKCONET
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@ € R* represents the horizontal coefficient, indicating
the total length of the input sequence within the window
x € RL; & € R denotes the factor, representing the
variance scale of x . Typically, the model can be
configured to any neural architecture for linear or
nonlinear mapping, endowing it with considerable
modeling ability and adaptability.

o Dual-Conet: To mitigate internal space shifts and interval
space shifts in the aforementioned time series. The
BACKCONET is  specifically  designed for
comprehending the spatial distribution within the input
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multivariate forecasting, the two CONEts are represented
as:
oo, &) = BACKCONET(x,,),i = 1,-+,N
o), &) = BACKCONET(x?,,),i = 1,-+,N
(10)
lglg € R' is the regressive coefficient of the
window and <p,(1‘2 ,(1‘2 € R' is the coefficient of the
horizontal line at time step number t given a single ith

where (pl(fg

variable sequence. Although the same input is xt("_)L:t, the
two CONETS have different goals.
4 EXPERIMENTAL SETUP AND DATA

ANALYSIS

In this chapter, experimental data and several different
experiments are used to support the findings presented in this
paper. In the first section, this paper introduces the
experimental environment and data. In the second section,
this paper will present the comparison results with the
transformer class model [2], DLinear model [19], and
TimesNet [17]. In the third section, this paper will present the
results of comparisons between different modal
decomposition  techniques.
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Fig. 4. (a) 15-day power load data. Yearly seasonality
load profiles.

4.1 Experimental environment and load data

This paper assessed how well the suggested prediction
techniques performed through a number of experiments. The
experiment was implemented in Python 3.8, using PyTorch
version 1.16 and MATLAB 2018 to write the WOA [15] and
VMD [13] programs, with a computer configured with a Core
(TM) i7-9700 CPU and 16.00 GB of RAM and a GTX2060
GPU. Data Set. The dataset is the actual electricity
consumption of the Jinshan area in Shanghai, as shown in
Table 1.

Table 1 SUMMARY OF DATASETS.

The purpose of this paper is to predict the power
consumption of 12 h — 336 h in the future, so this paper uses
direct multistep prediction.

The power load fluctuates due to the unstable output of
renewable energy. Additionally, power load data are heavily
polluted by random noise, which is attributed to users' unique



usage patterns. Fig. 4 presents the annual cycle and daily
cycle data, wherein the noise is visibly significant.
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Fig. 5. Modal component of VMD.

In this paper, the WOA-VMD module is employed to
reconstruct the data. Fig. 5 displays the modal component
diagram, where the X-axis represents hours, and the Y-axis
represents the specific load. Here, 2000 hours are taken as an
example. This indicates that the modal component of VMD
[13] has a smoother distribution of values than does the
distribution of the original data.

Table 2 displays the core frequency of each IMF component,
delineating a breakdown. When K < 7, the central frequency
decreases, indicating that the IMF model might not be
adequately decomposed. When K=8, IMF5 and IMF6

exhibit similar modes, demonstrating that K=7 s
appropriate for the experiment. Additionally, Fig. 6 illustrates
the calculation process of VMD [13] and the number of IMFs
calculated by the WOA [15].
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Fig. 6. (a) The calculation process of the optimal
penalty factor of VMD [13] and (b) the number of IMFs
calculated by the WOA [15]

After obtaining each IMF component, the data are
reconstructed, and the Kalman filter [16] is used for noise
reduction and smoothing. During the prediction phase, a prior
estimate of the current state variable, a prior estimate of the
error covariance, and the estimate obtained from the state at
the previous moment are calculated. In the revision stage, the
prior estimate is integrated with the new measurement
variable to refine the posterior estimate. The final data are

illustrated in Fig. 7.

TABLE 2 FUNDAMENTAL FREQUENCY OF EACH-IMF COMPONENTS AT VARIOUS K

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10
5 0.02 88.31 46.23 293.41 170.71

6 0.02 88.30 46.23 213.28 295.42 169.82

7 0.01 46.43 89.41 169.31 213.44 169.76 379.00

8 0.01 46.43 89.40 169.32 213.40 295.29 378.77 461.80

9 0.01 46.45 89.41 169.34 213.38 295.19 333.33 374.47 461.43

10 0.01 46.44 89.42 169.34 213.29 253.33 296.26 329.93 378.61 461.53

TABLE 3 COMPARISON WITH TRANSFOMERS AND OTHER METHODS



TimesNet [17] models are selected for experimental

Method WDE TimesNet [17] DLinear [19] Transformer [2] Autoformer [4] Fedformer [6] Pyformer [5] Informer [7]

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Electricity-Jinshan 12h 0.131 0.037 0.141 0.05 0.149 0.056 0.145 0.044 0.227 0.112 0.356 0.252 0.133 0.039 0.134 0.037
24 h 0.166 0.063 0.18 0.075 0.183 0.078 0.176 0.067 0.241 0.116 0.364 0.259 0.167 0.055 0.159 0.05
36h 0.191 0.077 0.212 0.18 0.223 0.22 0.247 0.114 0.292 0.159 0.372 0.265 0.216 0.089 0.202 0.08
48 h 0.106 0.22 0.122 0.238 0.134 0.245 0.235 0.113 0.3 0.17 0.374 0.266 0.219 0.101 0.223 0.097
72h 0.253 0.142 0.268 0.153 0.278 0.161 0.295 0.166 0.339 0.217 0.373 0.264 0.276 0.147 0.272 0.143
96 h 0.269 0.157 0.282 0.168 0.296 0.179 0.282 0.172 0.33 0.207 0.377 0.268 0.291 0.172 0.301 0.174
ﬁZS 0.281 0.176 0.298 0.191 0.311 0.202 0.327 0.209 0.381 0.279 0.389 0.285 0.306 0.187 0.309 0.189
ﬁSG 0.336 0.251 0.349 0.264 0.362 0.268 0.349 0.25 0.387 0.29 0 0.37 0.353 0.284 0.38 0.29
ﬁ?,e 0.355 0.284 0.369 0.298 0.378 0.302 0.401 0.325 0.402 0.331 0.441 0.352 0.39 0.306 0.389 0.304

comparison.
e - A models with direct multistep output to predict data at step
- 7 ‘ NS \\ sizes ranging from 12 h to 336 h.
4
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Fig. 7. The reconstructed data represent the data after
VMD, and the Kalman filter represents the smooth
data after Kalman filtering.

4.2 Prediction comparison based on Transformer

architecture models

In this section, the Transformer [2], Autoformer [4],

The experimental results demonstrate that this model
surpasses
the Transformer model and other algorithmic models in
terms of prediction accuracy, with the smallest MAE and
MSE errors. Notably, the Informer and Pyformer models
outperform the WDE model when the output step size is
between 48 h and 72 h. However, as the output step size
increases, the WDE model exhibits superior performance.

4.3 Prediction comparison based on modal decomposition
models

As depicted in Table 4, this section provides a comparison

of

with other existing modal decomposition models. By
comparing the MAE and MSE evaluation indices, it is
demonstrated that WDE model prediction, following WOA-
VMD and Kalman preprocessing, can address the nonlinear
characteristics of power loads and enhance prediction

Informer [7], Fedformer [6], Pyformer [5], DLinear [19] and accuracy.
TABLE 4 COMPARED WITH MODAL METHOD
Method WDE VMD-Transformer VMD-GRU-TCN VMD-Isomap-AdaBoost [11] VMD-CISSA-LSSVM [12]
Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE
Electricity-JinShan 12h 0.131 0.037 0.281 0.176 0.324 0.179 0.162 0.053 0.291 0.187
24h 0.166  0.063 0.306 0.201 0.311 0.202 0.183 0.081 0.299 0.194
36h 0.191 0.077 0.338 0.226 0.382 0.249 0.227 0.094 0.307 0.2
48h 0.106 0.22 0.248 0.364 0.37 0.248 0.235 0.105 0.309 0.201
72h 0.253  0.142 0.394 0.279 0.43 0.301 0.274 0.152 0.308 0.199
96 h 0.269 0.157 0.408 0.296 0.417 0.307 0.265 0.142 0.312 0.203
128 h 0.281 0.176 0.424 0.317 0.462 0.344 0.316 0.214 0.324 0.22
256 h 0.336  0.251 0.475 0.39 0.484 0.385 0.322 0.225 0.371 0.305
336 h 0.355 0.284 0.495 0.424 0.536 0.46 0.337 0.266 0.376 0.287




5 CONCLUSION

This paper presents a method that employs feature processing
and hybrid modeling to enhance the prediction efficiency and
accuracy. Initially, a random forest was applied for feature
selection, followed by the use of the WOA-VMD and
Kalman filter methods for data noise reduction. In the
subsequent prediction phase, the method employs the WDE
model, which demonstrates superior predictive performance.
The effectiveness of this methodology is validated through
evaluations on various datasets, showing its potential as an
auxiliary tool in power grid operations.

Nevertheless, the method presented herein is not without its
limitations, primarily due to the imperative of processing data
in real time within the test set prior to executing predictions.
Our future endeavors will focus on amalgamating advanced
decomposition techniques with cutting-edge prediction
models.
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