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Abstract

Temporal Knowledge Graphs (TKGs) differ from conventional static ones by incorporating dy-
namic facts tied to specific timestamps, thus capturing the evolution of knowledge over time.
While the additional time constraints also introduce challenges for the representation and rea-
soning of dynamic knowledge, the field of Temporal Knowledge Graph Embedding has attracted
significant attention. However, previous TKGE methods inadequately considered the correla-
tions, which could be from both individual local quadruples (Intra-Correlations), and multiple
global KG snapshots (Inter-Correlations), of which the limitation results in less expressive repre-
sentation and leads to suboptimal reasoning performance. To address this, we propose TI>?C, an
embedding-based model leveraging quaternion algebra to represent temporal factual quadruples,
which adopts a holistic perspective that accounts for both Intra- and Inter- Correlations. On the
one hand, we preserve timestamp information with representation of temporal entities and cap-
ture the Intra-Correlations by refined scoring function based on rotation in 3-D quaternion space.
On another, we integrate a Relevant Snapshot Perceiving (ReSP) module aiming to gather poten-
tially inter-correlated quadruples by similarity calculation, then generate the synthetic footprint
embedding to trace the path along the historical timeline. Extensive experiments on ICEWS and
GDELT datasets suggest that our model consistently outperforms the state-of-the-art baselines
for Link Prediction task]

Keywords: Knowledge Graph Embedding; Temporal Knowledge Graph; Knowledge
Representation and Reasoning; Quaternion; Link Prediction;

1. Introduction

Knowledge Graphs (KGs) serve as repositories for human knowledge in a structured manner.
As many human facts are temporally valid or occur within specific timestamps, the static nature
of KGs poses challenges, with factual triples potentially becoming outdated over time. For ex-
ample, (Cristiano Ronaldo, member of club, Real Madrid FC ) was valid only during the years
2009-2017. To address this challenge, Temporal Knowledge Graphs (TKGs) are introduced to
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represent the dynamic facts for understanding knowledge evolution, which is crucial for data
intelligence. In TKGs, a fact is encoded as a quadruple (s, r, 0, T), where T marks the specific
time when the fact is true, so the former fact could be stored as: (Cristiano Ronaldo, member of
club, Real Madrid FC , 2009-2017). This structure facilitates more accurate representation and
retrieval of information, supporting applications that require tracking the temporal progression
of knowledge.
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Figure 1: An example of reasoning over TKG by historical knowledge. Enitities and relations are extracted from
ICEWS14 dataset. To infer the missing part at current time, our model learns the intra-correlations among enti-
ties,relaitons and timestamps within each snapshot, and capture the inter-correlated snapshots(highlighted in the figure)
to trace the footprint by the proposed ReSP module. Note that we use negotiate to represent engage in negotiation for
short.

Although large-scale TKGs contain billions of facts, the inherent incompleteness under-
mines their performance in downstream applications, including question answering, information
retrieval[[1]. This limitation has motivated the task of Temporal Knowledge Graph Embedding,
which represents the temporal quadruples as low-dimensional vectors and infers missing links
based on pre-designed score function. Many TKGE approaches [2} 3| 4] applied and extended
Knowledge Graph Embedding (KGE) models [5] 16l [7]], which are originally designed for static
Knowledge Graphs without timestamps. Other works propose new models by introducing vari-
ous methods, including Archimedean spiral [§]], polynomial approximation [9]], tensor decompo-
sition [10], Heterogeneous Geometric Subspaces [11]] and so on.

However, previous TKGE models struggle to capture the dual correlations in TKG ade-
quately, as they primarily rely on simple concatenation or product operations. On the one hand,
it remains challenging to capture the nuanced semantic features of individual entities, due to
the rich correlations with their connecting relations. For example, consider quadruple (Barack
Obama, married, Michelle Obama, 1992-10) and (Barack Obama, host a visit, South Korea,
2014-10) , entity Barack Obama embodies multifaceted attributes: the former denotes his family
ties, while the latter emphasizes the political career. Additionally, distinguishing asynchronous
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occurrences of the same entities, and preserving temporal information to establish timestamp
linkage poses significant challenges. Capturing such latent intra-correlations within temporal
information is difficult for existing methods. On the other hand, facts in TKGs are inherently
time-relevant and sequentially ordered. As shown in Figure[I| quadruples (Kim Jung-Un, con-
sult, Barack Obama, 2014-10) and (Barack Obama, Make a statement, North Korea, 2014-01)
show significant logical correlations, which are from different KG snapshots on the timeline. We
believe that abundant valuable historical knowledge could be mined from the inter-correlated KG
snapshots along the chronological timeline, which could provide valuable proofs for reasoning
the missing facts.

To overcome above challenges, we leverage capabilities of Hamilton’s quaternions and in-
troduce an advanced Temporal Knowledge Graph Embedding (TKGE) model namely(TI*C),
under a thorough dual-consideration of Intra- and Inter- Correlations. TI?C maps the quadru-
ples into hyper-complex quaternion space, obtaining refined representation of entities and rela-
tions along with timestamps, and employs well-designed mathematical formulations based on
quaternion rotation theory to capture the intra-correlations among them. Moreover, to capture
inter-correlations within alike KG snapshots over time, we introduce an additional module called
Relevant Snapshots Perceiving (ReSP), which identifies and collects likely inter-correlated KG
snapshots within a manually-tunable duration of timeframe. Specifically, ReSP measures the
correspondence between the current snapshot and historical ones at different timestamps by sim-
ilarity function, and concatenates the entities from top-m inter-correlated snapshots to generate a
synthetic embedding. The synthetic embedding presents valuable traces of the different chrono-
logical snapshots and provide historical knowledge to aid in reasoning tasks, thus called footprint
embedding. Empirical experiments conducted on widely recognized benchmarks demonstrate
that our proposed model consistently outperforms current state-of-the-art baselines for Tempo-
ral Knowledge Graph Reasoning (TKGR) tasks. Our main contributions can be summarized as
follows:

1. We introduce an efficient quaternion-based Temporal Knowledge Graph Embedding (TKGE)
model namely T1>C, which efficiently leverages both intra- and inter-correlations within
Temporal Knowledge Graphs (TKGs), to enhance expressiveness of knowledge represen-
tation and performance on reasoning.

2. By employing refined knowledge representation based on quaternions, TI*C models intri-
cate correlations within entities,relations and timestamps inside each quadruple, and we
further develop a integrated module namely Relevant Snapshot Perceiving (ReSP) to cap-
ture potentially inter-correlated KG snapshots, under the propose of retrieving historical
knowledge along the timeline.

3. Extensive experiments were conducted on three well-known TKG datasets to evaluate the
effectiveness of our proposed model. The empirical results of improvements across all
metrics demonstrate that our model achieves state-of-the-art performance for Link Predic-
tion task on TKGs.

2. Related Work

2.1. TKGE Models

Knowledge Graph Embedding(KGE), which projects entities and relations into a lower-
dimensional continuous space, pivots on designing expressive score functions to better assess
plausibility. Based on the type of scoring function, these models could be roughly divided into
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three categories: a). Translational: inspired by the translation invariance principle, TransE [12]]
interprets the relations as vector translation, while its simplicity motivates the following works
[13L114}]15}16]; b). Rotational: in parallel, rotation models [16, 17, [18,[19,I5], initiated by RotatE
[S]], embed entities onto complex plane and treat the relations as rotation. c). Integrated: to com-
bine translation and rotation into score functions for mutual benefit have been trending in recent
years. [20} 21}, 22} 23] 241 23]

However, previous KGE models were designed for static KGs, thus struggle to deal with the
temporal information in TKGs. Therefore, TKGE models extend traditional ones by incorporat-
ing additional timestamps, to represent and reason time-aware facts. Many TKGE models are
built upon static KGE models [5, 126} 23| [7]], including Tero [2l], BoxTE [3] , RotateQVS [27],
ComTR [28]] and PTKE [4]. More recently, HGE [L1]] leverages diverse geometric subspaces
to capture various temporal patterns and introduces a temporal-geometric attention mechanism.
TeAST [8] utilizes an Archimedean Spiral Timeline and transforms quadruples into a third-order
tensor. STOKE [29] captures structural and temporal contexts by incorporating relevant matrices
and constructing tree-based evolution of events for each query. HaSa [30] addressed the issue of
false negatives by the proposed contrastive learning approach and improved the performance of
InfoNCE loss. IME [31]] projected TKGs into multi-curvature spaces and incorporated different
key properties to capture geometric structures. Our model falls under the TKGE models.

2.2. Other Models

Apart from embedding models, there are various methods for the Link Prediction task on
TKGs. We conclude and categorize them as follows: a). Based on logical rules [32, 33} 34} 135}
36] make inferences by learning symbolic characteristics of KGs; b). [37} 138, [39]] incorporate
reinforcement learning to construct the reward function to perform multi-hop reasoning. c). [40,
411,142, 143]) adopt graph networks (GCN, GNN) to learn the evolutions of entities and relations at
each timestamp. d). To leverage the power of pre-trained language models(PLMs), [29} 44! |45]]
treat TKG as textual input sequences and make predictions by the learning results of language
models. More specific introduction for some models could be seen in the Baseline|5.1|section.

3. Preliminaries

3.1. Notations

A temporal knowledge graph G, formally defined by the entity set & , relation set R and
timestamp set 7, and is a structured collection of factual quadruples D = {(s,r,0,7)} CEXR X
EXT . A TKG could also be formulized as a sequence of knowledge graph snapshots ordered by
timestamp, i.e., Sg = {G1, G2, ..., Gy, .. .}, while the snapshot at timestamp ¢ € [0, 7] is the set of
time-relevant factual quadruples. We need to state in advance is that we will use bold items to
denote vector representations in later context. More symbol definitions are listed in Table|T]

3.2. Task Formulation

The Link Prediction task on TKGs aims to infer the missing object entity o via answering
query like (s, 1, ?, 7,) with given historical information {(s, 1,0,T)) . T; < ‘rq} from the earlier KG
snapshot sequence: Sg = {GT] ,Grysev s GTq, } with the facts in period 7, remaining unknown.
Specifically, we consider & as the candidates and rank them by descending order within the score
function, to measure the plausibility of predicted answers for the given query. Besides, for each
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Table 1: Notations&Description in this paper

Notation Description
Gt A Temporal Knowledge Graph
Sg KG Snapshots
s,0€&E Infinite set of subject,object entities
reR Infinite set of relations
TeT Infinite set of timestamps
(s,r,0,7) A quadruple
Vil Score function
L Loss function
0 Quaternion
w; Normalized relational rotation matrix
RF k dimensional real-valued space
Ck k dimensional complex space
HF* k dimensional hypercomplex space
Inner product
o Hadmard product

Hamilton product

fact in Gy, we add inverse quadruple(o, 7', s, 7;) into Gy, correspondingly. By doing so, the
reasoning task could be generalized to predicting the missing object entity, as predicting subject
entity could be converted to its inverse quadruple.

3.3. Quaternion Algebra

Quaternion is an extension of complex algebra system, extending traditional complex number
system to four-dimensional space. A quaternion Q € H is defined as Q = a + bi + ¢j + dk, where
a,b,c,d € R and i, j, k € C are imaginary units. A quaternion could be written in the form of
a scalar and a vector: Q = [a,Vv],v = (b,c,d). Some basic definitions and operations of the
quaternion are listed as follows:

Product of i, j, k: The multiplication between any two quaternion units are:

i2=j2=k2=—1
ij=k jk=i i=j (1
ji=—k kj=-i ik=-j

where we can easily tell that the multiplication rule is non-commutative.

Conjugate: The conjugate of a quaternion Q is defined as:

O=a-bi—-cj—dk 2)

Norm: The norm of a quaternion Q is defined as:

|0l = Va2 + b* + % + d? 3)
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Inner Product: The quaternion inner product between Q; and Q, is obtained by summing up
the inner products between corresponding scalar and imaginary components:

Q1+ Q2 ={ay,az) +{b1,by) +{c1,c2) +{d1,d>) 4

Hamilton Product: The Hamilton product consists of multiplications of each factor in quater-
nions:

01® Qs = (a1a2 — b1by — c1¢c2 — didy)
+(a1by + byay + c1dy — dcy)i
+(ajcy —bidy + crap + diby)j
+(ajdy + bicy — c1by + dian)k

®)

. . 8 . . .
Quaternion Rotation: let u? = ¢“2 = cos %7 + sin %’u, where u is a unit vector. Then we can get

a pure quaternion(the scalar part a = O)rotating 8 around axis u by:

0 =u"®0eu’ 6)

4. Methodology

In this section, we introduce an innovative TKGE model called TI?C (Time-evolving Intra-
and-Inter-Correlation), which is specifically tailored to efficiently incorporate temporal informa-
tion and capture two fundamental types of correlations within TKGs, including Intra-Correlations
and Inter-Correlations. This process is modeled as a quaternion rotation, as visually depicted in

Figure 2]

Figure 2: The overall presentation of the quaternion rotation: (a) 3D quaternion space. (b) Quaternion Rotation. (c) The
illustration of TI2C model.

4.1. Representing TKG with Quaternions

Given a temporal knowledge graph G € & X R X & X 7, we use the quaternion matrix
Q,, € H® to represent subject and object entity embeddings, W, € H"®** to represents all
relation embeddings, and 7 € H7™¥ to represent all timestamp embeddings, where k is the
embedding dimensions. To satisfy the prerequisite of quaternion rotation, the subject and object
entities are defined as pure quaternions:

Qs =asi+bsj+cik

Qo = aoi + bo.] + Cok (7)
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The primary challenge encountered by Temporal Knowledge Graph Embedding (TKGE) meth-
ods is to preserve the temporal validity of quadruples, aligning with the evolutionary nature of
knowledge. Therefore, maintaining timestamp information within embeddings becomes crucial.
In our model, we tackle this challenge by representing both the subject and object entities as
time-evolving quaternion embeddings by following calculation:

Qs,‘r = TQST_l

Qo,‘r = TQoTil ®)

Where the coefficients a,b, ¢ € R are rows from corresponding matrix, while Q,, and Q, -
€ H are embeddings of subject and object entities under the current timestamp 7, respectively.

4.2. Intra-Correlations Learning

Definition 1. Intra-Correlation: For a TKG, the correlations among entities, relations and times-
tamps within each KG snapshots is defined as Intra-Correlations

To further encode the Intra-Correlations among entities,relations and timestamps, we employ
refined representations based on quaternion rotation supported by Eql6]:

Qs 1) =W ®Q,, @ W

)
<4 <!
Q(O, rT) = Wr ® Qo,‘r ® Wr
where W} is the normalized relational rotation matirx, representing in Trigonometry:
“ 6r .
W} :cosE +u,sm5 (10)

Score Function: Finally, we formulated the score function of TI>C as inner product of the subject
and object embedding:

F(s,r,0,7)=Q(s,r,7)- Qlo,r,7) (11)

4.3. Inter-Correlations Learning

Definition 2. Inter-Correlation: For a TKG, the correlations among a sequence of KG snapshots
along the timeline is defined as inter-correlation.

Relevant Snapshot Perceiving: Existing Temporal Knowledge Graph Embedding (TKGE)
models often struggle to fully exploit the correlations among Knowledge Graph (KG) snap-
shots over consecutive time intervals. To bridge this gap by capturing inter-correlations within
sequential KG snapshots, we propose an independent module inspired by prior works [46l 41,
termed Relevant Snapshot Perceiving (ReSP). ReSP aims to extract latent information from the
most similar snapshots along the chronological timeline and refine the final representation. No-
tably, ReSP is seamlessly integrated into the score function to facilitate its implementation. The
procedure of ReSP unfolds in three stages:

o [-Temporal Horizon: Initially, a I-Temporal Horizon is defined, within which ReSP identi-
fies the relevant snapshots spanning a duration of length /. Subsequently, for each snapshot,
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ReSP ranks all candidate quadruples by computing their correspondence weights using co-
sine similarity:
W={wlielr-I[v-1]}

: (12)
w; = cosine(Sg,, Sg,)

e Footprint Embedding Generating: Then, we concatenate the entities embeddings retrieved
from selected top-m inter-correlated snapshots, determined by the calculated correspon-
dence weights, to obtain the footprint embedding.

Q{,T =W i Qs,‘ri

5:11 (13)
Qg,‘r =W Z Qo,‘r,-

i=1

where w; € top,,(W) is the weight of the top-m KG snapshots, and Qs ., Q,, could be
calculated by Eq. [§]

e Historical Thread Weaving: Subsequently, we employ the score function defined in Equa-
tion |11 to capture historical information at different timestamps {7;| € [t — [, 7 — 1]} from
the compounded footprint embeddings:

ReS P(s,r,0,7) = QL. ® Q! (14)

4.4. Training Objective

We modify the margin loss function [3]], which was originally used for traditional KGE mod-
els:

n
L=~logaly~F()~ > logo(F (&) ~7) as)
i=1

+ 4110115 + I3

where 7 is the positive traning quadruple, y is the number of negative samples per &, o7(-) is sig-
moid function, and vy is a fixed margin. & denotes the generated negative samples. Additionally,
the model uses [, norm with ratio parameter 4; and A, for regularization of Q and W.

5. Experiment

5.1. Experiment Setup

Datasets: We conducted experiments to perform the TKGR task on widely recognized datasets:
ICEWS14 and ICEWSO05-15 [47] are subsets of the Integrated Crisis Early Warning System
(ICEWS) dataset, with the number indicating the occurring year of events. And GDELT is
extracted from the Global Database of Events,Language and Tone, from which the events happen
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Table 2: Dataset Statistics

Dataset ICEWS14 ICEWS05-15 GDELT

tS] 7128 10,488 500
IR 230 251 20
|71 365 4017 366

|G T rain 72,826 386,962 2,735,685
|Gvaiidl 8,963 46,092 341,961
|G Tesi] 8,941 46,275 341,961

during 2015/4/1 to 2016/3/31. Table [2) summarises the statistics of datasets, and we call tell that
GDELT is much larger compared to ICEWS but has fewer entities and relations, which indicates
a more data-intensive dataset.

Evaluation Protocols: Link prediction task aims to infer the missing entity for a given time-
wise quer(s,r, ?,7) or (?,r,0,7). The model ranked all candidates by calculating the score of all
possible quadruples with substitutions of the subject entity and the object entity: (s’, r, 0, T) and
(s,r,0',7), where 5,0’ € & The performance is evaluated using standard evaluation metrics:
Hits@n reflects the ratio of correct predictions ranked in top n (Hits@ 1, Hits@3, and Hits@10),
and the mean reciprocal rank (MRR) represents the average inverse ranks. Both reflect a more
advanced performance with increasement on value.

Baselines: We compare our model with a wide variety of competitive baselines, including:

o ALRE-IR [35] combined embedding-based and logical rule-based methods for temporal
knowledge graph reasoning by learning rule embeddings, enabling interpretable causal
predictions and achieving superior performance over state-of-the-art models.

o TFLEX [34] proposed a framework of Temporal Feature-Logic Embedding to model all
first-order logic operations on the entity set, and extend fuzzy logic on timestamp set to
handle different temporal operators.

o DREAM [37] combined multi-faceted attention representation learning, which captures
both semantic dependence and temporal evolution, with an adaptive reinforcement learn-
ing framework that learns reward functions for multi-hop reasoning.

o RLAT [39] integrated reinforcement learning with an attention mechanism, using LSTM
and attention as memory components to improve reasoning path training, and employing
an attention mechanism with influence factors to differentiate the importance of neighbor-
ing features.

o IE-Evo [45] integrated both internal structural evolution and external knowledge semantics
from pre-trained language models, addressing data scarcity and capturing rich temporal
dependencies.

o L’TKG [44] used in-context learning with large language models and leveraged symbolic
patterns from past facts, rather than relying on prior semantic knowledge.
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TiRGN [40] leverages local and global historical patterns through a recurrent graph net-
work, capturing the sequential, repetitive, and cyclical dynamics of past events to improve
the predictions of future facts.

RPC [41] leveraged semantic correlations between relationships and periodic temporal
patterns through novel relational and periodic correspondence units, improving the ex-
pressive ability and reasoning performance across snapshots.

BoxTE [3] incorporated time stamps into box embeddings, offering full expressiveness
and strong inductive capacity for predicting missing facts at different time steps.

PTKE [4] embedded temporal facts into a polar coordinate system, where the modulus
distinguishes different time-constrained entities, and the angular part differentiates entities
with the same modulus, providing a more precise representation of temporal data within
the translation-based model framework.

Implementation Details: All experiments are implemented on single NVIDIA 3090 GPU. The
best models are selected by early stopping on the validation set with Hits@10. The max training
epoch is 300. And we report the best hyper-parameters for each of three datasets as follows,
respectively: For the dimension size of embeddings k, we set k=1000, 1000 , 1200. The learning
rate « is 0.1 for all. For the regularization rates, we set 4;=0.002 , 0.001 and 0.0005, 2, = 0.01 ,
0.1 and 0.01.

Table 3: Experimental results on three benchmark datasets. The best performances are in boldface, and the second best
are underlined. Results of baselines are taken from original papers.

Logical-rule-based
ALRE-IR [35] 0.540 0428 0.612 0.718 | 0.602 0.490  0.677 0.775 - - - -

ICEWS14 ICEWSO05-15 GDELT
MRR Hit@]l Hit@3 Hit@l0 | MRR Hit@]l Hit@3 Hit@l0 | MRR Hit@l Hit@3 Hit@10

TFLEX [34] 0.482 0.357  0.565 0.723 | 0430 0300 0.498 0.695 | 0.185 0.101  0.196 0.349
RL-based
DREAM [37] 0.517 0420 0.564 0.724 | 0.568 0473  0.651 0.786 | 0.281 0.193  0.311 0.447
RLAT [39] - - - - 0.466 0366  0.429 0.502 | 0.353 0268  0.335 0.477
Text-based
1E-Evo [45] 0.449 0.345  0.496 0.653 | 0.517 0400 0.588 0.730 - - - -
L?TKG [48] 0474  0.354 - 0.711 | 0.574 0.419 - 0.807 | 0.205 0.129 - 0.358
Graph-based
TiRGN [40] 0.440 0.338  0.490 0.638 | 0.500 0.393 0.561 0.707 | 0.217 0.136  0.233 0.376
RPC [41] 0.446 0.349  0.498 0.651 | 0.511 0395 0571 0.718 | 0.224 0.144  0.244 0.383
Embedding-based
Tero [2] 0.562 0.468  0.621 0.732 | 0.586 0.469  0.668 0.795 | 0.245 0.154  0.264 0.420
RotateQVS [27] 0.591 0.507  0.642 0.754 | 0.633 0529 0.709 0.813 | 0270 0.175  0.293 0.458
BoxTE [3] 0.613 0.528  0.664 0.763 | 0.667 0.582 0.719 0.820 | 0.352 0269  0.377 0.511
PTKE [4] 0.554 0444  0.624 0.760 | 0.572 0.454  0.649 0.789 - - - -
TI>C(Ours) 0.628 0.549  0.675 0.774 | 0.678 0.599  0.726 0.822 | 0.367 0.283 0.391 0.530
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5.2. Experimental Results

Performance Benchmarking We compare our model against state-of-the-art baselines em-
ploying various approaches. The results detailed in Table [3] tell that our model consistently
outperforms other baselines across all metrics. We unpack the main findings as follows.

i).
ii).

iif).

v).

Notably, our model exhibits superior performance, surpassing the best baseline by 1.6%,
2.4%, and 4.3% on Mean Reciprocal Rank (MRR) across three datasets, respectively.
Particularly remarkable is our model’s significant improvement on the dense GDLET dataset,
attributed to its capability to extract valuable knowledge along with noisy information.
Still, our model also shows great performance on the two sparser dataset ICEWS04 and
ICEWSO05-15, which proves its ability to deal with data sparseness.

Compared to TeRo, our model demonstrates substantial enhancements over TeRo [2], which
embeds the graph into a complex space and uses the Hadamard product. Specifically, we
observe improvements of 6.6%, 9.2%, and 12. 2% in MRR, highlighting the superiority of
quaternion embeddings and the Hamilton rotation-based scoring function.

Last but not least, the notable performance of Temporal Knowledge Graph Embedding
(TKGE) models, including ours, suggests the efficacy of this methodology for reasoning
task.

In-depth Comparison: Compared to RotateQVS [27], our model leads by the margin of

0.8

—8— k=500,0urs
—m— k=1000,0urs
—¢- k=500,RotateQVs
0.7 4 —&— k=1000,RotateQvs

] /"’4—<
g 051
£
0.4

0.3 4

0.2

50 100 150 200 250 300
Epoch

Figure 3: Comparison of RotateQVS and our model under differed embedding dimension

3.7%, 4.5% and 9.7%, respectively. Though our model shares similarities with it, there also
exist some major differences. In this part, we explain why our model can achieve a significant
performance improvement over previous RotateQVS model, and the reasons are summarized as
follows:

1.

More advanced representation of temporal information: Though our model and Ro-
tateQVS both apply quaternion representation, the scalars of imaginary parts are different.
RotateQVS preserve temporal information by simply multiplication:s, = 7s7~!; while our
model divides embedding from timestamp matrix as scalars and models the timestamps
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5.3

as different axes of quaternion space. This allows our model to show more flexibility in
distinguishing the independence or strengthen the connection between them.

. More expressively-powerful scoring function: Our model learns the intra-correlations by

Halmiton product of quaternion representations, whose advantages have been discussed in
QuatE. While RotateQVS applies translation by simply adding up the embedding of entity
and relation, which lacks enough modelling ability. Besides, the score function of our pro-
posed model significantly differs from RotateQVS, as our model calculates the similarity
based on semantic matching function (dot product), while RotateQVS is based on dis-
tance translating (translation), and could be seen as the quaternion version of Tero. While
for quaternion-based KGE models, semantic matching function[23| 49 50, I51]] perform
generally better than distance translating one, thus are more popular.

. Better information retaining ability of embedding: Another very important reason lies

in the dimension of embedding, as a higher dimension can provide the embedding of the
ability to retain information. The best performance of our model is achieved at 1000,1000
and 1200 for three datasets, while RotateQVS is reported to be 500 for all. To further
analyze the differences, we conduct an experiment to compare RotateQVS and our model
on ICEWS14 dataset with different dimension(we reproduce the results of RotateQVS by
replacing the scoring function under our training framework), as shown in Figure 3} We
can observe that when the dimension d=1000, the improvement of RotateQVS appears to
be minimal. Therefore, the main reason for our performance lead could be allowing larger
dimensions (while our model still performs better at the same degree).

Parameters Analysis
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Figure 4: Analysis of hyperparameters m and / on ICEWS14 and ICEWS05-15 datasets

We conducted empirical analysis to investigate the impact of two hyperparameters of the

ReSP module: the length of the temporal horizon /, and the number of selected inter-correlated
snapshots m. Figure [] visually illustrates the performance variance of MRR when [ and m
changes, from which we could observe that: For the ICEWS14 dataset, the optimal performance
is achieved at / = 90 and m = 3 (see Figure A(a)), while for ICEWS05-15, it occurs at [ = 1460
and m = 5(see Figure A(b)). In both datasets, performance initially increases and then decreases
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as [ enlarges. This behavior may be attributed to an oversized temporal horizon: when [ is very
large, ReSP identifies inter-correlated snapshots from a distant past. Although the similarity
score might be high, the assistance they provide could be minimal due to the remote timeframe.

5.4. Ablation Study

We conducted an ablation study to assess the individual contributions of the two correlation
learning components. Table [ presents the performance variations observed. Notably, the Intra-
CL component is removed by simplifying the score function to Qs, 7 - Qo, 7. while disabling
the Inter-CL component involves straightforward omission. From the findings in Table [ it’s
evident that the complete TI>*C model with the ReSP module achieves unparalleled performance.
Removal of either of the correlation learning components results in sub-optimal performance.
This underscores the effectiveness of both Intra- and Inter-Correlation Learning in enhancing
model performance.

Table 4: Ablation Study on the two correlations learning

ICEWS14 ICEWSO05-15
MRR Hits10 ‘ MRR Hits10

w/o Both 0.601 0.747 | 0.632 0.789
w/oIntra-CL  0.620 0.762 | 0.675 0.816
w/o Inter-CL  0.623  0.767 | 0.676  0.807

TI?C 0.628 0.774 | 0.678  0.822

5.5. Case Study

To delve deeper into Inter-Correlation Learning, we conducted a case study on the ICEWS04
dataset to focus on the extracted inter-correlated quadruples. Table [5] presents the test queries
and the top-m (m = 3) retrieved correlated quadruples , alongside their corresponding similarity
scores, with the length of the temporal horizon [ set to 150. For example, in the first query

Table 5: Case Study on ReSP capturing top-m inter-correlated quadruples from different KG snapshots along /-length
timeframe. In this case, m=3 and [ is set to 150 days (approximately 5 months)

Test query Top-3 correlated quadruples Similarity Score
(Barack Obama, Make (Barack Obama,Make a visit,Xi Jinping,2014-11-03) 0.87
statement, ?(Xi (Barack Obama, Meet at third location,Xi Jinping,2014-06-25) 0.80
Jinping),2014-11-04) (Barack Obama,Make statement,Government (Syria),2014-09-12) 0.68
(?(China),Threaten, (Protester(Hong Kong),Reject,China,2014-09-28) 0.79
Protester(Hong (China,Threaten, Vietnam,2014-05-07) 0.76
Kong),2014-10-02) (China,Threaten,North Korea,2014-05-20) 0.73

(Barack Obama, making a statement, ?, 2014-11-04), the task is to predict the correct object
entity Xi Jinping. while the most correlated quadruple identified is (Barack Obama making
a visit to Xi Jinping on 2014-11-03), with the highest similarity score of 0.87. The finding
provides significant historical information from adjacent times, illustrating the efficacy of ReSP
in capturing inter-correlations between events across asynchronous KG snapshots.
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5.6. Further Analysis on ReSP

Computational Efficiency: As ReSP requires traversing all the quadruples within a specific
range of timeframe along the sequetial TKG snapshots, the potential computational cost could
be a significant issue on the reasoning time. Therefore, to empirically analyze the computational
efficiency, we record the reasoning delay during testing stage on ICEWS04 and ICEWSO05-15
datasets. As shown in Figure [5] below, the whole reasoning delay of the best hyperparameters
combination for ICEWS14(1=90,m=3) requires about 132s, while ICEWS05-15(1=1460,m=5)
requires about 296s.

Additionally, to reduce the reasoning delay and achieve performance optimization, an early stop

Reasoning Latency Analysis Reasoning Latency Analysis

[ no early stop [ no early stop
. [ + early stop . [ + early stop
0 0
= =
o o
C C
[} [
g m g L
- -l

’ Tempor;I Horizon L?ength (1 ” Tempor;DI Horizon Ilugngth (1 "
(a) ICEWS04 (b) ICEWSO05-15

Figure 5: Analysis of reasoning effiency on ICEWS14 and ICEWS05-15 datasets

method is applied to the ReSP module. To be specific, we set an m-size cache to store the top-m
correlated snapshots, and record the highest score. The cache is updated when the current score
is larger than the highest score, and if it has not been updated after a calculation of certain num-
bers of quadruples(we set the number to be 500), then the early stop is triggered. From Figure 3]
below we can tell that our early stop does reduce the reasoning delay, and performs better with
a larger dataset. It reduces the reasoning delay by about 3012ms and 6825ms for each dataset,
respectively.

Transferability: As ReSP is an additional module, it can be applied to other TKGE model.
Therefore, to demonstrate the transferability of ReSP, we replace our model with the score func-
tion of RotateQVS and reproduce the results, as shown in Table[6] which suggest the effectiveness
and transferability of ReSP on other TKGE scoring functions.

Table 6: Experiments on the transferability of ReSP. * denotes our reproduced results.
ICEWS14 ICEWS05-15
MRR Hits10 | MRR Hits10

RotateQVS* 0.587 0.749 | 0.629 0.816
RotateQVS*+ReSP  0.601 0.767 | 0.640 0.837
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6. Conclusion

In this paper, we introduce TI?C, an efficient quaternion embedding-based model for Tem-
poral Knowledge Graph representation and reasoning. On the one hand, we tailor the model
score function by quaternion vector operations in hyper-complex space, to capture the intra-
correlations among entities, relations and timestamps within KG snapshots. On the other hand,
we propose a Relevant Snapshot Perceiving (ReSP) module to enhance the model’s ability to
retrieve relevant snapshots along the chronological timeline. By effectively capturing the Intra-
and-Inter Correlations, the model refines the final representation by the structural nuances and
temporal information within TKG, enhancing the model’s overall performance on reasoning.
Through extensive experiments on mainstream benchmark, we empirically evaluate our model,
and the performance achieves state-of-the-art against recent competitive baselines.
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