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Abstract

As the pace of scientific knowledge production accelerates and the volume of domain-specific
literature continues to grow, the development of classification models capable of capturing
semantic subtlety and adapting to imbalanced label distributions has become increasingly central to
intelligent text understanding. However, existing multi-label classification approaches for scientific
texts often fall short in fully leveraging semantic features and struggle with accurately identifying
low-resource or semantically overlapping categories. To address these challenges, this study
proposes a two-stage classification framework that integrates domain-aware semantic feature
encoding into large language models (LLMs). In the first stage, we construct a dynamic-window-
based topic semantic extractor and a hierarchical structure-aware encoder, embedding these
features into the [CLS] and [SEP] positions of the LLM to enhance semantic representation. In the
second stage, a fine-grained semantic routing strategy is introduced within a mixture-of-experts
(MoE) architecture, enabling adaptive expert allocation informed by semantic cues. Experimental
results on both the DBpedia benchmark and a domain-specific dataset of scientific value sentences
demonstrate consistent performance improvements: our approach achieves a 4.37%—5.82% gain in
F1 score over existing semantic encoding methods, reaches a peak F1 of 94.19% on value sentence
recognition, improves macro-average F1 to 93.35% on balanced data (a 9.04% increase), and
boosts F1 for minority classes by over 25% on imbalanced datasets. The results suggest that
semantically guided representation enhancement may offer a promising pathway toward more
accurate and resilient classification in scientific text mining.
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1. Introduction

Text multi-classification is a fundamental task in the field of Natural Language Processing (NLP),
aiming to accurately assign textual data to predefined categories based on semantic content and linguistic
features [1]. This task plays a crucial role in parsing the semantic structures of scientific texts, extracting
key information, and organizing knowledge [2]. As a result, optimizing and improving multi-
classification models has remained a central focus in NLP research [3]. Semantic features, which
encapsulate the core content and deep meaning of texts, are pivotal to enhancing the accuracy and
efficiency of multi-classification models [4]. However, with the increasing scale of scientific textual data
and the growing complexity of classification taxonomies, the semantic boundaries between different
categories have become increasingly blurred. Moreover, class distribution is often significantly
imbalanced, making it difficult for models to capture subtle semantic differences between classes. This is
particularly problematic for minority classes, where recognition accuracy tends to be much lower.
Therefore, embedding semantic features of scientific texts into multi-classification models is of critical
importance.

Existing semantic-aware multi-classification models are primarily based on Pre-trained Language
Models (PLMs), which leverage embedded representations of key textual tokens. PLMs are trained on
large-scale corpora to learn distributed representations of salient words in context, and utilize attention
mechanisms to compute their associations with surrounding tokens to capture semantic features of the
text [5,6]. While this token-level representation learning approach improves model performance on
multi-class classification tasks, it often treats feature tokens as isolated semantic units, neglecting the
semantic dependencies among them [7,8]. To improve the model’s semantic comprehension, researchers
have explored various semantic fusion mechanisms—such as attention modules over feature tokens and
graph-based semantic dependency modeling—to integrate richer semantic information [9,10]. However,
these existing strategies often adopt uniform processing techniques and fail to account for the varying
contributions of different textual features across classification tasks, which may hinder the model’s
ability to identify fine-grained semantic distinctions between classes.

With the rapid advancement of Large Language Models (LLMs) in the field of NLP, the strong
capabilities of LLMs in semantic understanding and knowledge representation offer new avenues for
addressing the challenge of semantic feature utilization in text multi-classification tasks [11,12].
Through pretraining on massive textual corpora, LLMs can effectively capture both topical semantic
features and structural semantic information, thereby laying the foundation for more comprehensive
semantic representations. Additionally, LLMs possess fine-grained semantic discrimination capabilities,
enabling them to recognize the unique semantic characteristics of different text categories—a promising
direction for mitigating class imbalance in multi-class scenarios [13]. Nevertheless, a critical challenge
remains: how to effectively integrate the semantic strengths of LLMs while achieving accurate
identification of underrepresented or minority classes.

To address these challenges, this paper proposes a two-stage classification method with embedded
semantic feature encoding. In the first stage, we leverage the semantic comprehension capabilities of
LLMs to construct a dual semantic encoding mechanism that embeds both topical and structural
semantic features into the model, thereby enhancing its holistic understanding of the text. In the second
stage, we incorporate a fine-grained semantic routing strategy within a Mixture-of-Experts (MoE)
framework. This mechanism enables the model to route inputs based on class-specific semantic cues,
allowing expert networks to focus on subtle distinctions between categories. As a result, the proposed
approach significantly improves the identification accuracy of underrepresented classes in imbalanced
datasets. For instance, when distinguishing between semantically similar sentence categories, such as
background and motivation statements, the proposed method leverages dual semantic encoding (topical
and structural) to enhance contextual understanding in the first stage. This helps disambiguate
semantically overlapping texts. In the second stage, the semantic-aware routing mechanism further
amplifies category-specific signals by directing sentences to specialized expert networks. This
hierarchical setup not only alleviates the ambiguity of semantic boundaries but also improves the model’
s ability to recognize minority classes with limited samples.

In response to the limitations observed in scientific text multi-classification tasks, and informed by
the related literature, we identify three key challenges currently facing the field: (1) Insufficient
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utilization of semantic features: Existing LLM-based classification methods primarily focus on output-
level representations while overlooking the rich internal semantic information within the model and its
connection to text understanding. There is a need to develop encoding mechanisms that can fully exploit
these internal semantics to enhance the model’s comprehension of textual meaning. (2) Imbalanced
category feature representation: Most current approaches to class imbalance emphasize data-level
augmentation, lacking explicit modeling of category-specific semantic characteristics. It is necessary to
design routing mechanisms capable of accurately perceiving the unique semantic features of each class
and guiding expert models to perform discriminative recognition accordingly. (3) Overly simplistic
classification architectures: Existing multi-classification frameworks often rely on a single-stage
architecture, which struggles to achieve both general understanding and fine-grained categorization. A
hierarchical architecture that integrates broad semantic comprehension with nuanced feature
differentiation is needed to improve overall classification performance.

Compared with existing scientific text multi-classification methods, the proposed two-stage
classification approach with enhanced semantic feature encoding introduces three key innovations:(1) A
dual-semantic feature encoding mechanism is designed to extract both topical and structural semantic
features and directly embed them into the internal representations of LLMs. This enhances the model’s
global semantic awareness and improves the efficiency of semantic feature utilization. (2) A fine-grained
semantic routing framework is proposed within a Mixture-of-Experts (MoE) architecture. By embedding
category-specific semantic features into the MoE routing layer, the model can perform semantic-aware
expert assignment, thereby improving classification accuracy—particularly under imbalanced category
distributions. (3) A “general-to-specific” two-stage classification architecture is constructed. In the first
stage, semantically enhanced LLMs perform coarse-grained filtering and preliminary classification. In
the second stage, fine-grained semantic routing directs expert model selection, forming a progressive
classification pipeline from general recognition to precise differentiation.

2. Related Work
2.1 Text Classification

Research on text classification has primarily focused on two paradigms: classification based on Pre-
trained Language Models (PLMs) and classification based on Large Language Models (LLMs). Within
the PLM-based framework, efforts have concentrated on fine-tuning models such as BERT
(Bidirectional Encoder Representations from Transformers) and RoBERTa (Robustly Optimized BERT
Pretraining Approach) [14] to leverage their semantic representation capabilities learned from large-
scale corpora. Li et al. [15] proposed a BERT-CNN-based model for identifying research question
sentences, where BERT was employed as a word embedding generator and CNN was used to extract
hierarchical linguistic features from sentence vectors, thereby enabling effective sentence classification.
The experimental results demonstrated that BERT's representational power significantly improved
classification accuracy. In 2019, Liu et al. [14] introduced RoBERTa, an enhanced version of BERT.
Compared to its predecessor, ROBERTa was pretrained on a larger corpus with extended training time to
better capture linguistic subtleties and complexity. Additionally, ROBERTa removed the Next Sentence
Prediction (NSP) objective, thereby focusing learning on more accurate contextual representations, and
adopted a dynamic masking strategy, which helped the model generalize across broader language
patterns. Liu and Cao [16] applied RoBERTa, BERT, and BiLSTM-CRF (Bidirectional Long Short-
Term Memory with Conditional Random Fields) to perform named entity recognition in Winter
Olympics news articles. Their results indicated that RoOBERTa outperformed BERT and BiLSTM-CRF
by 0.77% and 1.81% in F1-score, respectively. Further, Liu et al. [17] proposed a causal intervention-
based approach using RoBERTa to mitigate the influence of confounding factors in few-shot relation
classification tasks. Their results showed that RoOBERTa significantly enhanced semantic representation
and feature extraction capabilities, achieving a classification accuracy of 93.38% on the FewRel dataset.
This highlights RoOBERTa’s superior performance in scientific text classification tasks. Nevertheless,
PLMs fundamentally rely on masked language modeling and sentence-level pretraining tasks, which
limits their ability to capture fine-grained semantic features and complex contextual dependencies in
nuanced classification scenarios.
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Compared with PLMs, Large Language Models (LLMs) possess stronger semantic understanding
and knowledge transfer capabilities, offering new directions for optimizing text classification tasks.
Research on LLM-based text classification can be broadly divided into two categories. (1) Instruction-
tuned classification approaches enhance model comprehension of classification tasks by designing
tailored prompt templates. For example, Han [18] proposed a fine-tuning strategy based on the Qwen-7B
model for financial text classification. Experimental results showed that the fine-tuned LLM achieved an
accuracy of 82.27%, surpassing both the DeBERTa-V3-base and DeBERTa-V3-large models. This
indicates that fine-tuning LLMs can effectively improve classification performance. Zhang et al. [19]
proposed an adaptive enhancement framework for text classification by adjusting the distribution of
training samples and iteratively fine-tuning LLMSs, ultimately forming a specialized classification model.
Benchmark evaluations revealed that this adaptive LLM model outperformed PLMs by 1.36% in
accuracy. Chae and Davidson [20] explored the use of LLMs in supervised text classification, comparing
prompt-based zero-shot and few-shot learning with fine-tuning using larger annotated datasets, as well as
instruction tuning that combines prompts with task-specific training data. Their findings demonstrated
that instruction tuning is particularly effective in improving LLM performance on complex classification
tasks. Fatemi et al. [21] applied a model merging technique by integrating single-task, domain-specific
fine-tuned models with a base LLM to perform financial domain classification. Experimental results
showed that the merged LLM approach significantly improved zero-shot classification performance,
highlighting its effectiveness in low-resource scenarios.

However, instruction-tuned LLMs for text classification tend to learn dominant class features due to
data imbalance, resulting in limited ability to recognize minority classes. This limitation is exacerbated
when different categories exhibit subtle differences in semantic expression, which simple prompt
templates often fail to capture effectively. Consequently, the classification performance of LLMs is often
constrained when applied to imbalanced datasets. To address this issue, (2) data augmentation-based
approaches have been proposed to enhance the model's ability to learn category-specific features. Peng
and Shao [22] developed a data augmentation framework targeting class imbalance in text classification.
Their method adjusts the mapping from classification labels to instruction prompts and uses GPT-4 to
generate synthetic data. Experimental results demonstrate that instruction tuning on the augmented
dataset improves classification accuracy. Meguellati et al. [23] employed LLMs to clean noisy text and
provide context-rich explanations, thereby enriching the training set without significantly increasing the
overall data volume. Results showed that while zero-shot enhanced LLMs underperformed compared to
supervised models, the integration of LLM-driven semantic augmentation enabled performance
comparable to that of human-annotated datasets. Guo et al. [24] proposed a method that treats LLMs as
data annotators to expand limited training data. The augmented data was then used to fine-tune both
PLMs and LLMs. Results revealed that RoBERTa trained on GPT-4-generated data achieved
performance equal to or better than models trained solely on human-labeled data.

2.2 Mixture-of-Experts Mechanism

The Mixture-of-Experts (MoE) model was first introduced by Jacobs et al. [25] in 1991 as a "divide-
and-conquer" strategy for solving complex classification problems. As noted by Peralta et al. [26], MoE
improves model performance by partitioning it into smaller, specialized sub-models, making it well-
suited for handling high-complexity classification tasks. In recent years, MoE has demonstrated
considerable advantages in the field of text classification. Le et al. [27] proposed an improved MoE
Transformer model tailored for small-scale clinical text classification. While maintaining classification
accuracy, the model significantly reduced computational resource consumption. Validated on a French
clinical text dataset, it achieved 87% accuracy and an F1 score of 86%. Although slightly inferior to a
biomedical pre-trained BERT model in terms of accuracy, the training speed was improved by a factor
of 190—offering a highly efficient and feasible solution in resource-constrained clinical environments.
Chen et al. [28] addressed data conflicts during mixed-instruction fine-tuning of multimodal LLMs by
proposing a sparse LoRA-based expert mixture model, LLaVA-MoLE. This model introduces a set of
LoRA expert modules within the Transformer layers and uses a routing function to assign tokens from
different domains to the most suitable expert. This design enables adaptive learning across
heterogeneous domains. Experimental results indicate that, compared with conventional LoRA
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approaches, LLaVA-MoLE mitigates performance degradation caused by mixed-instruction datasets
while maintaining similar computational cost—and even surpasses baseline models trained on double
the data volume. To further enhance MoE performance, Chowdhury et al. [29] proposed an expert
pruning method during fine-tuning. Wu et al. [30] tackled the uncertainty in expert routing by
introducing GW-MoE, a fine-tuning approach based on the Global Workspace Theory. This method
broadcasts uncertain tokens to multiple experts during fine-tuning, allowing them to benefit from the
knowledge of various experts and reducing sensitivity to routing choices. Experimental results show that
GW-MoE achieves consistent performance improvements on tasks such as text classification and
question answering without increasing inference cost. Lin et al. [31] introduced a novel modality-aware
MoE architecture, MoMa, which separates expert modules into modality-specific groups for handling
visual and textual sequences. Experimental results indicate that, compared with a dense baseline of
equivalent computational cost, MoMa achieves a 270% increase in overall computational efficiency,
including a 160% improvement in text processing efficiency. These gains outperform the approximately
200% efficiency improvement of the standard MoE architecture.

3. Two-Stage Text Multi-Classification Method with Embedded Semantic Feature Encoding

Conventional approaches to scientific text multi-classification often adopt an end-to-end framework,
where PLMs are directly fine-tuned for multi-class tasks based on general-purpose semantic
understanding. However, this strategy may overlook semantic overlap between categories, thereby
reducing classification accuracy—particularly in scenarios where class distributions are highly
imbalanced. In such cases, models tend to favor majority classes with more abundant samples, leading
to performance degradation.

To address this issue, we propose a two-stage classification method that integrates “general semantic
comprehension” with “fine-grained semantic differentiation.” In the first stage, we extract topical and
structural semantic features from scientific texts and embed them into an LLM to perform a binary
classification task. This step not only filters high-quality data for downstream fine-grained classification
but also benefits from the relative simplicity of binary classification, which allows for easier acquisition
of sufficient training samples. In the second stage, we focus on enhancing category discrimination by
designing a fine-grained semantic feature extraction mechanism that emphasizes subtle inter-class
distinctions—thereby improving recognition accuracy for minority classes.

3.1 Overall Framework

As illustrated in Figure 1, the overall framework of the proposed two-stage text multi-classification
method with embedded semantic feature encoding consists of two core modules: a binary classification
stage using LLMs with general semantic feature embedding, and a multi-class classification stage
leveraging a Mixture-of-Experts (MoE) mechanism with fine-grained semantic routing. In the first stage,
we construct a semantic feature extraction module that captures both the topical and structural semantic
features of scientific texts. These features are embedded into the encoder layers of the LLM, allowing
them to be integrated with the contextual information. This enhances the semantic representation of the
input and enables the LLM to perform binary classification at the sentence level. In the second stage,
based on the sentence set filtered from the first stage (e.g., value-bearing sentences in scientific texts),
we combine fine-grained semantic features of various sentence types with an MoE routing mechanism.
A set of expert feed-forward networks (FFNs) is used to carry out precise classification of different
types of value sentences.
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Fig.1 The Framework of Two-Stage Classification Method with Embedded Semantic Feature Encoding
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3.2 Stage 1: Binary Classification with LLMs Embedded with General Semantic Features

Taking the multi-classification of value-bearing sentences in scientific texts as an example, this
work first constructs a unified semantic representation that integrates topical and structural semantic
features to enable efficient identification of such sentences. Specifically, a dynamic window-based
local-global extraction method is used to obtain topical semantic features, while a hierarchical structural
feature extraction mechanism is employed to capture inter-sentence logical relations. These two types of
semantic features are then embedded into a large language model via a semantic encoder, forming
enhanced semantic representations. The representations are subsequently processed by the decoder of
the LLM, and the output is fed into a classifier to perform binary classification of value sentences. The
resulting classification yields a high-quality subset of value-bearing sentences, which serves as the
foundation for the fine-grained classification in the second stage.

(1) Topical Semantic Feature Construction

Topical semantic features are core components of text classification, as they effectively capture the
main subject and semantic content of the text, thereby improving classification performance. Traditional
topic extraction methods, such as TF-IDF and Latent Dirichlet Allocation (LDA), typically require
global computations over the entire document and iterative optimization, which are computationally
expensive and struggle to capture fine-grained semantic associations. Moreover, these methods rely
solely on global statistical information, neglecting local contextual dependencies, which limits their
representational power. To address these limitations, we propose a local-global topic feature extraction
approach based on dynamic windows. By fusing local and global features, this method balances
efficiency in semantic feature construction with improved expressive capability in downstream models.
The detailed process of topical semantic feature extraction is illustrated in Figure 2.
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Fig.2 Topical Semantic Feature Extraction

Given an input text sequence, the construction of topical semantic features proceeds as follows:
1) Local Topic Feature Extraction

To effectively capture fine-grained semantic associations, a sliding window ® is applied over the
input text to compute an aggregated topical representation for each word within the window:

hlocal(i) =0 (23+‘:1/\/2V/2aJ € ) (M

where o(-) denotes the activation function, w is the window size,ejrepresents the vector representation of
the j-th token, and «; is the corresponding attention weight. The attention weights are computed as:

a;=softmax(e; W e,) Q)

In this formulation, W, is a learnable query parameter, and e; denotes the vector of the target (center)
token. The softmax function normalizes the attention scores across the windowed context.

2) Global Topical Relevance Computation

To compensate for the limitations of using only local context, a global topical representation is
constructed and combined with local features for interactive enhancement:

N
hglobal = Pool (hlocal(l)i: 7) 3)

Here, Pool(-) denotes a pooling operation that aggregates all local features to obtain a global
representation. Accordingly, the final semantic feature v, opi C(i ) representation in this work is defined
as follows:

l]topic( ) tanh (W [hlocal( ) hglobal] + bt) (4)

In this formulation, W, and b, represent the transformation matrix and bias term,

respectively; [;] denotes the feature concatenation operation; and tanh is the hyperbolic tangent
activation function.

(2) Structural Semantic Feature Construction
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Given that different types of sentences exhibit diverse organizational structures, structural semantic
features play a crucial role in understanding the logical relationships between sentences in scientific texts.
Traditional methods, which often rely on bag-of-words models or simple sequential architectures,
struggle to accurately capture hierarchical inter-sentence structural relations. To address this issue, we
design a lightweight structural feature extraction approach that leverages hierarchical feature aggregation
to derive structural semantic information from the text.

1) Basic Feature Representation: For a given input text, the initial representation of each token is
obtained as follows:

hynie (1) =FFN([ei;pOSi]) (%)

Here, e; denotes the token embedding, poOs; represents the positional encoding, FFN refers to a feed-
forward neural network, and [;] indicates the concatenation operation between the two feature vectors.

2) Hierarchical Structure Aggregation: Based on dependency relations between tokens, hierarchical
feature aggregation is performed as follows:

hl(i) =0 zjeN(i) Wj : hl—l(j) (6)

Here, 0 (-) denotes the activation function, IN (i ) represents the set of neighboring tokens of token i,

w; is the aggregation weight, / denotes the layer index, and h,_ ,(J) is the feature representation of

token Jj atthe /- 1-th layer.
3) Inter-Sentence Relation Representation:

To model sentence-level structural relations, we construct a structural representation at the sentence
level:

Vstruct = Pool ({hL(l)}ln= 7) (7)

Here, Pool(-) denotes the pooling operation, h; (i) represents the token representation at the final layer,
and Vg 1S the final structural feature representation.

It should be noted that dependency parsing may introduce errors when processing complex
academic sentence structures. While our ablation studies (see Section 5.1, Table 4) demonstrate the
effectiveness of structural features in the overall framework, further investigation into the robustness and
error patterns of structural encoding remains an important area for future research.

(3) Semantic Feature Encoding and Embedding Mechanism

To effectively embed the extracted semantic features into the large language model, we propose a
feature replacement encoding mechanism, as illustrated in Figure 3. Traditional approaches typically use
the [CLS] and [SEP] tokens of PLMs for text representation, where [CLS] is used to capture global
semantic representations and [SEP] is used for segmenting and marking sequence boundaries.

Considering that the topical semantic feature V... also encodes global semantic information, and the

structural semantic feature v ¢ captures boundary and organizational structure information, these

struc
two types of features can functionally substitute the [CLS] and [SEP] tokens, respectively.
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Fig.3 Feature replacement encoding mechanism

The proposed semantic feature encoding and embedding mechanism proceeds as follows:

First, the original input text sequence is passed through the topical and structural feature extraction
modules to obtain the corresponding semantic representations. Then, the extracted topical semantic

feature v, opic is used to replace the [CLS] token representation at the beginning of the sequence

(represented by the purple block in the figure), and the structural semantic feature v is used to

struct
replace the [SEP] token at the end of the sequence (represented by the pink block). The original token
features in the middle of the sequence remain unchanged. The final embedded feature sequence

X

is illustrated as follows:

Xembed = [Vtopic'X1'X2'X3' X4'Ustruct] (®)

embed

Through the proposed feature injection mechanism, the model is able to retain the original textual
representation while effectively integrating domain-specific semantic information. This enhances the
expressiveness of the features and provides more targeted representations for the binary classification of
sentences.

3.3 Stage 2: MOE-Based Multi-Class Classification with Fine-Grained Semantic Routing

Taking the multi-class classification of valuable sentences in scientific texts as an example, we aim
to achieve efficient and precise identification of different types of value-bearing sentences. Based on the
filtered sentence set obtained in the first stage, we propose a semantic-aware routing framework built
upon a Mixture of Experts (MoE) architecture. Specifically, fine-grained semantic feature extraction
methods are designed for each subcategory, focusing on capturing the distinctive semantic
representations specific to each type of value sentence, on top of the general topical semantics. These
subcategory-specific semantic features are then embedded into the routing function of the MoE to
construct a semantic-aware routing mechanism, which enables expert assignment based on semantic
similarity. Finally, an expert selection strategy is devised to guide each expert model to focus on its
designated category features, thereby improving recognition performance for underrepresented classes.
The proposed semantic encoding—based MoE framework aims to alleviate the impact of class imbalance
and achieve fine-grained classification of value sentences.

(1) Subcategory Semantic Feature Extraction

To capture the distinctive semantic expressions of various types of value sentences, we design a fine-
grained subcategory-specific semantic feature extraction method based on the topical feature extraction
described in Section 3.2.1. Unlike the first stage, which focuses on the overall semantics of the text, this
stage emphasizes features that distinguish among different types of value sentences. Given an input
sequence of value sentences X = <X: , Xz , ..., Xn> and their corresponding class labels Y, the
subcategory semantic feature extraction process is as follows:

1) Class-Specific Feature Template Construction
Data Intelligence 9
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To highlight the unique semantic patterns of each class, we first construct a class-specific feature
template:

Tc = Pool ({Vtopic (Xi) |y1 = C}) (9)
Here, ¢ denotes the value sentence class, and Vqpic (X i) is the topical semantic feature obtained in the
first stage.
2) Subcategory Semantic Feature Generation
Based on the class prototype features, the subcategory semantic feature of a sentence is computed as:
Vsub(l) =0 (Wc ) [Vtopic (Xi) ; Pc]) (10)
where W is the class-specific transformation matrix, o(-) is the activation function, and v, (l) is
the semantic representation of the i-th sentence in subcategory C.

Through this approach, the subcategory semantic feature not only preserves the original topical
information but also incorporates class-specific semantic patterns. This enables the extraction of more
discriminative features tailored to each type of value sentence, thereby facilitating downstream semantic
routing and expert selection.

(2) Semantic-Aware Routing Mechanism

Based on the extracted subcategory semantic features, we design a semantic-aware routing
mechanism, as illustrated in Figure 4. In this mechanism, the topical semantic features are embedded
into the routing function of the Mixture of Experts (MoE). A router dynamically allocates different Feed-
Forward Network (FFN) experts, thereby enabling semantic-driven expert selection.

/ Semantic-Aware \
Routing Mechanism

, FFN 1 FFN 2 [ J FFN n

I

! ® ® X &

\

\ Topic semantic 1 Topic semantic 2 Topic semantic n

-1 ] [ [ [-][]
\ I

Fig.4 Semantic-aware routing mechanism

Specifically, for an input sample x, the semantic-aware routing process is as follows:
1) Routing Feature Construction

The topical semantic feature is first interacted with the routing parameters:
r(x) = W, « Topic semantic (11)
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where W is the routing weight matrix, and 1 (X) denotes the routing feature.

2) Expert Selection Probability Calculation

Based on the routing feature, the matching probability between the sample and each FFN expert is
computed as:

p(j/x) =softmax(r(x)-h;) (12)
where h j represents the semantic representation vector of the j-th FFN expert.

3) Dynamic Expert Assignment

According to the expert selection probabilities, the top-k most relevant FFN experts are selected for
processing:

v =Y (p(i/x) - FFNj(x)) (13)
where £ is the pre-defined number of experts, and y is the final output feature.
(3) Expert Model Design

Based on the output of the semantic-aware routing mechanism, this section focuses on designing the
expert selection strategy and the coordination mechanism. To accommodate the characteristics of
different types of value sentences, we adopt heterogeneous expert architectures along with a coordinated
training strategy.

1) Expert Architecture Design
Each expert model is implemented as a two-layer feed-forward network:
E;(x) = FFN2;(FFN1,(x)) (14)
where FFN T, and FFN2; denote the two-layer feed-forward networks of the j-th expert, with

different parameter scales to accommodate tasks of varying complexity.

2) Expert Selection Strategy

Based on the routing probability p( Jjlx ), a dynamic thresholding method is adopted for expert
selection:

S ={ilp(jIx) > 7;}
T;=B-avg (p(JIX)) (15)

here, S denotes the selected expert set, T j is the dynamic threshold, B is a tunable coefficient, and

avg ( p ( JjIX )) is the average selection probability of the expert.

3) Expert Collaboration Mechanism

The selected experts collaborate through weighted aggregation as follows:

y=3(w; E;(x))/|S] (16)
where w j denotes the expert weight, which is computed as follows:
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w; =softmax(q;-k,) (17)

Here, q; denotes the expert-specific query vector, and K, represents the key vector of the input
sample.

4. Experimental design

4.1 Experimental method

To validate the effectiveness of our proposed method, we designed a systematic experimental
scheme. The experiments are divided into two stages: the first stage validates the improvement of
embedded universal semantic features on binary classification performance, and the second stage
validates the performance of the semantic routing-based MOE framework on multi-classification tasks.

The first stage includes three experiments: (1) To validate the effectiveness of the feature encoding
mechanism, we conduct experiments on the public dataset DBPedia [32], comparing traditional [CLS]
and [SEP] encoding approaches with our proposed embedding of topic semantic features and structural
semantic features, thereby validating the advantages of the feature fusion strategy. (2) We perform
feature ablation experiments on this dataset, separately validating the contributions of topic semantic
features and structural semantic features to demonstrate the necessity and complementarity of these two
feature types. (3) To validate the effectiveness of large language models with embedded universal
semantic features for binary classification, we conduct model performance comparison experiments on
our constructed scientific literature value sentence dataset to evaluate the performance advantages of our
method.

In the second stage, to validate the multi-classification capability of our model, we design 2
experiments using our constructed 3-type fine-grained value sentence datasets (academic value
sentences, application value sentences, and innovation value sentences): (1) To validate the model's
classification capability under ideal data distribution, we use a balanced category value sentence dataset
(with equal numbers of each type of value sentence) and compare pre-trained model fine-tuning methods
with our proposed semantic routing MOE method to validate the multi-classification advantages of our
approach. (2) To validate the model's capability in handling class imbalance problems, we use an
imbalanced value sentence dataset (with different numbers of each type of value sentence) to
demonstrate the effectiveness of the semantic routing mechanism for minority class sample recognition.

Regarding model selection, to comprehensively validate the universality and effectiveness of our
method, we select BERT, SciBERT [33], and RoBERTa as baseline PLMs; for LLMs, we select Qwen3-
14B [34], LLaMa4-17B [35], and GLM4-9B [36] as baseline models.

4.2 Datasets

To comprehensively evaluate the performance of our two-stage classification method enhanced with
embedded semantic feature encoding for scientific texts, we select the public dataset DBPedia and our
constructed scientific literature value sentence dataset as experimental datasets to validate the model's
effectiveness at different stages. The specific dataset details are as follows:

(1) DBPedia Dataset. This dataset is a standard benchmark dataset for text classification tasks,
sourced from Wikipedia article abstracts and containing 14 different thematic categories of text. The
categories in the dataset cover 14 entity types including Company, Educational Institution, Artist,
Athlete, etc. We select DBPedia as the benchmark dataset for evaluating text classification model
performance. With its well-structured text and clear topics, it can effectively validate the performance of
our proposed feature encoding embedding mechanism and semantic feature extraction methods on
public datasets.

(2) Scientific Literature Value Sentence Dataset. This dataset is used to evaluate the performance of
scientific text value sentence identification tasks, containing 23,912 scientific literature sentences
composed of value sentences and non-value sentences with a positive-to-negative sample ratio of 1:1.
The sentences in the dataset are sourced from academic papers in fields such as computer science and
engineering technology, annotated by professional annotators to form a high-quality binary classification
dataset. This dataset serves as a specialized dataset for evaluating value sentence recognition capability
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and can be used to validate the practical application effectiveness of our method in the scientific text
domain.

(3) Value Sentence Fine-grained Category Dataset. This dataset is used to evaluate the performance
of value sentence multi-classification tasks, subdividing value sentences into three subcategories:
academic value, application value, and innovation value. To validate model performance under different
data distributions, we construct two experimental scenarios: balanced and imbalanced. The balanced
dataset contains 1,200 samples per class, totaling 3,600 samples; the imbalanced dataset contains 11,570
academic value sentences, 1,297 application value sentences, and 1,430 innovation value sentences,
totaling 14,297 samples. Through experiments on this dataset, we can validate the performance of our
proposed semantic routing MOE method in handling class imbalance problems and compare it with
classification effectiveness under balanced scenarios.

4.3 Experimental Setup

This dataset is a standard benchmark dataset for text classification tasks, sourced from Wikipedia
article abstracts and containing 14 different thematic categories of text. The categories in the dataset
cover 14 entity All experiments in this paper are implemented using PyCharm 2021.3.3 (Professional
Edition) development tool and PyTorch deep learning framework. The main environment configuration
is as follows: operating system Ubuntu 22.04, compilation environment Python 3.8.17, PyTorch=2.1.2;
GPU acceleration environment CUDA 12.2, computer model DELL R740, CPU Intel(R) Xeon(R) Gold
6338 CPU @ 2.00GHz, memory 1024GB, disk capacity 10TB, GPU A100 40Gx2.

Our experiments adopt the commonly used accuracy (Accuracy, A), precision (Precision, P), recall
(Recall, R), and F1-score (F1-Score, F1) as standard evaluation metrics in the self-attention mechanism
research domain [37]. These metrics reflect the model's performance capability in sequence processing
tasks from different perspectives and have been validated in numerous benchmark tests. The specific
calculation formulas are as follows:

_ (TP+TN)
Accuracy = (TP+TN+FP+FN) (18)
.. TP
Precision = ——— (19)
TP
Recall = ——— (20)
F = 2xAccuracyxPrecision (21)

Accuracy+Precision
where TP (True Positive) represents correctly classified positive samples, i.e., a training instance that is
positive and is also predicted as positive; FN (False Negative) represents incorrectly classified negative
samples, i.e., a positive training instance that is predicted as negative; FP (False Positive) represents
incorrectly classified positive samples, i.e., a negative training instance that is predicted as positive; TN
(True Negative) represents correctly classified negative samples, i.c., a training instance that is negative
and is also predicted as negative.

5. Experiments and Analysis

5.1. Stage 1: Comparative Experiments on LLMs Binary Classification with Embedded Universal
Semantic Features

(1) Effectiveness Analysis of Semantic Feature Encoding

To validate the advantages of our proposed semantic feature encoding mechanism over traditional
methods, we designed systematic comparative experiments on the DBPedia dataset. The experiment
selected 20,000 texts each for two categories: Company and Educational Institution, forming a binary
classification dataset with a positive-to-negative sample ratio of 1:1, totaling 40,000 samples. The
dataset was divided into training set (32,000 samples), validation set (4,000 samples), and test set (4,000
samples) in an 8:1:1 ratio.

The experiments employed three pre-trained models—BERT, SciBERT, and RoBERTa—as base
architectures, comparing them under both original encoding approaches and our proposed semantic
feature encoding approach. The original encoding approach maintains the pre-trained models' [CLS] and
[SEP] tokens unchanged, using traditional input sequence encoding; the semantic feature encoding
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approach extracts topic semantic features and structural semantic features separately and replaces the
embedding vectors at [CLS] and [SEP] positions. All experiments used identical hyperparameter settings:
learning rate of le-5, batch size of 32, 5 training epochs, and AdamW optimizer [38]. The effectiveness
analysis results of semantic feature encoding are shown in Table 1.

Table.1 The results of semantic feature encoding effectiveness analysis

Models Embedding A (%) P (%) R (%) F1 (%)
BERT original encoding 82.40 89.10 79.20 83.80

BERT semantic feature encoding | 86.85 (+4.45) | 91.20 (+2.10) | 85.30 (+6.10) | 88.17 (+4.37)
SciBERT | original encoding 84.20 90.50 81.60 85.81
SciBERT | semantic feature encoding | 89.75 (+5.55) | 92.80 (+2.30) | 89.40 (+7.80) | 91.07 (+5.26)
RoBERTa | original encoding 83.60 89.80 80.40 84.85
RoBERTa | semantic feature encoding | 89.20 (+5.60) | 92.50 (+2.70) | 88.90 (+8.50) | 90.67 (+5.82)

The effectiveness analysis results of semantic feature encoding are shown in Table 7. The
experimental results demonstrate that our proposed semantic feature encoding approach achieves
significant performance improvements across all pre-trained models. On the BERT model, the semantic
encoding approach improved accuracy, precision, recall, and Fl-score by 4.45%, 2.10%, 6.10%, and
4.37% respectively compared to the original encoding approach. SciBERT model shows the best overall
performance, with the semantic encoding approach achieving an Fl-score of 91.07%, representing a
5.26% improvement over original encoding, and accuracy improving from 84.20% to 89.75%. The
RoBERTa model also achieved significant improvements under the semantic encoding approach, with
accuracy improving by 5.60% and F1-score improving by 5.82%, reaching 90.67%.

Notably, all models achieved the largest improvements in recall, with BERT, SciBERT, and
RoBERTa improving by 6.10%, 7.80%, and 8.50% respectively, indicating that the semantic feature
encoding mechanism has significant advantages in identifying positive samples. The improvements in
precision were relatively stable, with the three models improving by 2.10%, 2.30%, and 2.70%
respectively, demonstrating that this method effectively improves recall while maintaining high
precision. This indicates that by replacing [CLS] tokens with topic semantic features and [SEP] tokens
with structural semantic features, semantic information can be more deeply integrated into the attention
computation process of PLMs. Compared to traditional feature concatenation or simple fusion
approaches, our replacement strategy enables semantic features to play crucial roles at key positions:
topic features at [CLS] positions can better aggregate global semantic representations, while structural
features at [SEP] positions can more accurately model hierarchical structural information of texts.
Furthermore, SciBERT's specialization in the scientific text domain makes it perform more prominently
when combined with semantic features, further demonstrating the advantages of combining domain-
adaptive pre-trained models with semantic feature encoding mechanisms.

(2) Effectiveness Analysis of Binary Classification Models with Embedded Universal Semantic
Features

To validate the practical application effectiveness of our proposed semantic feature encoding
mechanism in scientific text value sentence identification tasks, we conducted comparative experiments
on the scientific literature value sentence dataset. We selected full texts from general domain scientific
literature and constructed the corpus using manual annotation and iterative semi-automatic annotation
methods. This dataset contains 23,912 scientific literature sentences with a positive-to-negative sample
ratio of 1:1, divided into training set (19,130 samples), validation set (2,391 samples), and test set (2,391
samples) in an 8:1:1 ratio. The experiment designed 5 groups of comparative methods, covering different
technical approaches including PLMs fine-tuning, LLMs zero-shot learning, semantic feature
enhancement, and parameter-efficient fine-tuning, to comprehensively evaluate the effectiveness of our
method. Among these, PLMs fine-tuning parameters are the same as in Section 3.5.1; LLMs fine-tuning
adopts the QLora [39] parameter-efficient fine-tuning method with parameter settings: rank = 64, alpha =
16.

Considering the input requirements of different types of models, this experiment adopted two
different fine-tuning data formats for PLMs and LLMs:

1) Fine-tuning Data Format for PLMs
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For BERT-base, RoBERTa-base, and SciBERT, we adopt the standard classification task data
format, containing Label and Sentence fields, where Label=0 indicates non-value sentences and Label=1
indicates value sentences. Specific data examples are shown in Table 2:

Table.2 PLMs fine-tuning data format

Label Sentence
0 Deep learning algorithms have been widely applied in various domains and achieved
remarkable success.
1 This study aims to develop a novel neural architecture that can significantly improve
the accuracy of text classification tasks while reducing computational complexity by
40%.

2) Instruction Fine-tuning Dataset for LLMs

For LLMs, we adopt the instruction fine-tuning format, containing Instruction, Input, and Output
fields. The instruction part provides detailed descriptions of the value sentence identification task
definition and judgment criteria, with the specific format as follows:

"Instruction": "Determine if the following sentence is a research value sentence. Research value
sentences in scientific literature are sentences that explicitly describe the specific contributions,
significance, or potential impact of the research work. They clearly state the research value, importance,
or benefits that the study provides to the academic field or practical applications. Output 'True' if it is a
research value sentence, and 'False' if it is not.",

"Input": "Our proposed method demonstrates superior performance on benchmark datasets,
achieving state-of-the-art results with 15% improvement in accuracy compared to existing approaches.",

"Output": "True"

The experimental results are shown in Table 3. The results demonstrate that our proposed semantic
feature encoding mechanism achieves consistent performance improvements across models with
different architectures. Whether it's the Transformer-based Qwen3-14B, LLaMa-based LLaMa4-17B, or
GLM-based GLM4-9B, the performance improvement after adding semantic features ranges from 6%-
8%. Particularly, Qwen3-14B shows the most outstanding performance when combined with semantic
features and QLora fine-tuning, achieving an F1-score of 94.19%.

Table.3 The experimental results about instruction fine-tuning

Methods Models A [P | R(%) fo})
()
BERT-base 84.32 | 83.15 85.62 84.37
Fine-tuning PLMs RoBERTa-base 86.45 | 85.73 87.28 86.50
SciBERT 88.76 | 88.42 89.15 88.78
Qwen3-14B-base 79.23 | 76.84 82.47 79.55
Base-L LMs LLaMa4-17B-base 81.67 | 80.15 | 8352 | 81.80
GLM4-9B-base 77.89 | 7562 | 80.73 | 78.10

Qwen3-14B Encoding

Semantic Feature 86.75 | 85.92 87.84 86.87

LLaMa4-17B
LLMs Encoding Semantic Feature Encoding Semantic 89.34 | 88.67 90.15 89.40
Feature

GLM4-9B Encoding

Semantic Feature 84.56 | 83.74 85.62 84.67

Qwen3-14B-QLora 90.12 | 89.75 90.58 90.16
QLora LLMs LLaMa4-17B-QLora | 91.83 | 91.46 92.27 91.86
GLM4-9B-QLora 88.94 | 88.31 89.67 88.98
Qwen3-14B-QLora
QLora LLMs Encoding Semantic Encoding Semantic 94.15 | 93.82 94.56 94.19
Feature Feature

LLaMa4-17B-QLora 92.67 | 92.34 93.12 92.73

Data Intelligence 15



Semantically-Guided Two-Stage Classification for Scientific Texts: Integrating Structural Awareness and Expert
Routing

Encoding Semantic
Feature

GLM4-9B-QLora
Encoding Semantic 91.28 | 90.85 91.84 91.34
Feature

1) Independent Effectiveness Analysis of Semantic Feature Encoding

In the value sentence identification task, incorporating semantic feature encoding significantly
improves model recognition performance. Using LLaMa4-17B as the base model, the value sentence
identification accuracy reaches 89.34% after incorporating semantic features, representing a 7.67%
improvement over the base model without semantic features. Particularly, the recall reaches 90.15%,
improving by 6.63% compared to the base model's recall, indicating that semantic feature encoding helps
the model capture the vast majority of value sentences, thereby significantly improving recognition
accuracy. Similarly, in the value sentence identification task using Qwen3-14B as the base, the model
incorporating semantic features improves accuracy, precision, and recall by 7.52%, 9.08%, and 5.37%
respectively compared to the base model. The reason is that topic semantic features and structural
semantic features specific to value sentences help the model further capture the linguistic patterns and
semantic structures of value sentences. By directly embedding semantic representations into [CLS] and
[SEP] positions, the model is assisted to focus on semantic information most relevant to value sentence
identification, compensating for deep semantic associations that traditional methods might overlook.

2) Synergistic Analysis of Instruction Fine-tuning and Semantic Feature Encoding

The synergistic mechanism between parameter-efficient fine-tuning and semantic feature encoding
improves LLMs' performance in binary classification tasks. Using Qwen3-14B as the base model, the
QLora fine-tuned version of LLaMa4-17B base model achieves an F1-score of 91.86%, which improves
by 0.87% after combining with semantic feature encoding; the GLM4-9B base model's Fl-score
improves from 88.98% to 91.34% after incorporating semantic features on top of QLora fine-tuning.
Particularly, Qwen3-14B-QLora + semantic features shows the best overall performance, achieving an
accuracy of 94.19%, which is 2.55% higher than the QLora fine-tuned version. This indicates that
parameter-efficient fine-tuning provides a more stable optimization foundation for semantic feature
encoding. Through adaptive training on specific tasks, the model can more precisely utilize embedded
semantic information for discrimination, forming a dual optimization mechanism of "fine-tuning
adaptation + semantic enhancement" that effectively improves the accuracy and robustness of value
sentence identification.

3) Comparative Effectiveness Analysis of LLMs vs. PLMs

It is noteworthy that untuned base LLMs perform slightly lower than fine-tuned PLMs in binary
classification under zero-shot or few-shot settings. The reason is that PLMs can better adapt to the
discriminative boundaries of binary classification tasks through supervised fine-tuning on specific tasks,
while LLMs without targeted training have some differences between their generative pre-training
objectives and discriminative classification tasks. However, once combined with semantic feature
encoding, LLMs' performance rapidly surpasses traditional methods, indicating that the semantic feature
encoding mechanism can effectively bridge the gap between generative pre-training and discriminative
downstream tasks.

(3) Semantic Feature Ablation Experiments

To thoroughly validate the specific contributions of topic semantic features and structural semantic
features in our proposed semantic feature encoding mechanism, we designed systematic feature ablation
experiments on the DBPedia dataset. This experiment analyzes the independent contributions and
synergistic effects of different features on model performance by progressively removing different
semantic feature components. The experimental dataset is the same as in Section 3.5.1 Semantic Feature
Encoding Effectiveness Analysis. The feature ablation experiment designed the following 4
configuration schemes, using SciBERT as the base model for comparative analysis: (1) Original
SciBERT: maintains traditional [CLS] and [SEP] tokens as the baseline method; (2) SciBERT + Topic
Semantic Features: only replaces [CLS] tokens with topic semantic features; (3) SciBERT + Structural
Semantic Features: only replaces [SEP] tokens with structural semantic features; (4) SciBERT +
Complete Semantic Features: simultancously embeds both topic semantic features and structural
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semantic features. All experiments used identical hyperparameter settings: learning rate of le-5, batch
size of 32, 5 training epochs, and AdamW optimizer.

The semantic feature ablation experiment results are shown in Table 4. The experimental results
demonstrate that each component in our proposed semantic feature encoding mechanism contributes
positively to model performance, and there are obvious synergistic enhancement effects among
components. The specific analysis is as follows:

Table.4 The results of semantic feature ablation experiments

Methods A (%) P (%) R (%) F1 (%)
Original-SciBERT 84.20 90.50 81.60 85.81
SciBERT Encoding Semantic ]7 45 9175 8520 8835
Feature

SciBERT Encoding Semantic 86.10 9120 83 80 8735
Feature

SciBERT Encoding Semantic 89.75 92.80 89.40 91.07
Feature

1) Contribution Analysis about Topic Semantic Features

For topic semantic features, the SciBERT model with topic semantic features embedded alone
achieves significant improvements across all evaluation metrics. Among these, SciBERT + Topic
Semantic Features achieves an F1-score of 88.35%, representing a 2.54% improvement over the original
SciBERT, with accuracy improving from 84.20% to 87.45%. Particularly noteworthy is that topic
semantic features show the most significant improvement in recall, increasing from 81.60% to 85.20%,
an improvement of 3.60%. This indicates that topic semantic features can effectively reduce the
generation of false negative samples and improve the model's ability to identify positive samples. The
reason is that topic semantic features, through the dynamic window-based local-global feature extraction
method, can more precisely capture the core semantic content of texts. After replacing the [CLS]
position, the global semantic representation becomes more focused on the thematic information of the
text, thereby enhancing the model's ability to distinguish between different categories of texts.

2) Enhancement Analysis about Structural Semantic Features

For independent contributions of structural semantic features, embedding structural semantic
features alone also brings significant performance improvement effects. SCIBERT + Structural Semantic
Features achieves an F1-score of 87.35%, representing a 1.54% improvement over the original SciBERT,
with accuracy improving by 1.90%. Compared to topic semantic features, the improvement magnitude of
structural semantic features is relatively smaller, but it shows stable performance in precision, improving
from 90.50% to 91.20%, an increase of 0.70%. Experimental data show that structural semantic features
primarily capture textual organizational structure information through hierarchical feature aggregation
mechanisms. After replacing the [SEP] position, they can better model logical relationships between
sentences, providing semantic understanding support at the text structure level for the model. Although
the independent effect is not as significant as topic semantic features, they provide important structural
information supplementation for complete semantic representation.

3) Synergistic Analysis about Complete Semantic Features

Analyzing from the perspective of synergistic effects between topic semantic features and structural
semantic features, the complete semantic feature configuration achieves the best comprehensive
performance. SciBERT + Complete Semantic Features achieves an F1-score of 91.07%, representing a
5.26% improvement over the original SciBERT. This improvement magnitude exceeds the simple
additive effect of using topic semantic features alone (2.54% improvement) and structural semantic
features alone (1.54% improvement), indicating significant synergistic enhancement mechanisms
between the two types of semantic features. This indicates that topic semantic features and structural
semantic features form effective functional complementarity: topic semantic features focus on capturing
the content semantics of texts, while structural semantic features concentrate on modeling the
organizational forms of texts. The combination of both can provide the model with more comprehensive
semantic understanding capabilities.

5.2. Stage2: MOE Multi-classification with Embedded Fine-grained Semantic Encoding
Routing
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To validate the advantages of our proposed two-stage classification method over traditional end-to-
end multi-classification methods, we designed multi-classification comparative experiments based on the
high-quality value sentence collection filtered in the first stage. The experiments use the value sentence
fine-grained category dataset, subdividing value sentences into three subcategories: academic value,
application value, and innovation value. By comparing the performance of the two-stage classification
method with direct multi-classification methods, we validate the effectiveness of the "universal semantic
understanding + fine-grained semantic differentiation" architecture. The experiment designed two groups
of comparative studies: first, validating the classification advantages of the two-stage method under ideal
data distribution on balanced datasets; second, focusing on evaluating the improvement effects of the
semantic routing MOE mechanism on minority class sample recognition on imbalanced datasets.

(1) Balanced Dataset Multi-classification Experiments

To validate the advantages of our proposed two-stage classification method over traditional end-to-
end multi-classification methods, we designed two core comparative approaches based on the high-
quality value sentence collection filtered in the first stage: two-stage classification method and direct
multi-classification method. Our constructed balanced dataset contains three subcategories: academic
value, application value, and innovation value, with each category containing 1,200 high-quality
annotated samples, totaling 3,600 value sentence samples, divided into training set (2,880 samples),
validation set (360 samples), and test set (360 samples) in an 8:1:1 ratio. Considering the differences
between the two classification paradigms, this experiment adopted corresponding data formats and task
settings for different methods:

1) Two-stage Classification Method Data Format

For the two-stage classification method, the second stage input consists of value sentences filtered
from the first stage, using a three-class classification task format containing Label and Sentence fields,
where Label=0 indicates academic value sentences, Label=1 indicates application value sentences, and
Label=2 indicates innovation value sentences. Specific data examples are shown in Table 5.

Table.5 Two-stage fine-tuning data format

Label Sentence

0 This research contributes to the theoretical understanding of neural network
optimization by providing rigorous mathematical proofs for convergence properties.

1 The proposed algorithm can be directly applied to real-time recommendation systems,
reducing computational latency by 60% while maintaining accuracy.

2 We introduce a novel attention mechanism that fundamentally differs from existing
approaches and opens new research directions in transformer architectures.

2) Direct Multi-classification Method Data Format

For the direct multi-classification method, we adopt a four-class classification task format, directly
classifying from original scientific literature sentences, where Label=0 indicates non-value sentences,
Label=1 indicates academic value sentences, Label=2 indicates application value sentences, and Label=3
indicates innovation value sentences. To ensure fair comparison, the training data in this format
supplements equal amounts of non-value sentence samples based on value sentence samples. Specific
data examples are shown in Table 6.

Table.6 Direct multi-classification fine-tuning data format

Label Sentence

0 Machine learning has been widely adopted across various industries in recent years.

1 Our theoretical analysis reveals fundamental properties of gradient descent dynamics
in high-dimensional spaces.

2 The developed system demonstrates practical utility in industrial quality control
applications.

3 This work presents a breakthrough approach that challenges conventional
assumptions in natural language processing.

The experimental results are shown in Table 7. The results demonstrate that our proposed two-stage
classification method comprehensively outperforms traditional direct multi-classification methods on the
balanced dataset. The best model, LLaMa4-17B-QLora + Semantic Routing MOE, achieves a macro-
average Fl-score of 93.35%, representing a 9.04% improvement over the corresponding direct multi-
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classification method. The specific analysis is as follows:

1) Inter-category Performance Consistency Advantage Analysis

For performance distribution across categories, the two-stage classification method achieves
balanced high-performance results across all value sentence categories. Taking LLaMa4-17B + Semantic
Routing MOE as an example, the F1-scores for academic value, application value, and innovation value
categories are 93.78%, 92.94%, and 93.33% respectively, with inter-category performance differences of
only 0.84%, significantly better than the maximum 2.11% performance gap in direct multi-classification
methods. In contrast, direct multi-classification methods show relatively weaker performance when
handling application value sentences, with SciBERT achieving an Fl-score of 79.55% on application
value sentences, significantly lower than the 82.11% for academic value sentences. This indicates that
the two-stage architecture effectively eliminates interference from non-value sentences on model
judgment through first-stage value sentence filtering, enabling the second-stage MOE mechanism to
focus on fine-grained differentiation between value sentence categories, achieving more balanced and
stable classification performance.

2) Expert Division Effectiveness Analysis of Semantic Routing MOE Mechanism

For expert division, the MOE framework with embedded fine-grained semantic encoding routing
demonstrates obvious specialization advantages in recognizing different types of value sentences.
Qwen3-14B + Semantic Routing MOE achieves F1-scores of 91.84%, 90.22%, and 90.78% on the three
categories respectively, representing improvements of 2.89%, 3.11%, and 2.94% compared to traditional
SciBERT + MOE methods. Particularly, the semantic routing mechanism shows the most significant
improvement in application value sentence recognition, with improvement magnitudes generally
exceeding 3%. Experimental data show that fine-grained semantic feature encoding can effectively
extract unique semantic patterns of different categories of value sentences: academic value sentences
focus more on theoretical contributions and methodological innovations, application value sentences
emphasize practical effects and performance improvements, and innovation value sentences highlight
breakthrough nature and novelty. By embedding these category-specific semantic features into the MOE
routing function, semantic similarity-based expert assignment is achieved, forming a precise division of
labor pattern.

Table.7 The results about balanced dataset multi-classification method

Academic Value Application Value Innovation Value Macro
Method Models P R F1 P R F1 P R F1 averag
(%) | (%) | (%) | () | () | () | (%) [ (%) | (%) |©
F1(%)
767 | 785 | 77.6 | 742 | 76.8 | 75.5 | 756 | 773 | 764
BERT-base 3 6 6 3 9 4 7 4 9 76.56
RoBERTa- | 788 | 80.2 | 79.5 | 764 | 78.6 | 77.5 | 77.2 | 79.1 | 78.1 7842
base 9 3 5 5 7 4 3 2 6 )
Direct . 81.3 | 82.8 [ 82.1 | 78.6 | 804 | 79.5 | 79.8 | 81.2 | 80.5
Multi- SEBERT 1 7 1o |1 |7 s |s |o |3 |5 |%074
classificatio | Qwen3- 82.4 | 84.1 | 83.2 | 79.6 | 81.8 | 80.7 | 80.8 | 82.4 | 81.6 31.90
n Method 14B-QLora | 5 2 8 7 9 7 9 5 6 '
LLaMa4- 83.6 | 85.2 | 84.4 | 812 | 834 | 823 |827 |841 |834 23.40
17B-QLora | 7 3 4 3 5 3 8 2 4 '
GLM4-9B- | 80.2 | 81.7 ’1 77.8 | 79.6 | 78.7 | 784 | 80.2 | 79.3 79.70
QLora 3 8 9 7 7 5 3 3 )
BERT-base | 83.4 | 85.1 | 842 |80.6 |823 |81.4 |81.8 |83.6 |82.7 32 85
+ MOE 5 2 8 7 4 9 9 7 7 )
ROBERTa- | a¢> | 874 868 | 83.6 |85.1 | 843 | 847 |862
base + 3 5 4 7 ) 9 3 3 85.5 | 85.58
MOE
SciBERT + | 88.6 | 89.2 | 88.9 | 86.4 | 87.7 | 87.1 | 87.2 | 88.4 | 87.8 87,97
MOE 7 3 5 5 8 1 3 5 4 )
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Qwen3-
Our 14B-QLora

proposed + Semantic 912 1924 |91.8 |89.6 |90.7 |90.2 |90.3 |91.2 |90.7 90.95
Multi- Routing
classificatio | MOE

n Method LLaMa4-
17B-QLora
'+ Semantic 934 | 94.1 |93.7 |92.2 |93.6 | 929 | 92.7 | 93.8 | 93.3 93.35

Routing
MOE

GLM4-9B-

QLora +
Semantic 89.7 | 91.2 90.5 87.4 | 89.1 | 88.2 | 88.6 | 90.3 9.5 | 8943
Routing

MOE

(2) Imbalanced Dataset Multi-classification Experiments

To validate the effectiveness of our proposed two-stage classification method in handling class
distribution imbalance problems, we conducted in-depth comparative experiments on the imbalanced
value sentence fine-grained category dataset. This dataset truly reflects the actual distribution of value
sentence categories in scientific literature, containing 11,570 academic value sentences, 1,297
application value sentences, and 1,430 innovation value sentences, totaling 14,297 samples, with
category distribution ratios of approximately 8.1:0.9:1.0, exhibiting significant imbalance characteristics.
The dataset was divided into training set (11,438 samples), validation set (1,430 samples), and test set
(1,429 samples) in an 8:1:1 ratio. The experiment focused on comparing the performance of two-stage
classification methods and direct multi-classification methods under imbalanced scenarios, particularly
focusing on the recognition effects of minority class samples (application value sentences and innovation
value sentences), to validate the contribution of the semantic routing MOE mechanism in alleviating
class imbalance problems. The experiment adopted the same model configurations and hyperparameter
settings as in Section 3.6.1 to ensure comparability of experimental results.

The experimental results are shown in Table 8. The results demonstrate that our proposed two-stage
classification method significantly outperforms traditional direct multi-classification methods on
imbalanced datasets, particularly showing obvious advantages in minority class sample recognition. The
best model, LLaMa4-17B-QLora + Semantic Routing MOE, achieves a macro-average Fl-score of
88.05%, representing an 18.56% improvement over the corresponding direct multi-classification method,
with a weighted average F1-score of 94.45%, improving by 9.11%. The specific analysis is as follows:

Table.8 The results about imbalanced dataset multi-classification

Academic Value | Application Value | Innovation Value | Macr | Weighted
o- AverageF1
o,
Method Models | p R F1 |P R F1 P R F1 Zzera (%)
o) | Co) | o) | (o) | (o) | (0) | (%) | (%) | (%) | Ry
)
BERT- | 85. |92, |88. |52. |38. | 443 | 54. |41. | 47.
base |67 |34 |87 |34 |45 |2 |78 |23 |12 |01 | 784S
RoBER | 87. [93. |90. |55. |42. |48.0 |57. |44. |50.
Direct Ta-base | 23 12 04 67 18 4 89 67 45 62.84 | 8023
Multi- SciBER | 89. | 94. | 91. | 58. |45, |51.2 |60. |47. | 53.
classifica | T 45 23 78 23 67 3 45 89 45 6549 | 82.67
tion Qwen3-
90. | 95. | 92. |61. |48. |54.0 | 62. | 50. | 55.
Method 14B- 73 12 9 45 3 7 39 34 93 67.63 | 84.12
QLora
LLaMa | 91. |[95. |93. | 63. |51. |57.0 |64. | 52. | 58.
4-17B- 34 67 45 78 45 1 23 78 01 6949 | 85.34
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QLora

;}];M4- 88. | 93. |91. |59. |46. | 523 |6l. |49. | 54. 66.07 | 8289
) 67 78 16 12 89 4 45 23 71 ' '
QLora

BERT-
0. |94 |91. |6s. |59 |638 |70 |61 | 6.
tl\’/i‘(s)e; 23 |56 |82 |45 |78 |1 12 |34 |44 |73069 8423

RoBER

91. [ 95. [93. |72. |64. |68.0 | 73. | 65. | 69.
Ta-base 76.97 | 86.78
+ MOE 67 23 42 34 12 2 45 89 48

?ﬂBER 93. | 96. |94 |75 [68. | 720 [76. | 9. |72 | oo | oo s
Vop |12 |45 |76 |80 |45 |1 |23 |7 |8 : :

Qwen3-
14B-
QLora
+ 95. |1 97. |96. |82. |76. |79.6 | 83. | 78. | 80.
Semanti | 45 23 33 67 89 7 45 23 77
c
Routing
MOE

85.59 | 92.78
Our
proposed
Multi-

classifica
tion
Method

LLaMa
4-17B-
QLora
+ 96. | 98. |97. |85. |80. |828 | 8. |81. | 84.
Semanti | 23 12 16 (34 |45 |4 78 | 67 16
c

Routing
MOE

88.05 | 94.45

GLM4-
9B-
QLora
+ 94. | 96. |95 |[80. |74. | 772 |8l. |76. | 79.
Semanti | 78 89 82 |45 |23 1 89 |45 08
c
Routing
MOE

84.04 | 91.67

1) Effectiveness Analysis of Minority Class Sample Recognition Capability

For minority class sample recognition effects, the two-stage classification method achieves
significant performance improvements on the two minority categories of application value sentences and
innovation value sentences. Taking application value sentences as an example, LLaMa4-17B + Semantic
Routing MOE achieves an Fl-score of 82.84%, representing a 25.83% improvement over direct multi-
classification methods, with recall improving from 51.45% to 80.45%. The F1-score for innovation value
sentences improves from 58.01% to 84.16%, an increase of 26.15%. Particularly, SciBERT + MOE
shows Fl-score improvements of 20.78% on application value sentences and 19.40% on innovation
value sentences. The reason is that the semantic routing MOE mechanism can allocate specialized
classifiers for minority class samples through expert division, avoiding the "suppression" effect of
majority class samples on minority class samples in traditional methods.

2) Quantitative Analysis of Class Imbalance Mitigation

For inter-category performance gaps, the two-stage classification method significantly alleviates
performance difference problems caused by class imbalance. In direct multi-classification methods,
taking LLaMa4-17B-QLora as an example, the Fl-score gap between academic value sentences and
application value sentences reaches 36.44% (93.45% vs 57.01%), and the gap between academic value
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sentences and innovation value sentences is 35.44%, showing extremely unbalanced inter-category
performance. In contrast, the corresponding two-stage method reduces these gaps to 14.32% (97.16% vs
82.84%) and 13.00% (97.16% vs 84.16%) respectively, representing a reduction in performance gaps of
over 60%. This indicates that the semantic routing MOE mechanism can provide sufficient attention to
minority class samples based on semantic features of dfferent categories, effectively balancing the
recognition capabilities across all categories.

(3) Computational Cost Analysis

Although our proposed two-stage classification framework introduces additional modules—such as
semantic routing and expert selection—its computational overhead during inference remains minimal
from a practical application perspective. This is because the semantic-aware routing mechanism only
performs lightweight semantic matching to determine the optimal expert subset, and the expert models
are activated sparsely rather than simultaneously. In other words, only a few relevant experts are
triggered for each input based on semantic similarity, significantly reducing redundant computation.

Furthermore, compared to traditional dense models where the entire network processes every input
instance, the MoE-based design offers computational advantages by distributing the classification task
across specialized experts. While this routing mechanism adds a small fixed cost to inference, it is
amortized by the efficiency gains from expert sparsity. Empirical results indicate that, although the
overall architecture is more complex, the actual computational burden observed during inference is
negligible from an application-layer standpoint, especially when deployed in systems with parallel
inference capability.

Therefore, we argue that the slight increase in theoretical model complexity is outweighed by its
practical benefits in accuracy and specialization, and does not constitute a bottleneck for real-world
deployment.

6. Conclusion and Future Work

In this paper, we propose a two-stage classification method for LLMs based on embedded universal
semantic feature encoding. The first stage achieves effective value sentence identification by embedding
topic semantic features and structural semantic features, while the second stage employs a semantic
routing-based MOE framework to accomplish fine-grained classification of value sentences. The specific
contributions are summarized as follows:

(1) Based on pre-trained models, this paper proposes a universal text classification model that
considers the weight vectors of topic semantic features and structural semantic features. The model
constructs semantic feature sets for each type of value sentence from a linguistic perspective and
considers the weight differences of different semantic features on the basis of syntactic structure features,
calculating the weight vectors of different semantic features.

(2) Utilizing semantic feature vectors and weighting mechanisms, this paper proposes a method for
embedding semantic feature vectors at the internal output stage of pre-trained models. By concatenating
the weight vectors of semantic features with the output of pre-trained models for training, the method
captures and strengthens the semantic expression and contextual information of value sentences,
achieving direct interaction between semantic features and model outputs.

(3) In the self-attention layer, the absolute position and relative position information of semantic
features are embedded. In the position-wise feed-forward encoding layer, dynamic position encoding is
used to adjust the semantic changes of words, and the contextual information of semantic features is
embedded to assist the model in capturing more subtle semantic differences.

(4) The MOE framework based on semantic routing indicates that hyperparameter settings are not
simple linear relationships and that their interactions often exhibit nonlinear and complex characteristics.
By introducing fine-grained semantic encoding routing mechanisms, the model can obtain optimal expert
allocation strategies for multi-classification tasks while reducing computational costs.

(5) Results for pre-trained models indicate that: 1) Analysis of different base models shows that
compared to BERT base model, SciBERT base model achieves 0.5% higher F1 score for value sentence
identification tasks (increasing from 85.81% to 86.31%) and reaches 91.07% after combining with
semantic features (5.26% improvement); 2) Analysis of the same base model reveals that incorporating
semantic features in text classification tasks enables the model to better capture the linguistic patterns and
structures of different sentence types, thereby improving the identification accuracy of models; 3)
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Analysis of models with embedded semantic features demonstrates that our proposed method based on
semantic feature encoding can more precisely capture subtle semantic variations of value sentences at
different positions. By expressing the varying importance of different semantic features through weight
differentials, it achieves superior performance across all value sentence identification tasks, particularly
reaching an F1 score of 94.19% on the scientific literature value sentence dataset.

(6) Results for LLMs show that: 1) Analysis of different base LLMs reveals that compared to
Qwen3-14B base model, LLaMa4-17B base model achieves higher F1 scores across all value sentence
types: academic value sentences improving from 86.82% to 89.34%, with application value sentences
and innovation value sentences showing improvements of 1.0% and 0.9% respectively; 2) Analysis of
fine-tuning strategies indicates that task-specific fine-tuning significantly enhances LLMs'
comprehension of scientific text structures, with all models showing an average F1 score improvement of
approximately 6%-8% after fine-tuning. Notably, under the two-stage classification architecture, the best
model achieved a macro-average F1 score of 93.35% on balanced datasets and 88.05% on imbalanced
datasets.

Notably, this paper optimizes only the value sentence classification task for English scientific
literature. Future research needs to focus on the effectiveness of the proposed method in multilingual text
classification, as well as how to further improve model performance by integrating multimodal
information such as text, images, and tables and extending to cross-domain application scenarios.
Moreover, while our proposed taxonomy of value-bearing sentences is grounded in the conventions of
scientific writing, future work may explore how this classification framework can be adapted to domains
such as social sciences, where rhetorical structures and value expressions differ. The underlying semantic
feature encoding and routing mechanisms are model-agnostic and potentially transferable, provided
domain-specific value definitions are available.
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