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   Abstract—Internet  of  things  (IoT) devices  make up 30% of  all
network-connected  endpoints,  introducing  vulnerabilities  and
novel  attacks that  make many companies as  primary targets  for
cybercriminals.  To  address  this  increasing  threat  surface,  every
organization  deploying  IoT  devices  needs  to  consider  security
risks  to  ensure  those  devices  are  secure  and  trusted.  Among  all
the  solutions  for  security  risks,  firmware  security  analysis  is
essential  to  fix  software  bugs,  patch  vulnerabilities,  or  add  new
security  features  to  protect  users  of  those  vulnerable  devices.
However,  firmware security analysis  has never been an easy job
due  to  the  diversity  of  the  execution  environment  and  the  close
source  of  firmware.  These  two  distinct  features  complicate  the
operations  to  unpack  firmware  samples  for  detailed  analysis.
They also make it difficult to create visual environments to emu-
late  the  running  of  device  firmware.  Although  researchers  have
developed many novel methods to overcome various challenges in
the past decade, critical barriers impede firmware security analy-
sis  in  practice.  Therefore,  this  survey  is  motivated  to  systemati-
cally  review  and  analyze  the  research  challenges  and  their  solu-
tions, considering both breadth and depth. Specifically,  based on
the  analysis  perspectives,  various  methods  that  perform security
analysis  on  IoT  devices  are  introduced  and  classified  into  four
categories. The challenges in each category are discussed in detail,
and  potential  solutions  are  proposed  subsequently.  We  then  dis-
cuss the flaws of these solutions and provide future directions for
this research field. This survey can be utilized by a broad range of
readers,  including  software  developers,  cyber  security  resear-
chers,  and  software  security  engineers,  to  better  understand
firmware security analysis.
    Index Terms—Firmware  emulation,  internet  of  things  (IoT)  firm-
ware, network fuzzing, security, static analysis.
  

I.  Introduction

VARIOUS internet of things (IoT) devices have come into
our sight, and their presence has brought us new life pat-

terns and convenience [1]–[4]. Recent statistics suggested that
the  number  of  IoT devices  will  reach  75.44  billions  by  2025
[5]. However, IoT devices have long been reported to be vul-
nerable  to  various  attacks  [6]–[11].  For  example,  Mirai  [12],

which was first exposed in 2016, used a huge number of com-
promised  IoT  devices  to  launch  distributed  denial  of  service
(DDoS)  attacks  on  valuable/sensitive  targets  including  the
website  of  US  White  House.  According  to  Paloalto’s  report
released  in  2020  [13],  over  50% of  the  IoT  devices  in  the
world  are  vulnerable  to  attacks  whose  severity  were  ranked
medium to high.

Security  analysis  is  important  for  both  software  and  hard-
ware  [14]–[18].  To  ensure  that  the  devices  are  secure  and
trusted, people usually investigate the firmware of IoT devices
and  detect  potential  vulnerabilities  in  the  firmware. Fig. 1
presents the components of IoT devices and the current ways
to analyze firmware security. An IoT device is a small embed-
ded  system  that  has  firmware  running  on  the  system.  It  has
various  peripheral  devices,  applications  running  in  the
firmware,  and  a  network  communication  processor  that  can
communicate  with  the  Internet.  Complex  IoT  devices  are
equipped  with  the  underlying  operating  system  kernels  and
drivers  that  help  interact  with  peripheral  devices.  To  detect
security  flaws,  most  security  analyses  of  IoT  devices  require
the access to firmware. With the firmware, analyzers can per-
form  manual  analysis,  binary  lifting  or  emulation  to  detect
flaws  in  firmware.  Since  IoT  devices  can  communicate  with
the outside world through network, another way of vulnerabil-
ity detection is to test IoT devices based on network.

Although many solutions have been proposed to detect vul-
nerabilities  in  IoT  firmware  (e.g.,  code  analysis  and  fuzzing
with  emulation  [19]–[23]),  there  are  still  several  challenges
that  require  further  research.  Compared  with  software  secu-
rity analysis, inconsistent development standards and a closed
market  environment  make  it  more  difficult  to  develop  IoT
firmware  vulnerability  detection.  Specifically,  the  two  major
challenges  for  security  analysis  of  firmware  are  the  complex
execution environment and the close source of firmware. First,
IoT  firmware  runs  independently  in  specially  designed
embedded  systems.  Many  security  researchers  try  to  use  dif-
ferent  methods  (i.e.,  side  channel  or  network-level  monitor-
ing)  to  obtain  more  information  for  firmware  analysis  when
the IoT device  is  running.  However,  these  methods  are  often
restrictive  and  can  only  obtain  little  information  due  to  the
complex  execution  environment.  Second,  the  acquisition  of
firmware  is  often  impractical  due  to  the  security  concerns
from  device  manufacturers.  Many  manufacturers  will  not
open-source their  firmware and will  disable  the Debug mode
or  joint  test  action  group  (JTAG).  Therefore,  many  methods
based on firmware analysis become impractical in the wild. In
order to overcome these challenges, researchers have designed
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various  practical  solutions  to  test  firmware  from  different
analysis aspects. For example, emulator-based testing is a type
of  method  specifically  designed  to  analyze  IoT  firmware.  In
order  to  run  firmware,  a  virtual  environment  is  provided  by
the emulator. The execution information then can be obtained
during runtime, and the virtual environment enables dynamic
analysis on firmware. In addition, some automatic code analy-
sis methods are designed for analyzing firmware without run-
ning the firmware. Moreover, there are also many studies that
perform  manual  reverse  engineering  analysis  based  on  spe-
cific devices and scenarios. However, these analysis methods
require  the  acquisition  of  firmware.  Considering  the  interac-
tive  ability  of  IoT  devices  with  the  network,  some  other
researchers  have  proposed  methods  for  testing  IoT  devices
through the network without firmware.

As the security of IoT device has been gradually taken seri-
ously in recent years, there are already some research surveys
published  on  it.  For  example,  some  studies  have  concluded
that  vulnerabilities  in  IoT  device  firmware  are  more  compli-
cated  [24]–[27]  and  more  difficult  to  detect  [28],  [29]  com-
pared  with  detecting  vulnerabilities  in  traditional  software.
Another  work  focuses  on  the  categorization  of  bugs  in  IoT
devices  [25].  To  present  the  challenges  of  emulation  and  re-
hosting in firmware, the problem encounted in dynamic analy-
sis is analyzed [30]. In addition, the taxonomy of approaches
in  binary  analysis  is  analyzed,  including  symbolic  execution,
dynamic analysis, and static analysis [31].

To  help  researchers  and  developers  better  understand
firmware  security,  we  conduct  a  more  comprehensive  study
on  vulnerability  detection  techniques  of  IoT  devices.  In  this
survey, we present the analysis solutions in three levels. At the
top level,  we classify  detection solutions  based on the analy-
sis  perspectives,  and  obtain  four  classes  that  are  emulator-
based test,  automatic  code analysis,  network test  via  fuzzing,
and  manual  reverse  engineering.  At  the  second  level,  detec-
tion  solutions  are  categorized  based  on  different  challenges.
The  third  level  includes  detailed  solutions  for  their  corre-
sponding challenges.  This  survey also discusses  the  pros  and
cons of the solutions as well  as future directions in this  area.

Different  from  existing  surveys  that  are  concerned  about  the
technical  classification  [31],  [32],  our  survey  focuses  on  the
challenges  in  vulnerability  detection  of  IoT  firmware.  Since
we  systematically  analyze  the  solutions  to  those  challenges,
our  survey  offers  deep  insights  of  vulnerability  detection  in
IoT devices.

The  main  contributions  of  this  survey  are  summarized  as
follows:

1)  We describe  three  types  of  embedded  systems  that  help
the  analysis  of  emulator-based  solutions.  Moreover,  we  col-
lect  four  techniques,  including  fuzzing,  symbolic  execution,
fault injection, and binary lifting, which are commonly used in
existing vulnerability detection of IoT firmware.

2)  We  propose  a  taxonomy,  which  classifies  vulnerability
detection  of  IoT  firmware  in  three  levels,  including  test  per-
spectives, challenges, and solutions. Additionally, we system-
atically analyze the challenges and solutions, considering both
breadth and depth.

3) We further discuss the limitations for existing solutions.
Meanwhile, we provide future directions for readers to follow.

The rest of this survey is organized as follows. In Section II,
we first discuss the classification methods of IoT devices, and
introduce the taxonomy of various IoT firmware security anal-
ysis  methods  and  some  preliminary  techniques.  We  then
respectively  discuss  the  emulator-based  test,  automatic  code
analysis,  network  test  and  manual  reverse  engineering  meth-
ods  in  Sections  III–VI.  After  that,  we  analyze  the  challenges
faced  by  these  method  categories  and  possible  solutions  in
Section VII and discuss the possible solutions in future direc-
tion  in  Section  VIII,  followed  by  Section  IX  for  the  conclu-
sion of this survey.  

II.  Preliminary

In  this  section,  we  first  introduce  the  classification  criteria
for  IoT  devices.  When  discussing  device  emulation  (Section
III-B),  different  classes  of  devices  differ  in  their  emulation
solutions.  We  then  introduce  the  techniques  that  are  com-
monly used in  various  vulnerability  detection methods.  After
that, we present the taxonomy of research perspectives and the
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Fig. 1.     Firmware security and its solutions. The firmware security can be analyzed based on binary code, firmware image, IoT network and manual analysis.
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challenges they faced, as well as the collection of cutting-edge
IoT device firmware vulnerability detection methods.  

A.  Classification of IoT and Embedded Devices
Based  on  functionality,  embedded  devices  can  be  divided

into high-level categories, such as printers, smart meters, and
IP  cameras.  Additionally,  the  embedded  systems  of  these
devices could be categorized by different criteria, such as the
field of usage, the computing power, their unit cost and so on
[28].  Moreover,  the firmware of different kinds of embedded
systems  also  falls  in  a  large  range,  from a  few lines  of  code
program to customized versions of desktop OSes (e.g., Linux).
We  follow  the  classification  of  embedded  systems  from  two
works, which classify embedded systems based on the type of
firmware [28], [30]:

1)  General  purpose  embedded  system  (GPES)  is  Type  1
embedded system, which uses general purpose operating sys-
tems (e.g., real-time Linux and embedded Windows).

2)  Special  purpose  embedded  system  (SPES)  is  Type  2
embedded system. The operating systems (e.g., ZephyrOS and
VxWorks)  IoT devices  use are  specifically  developed for  the
embedded system.

3) Bare-metal embedded system (BMES) is Type 3 embed-
ded system and they usually work without a true OS abstrac-
tion. Some of them have a light-weight OS-Library.

The categorization shown above is not accurate. For exam-
ple,  the  line  between  GPES and  SPES is  blurred  [30].  How-
ever, this classification based on the type of firmware is help-
ful  to  determine  and  understand  what  emulation  method
should  be  taken  to  emulate  a  target  firmware  (Section  III).
Although  the  operating  systems  of  GPES  are  often  cut  to  fit
the  embedded  system,  emulating  these  types  of  systems  are
still well supported by desktop software [22] (i.e., QEMU and
Panda).  Emulating  the  operating  systems  in  SPES  is  more
challenging and often requires  emulating both the kernel  and
user space [30],  because they are not  derived from a desktop
operating  system.  BMES’s  application  can  directly  access
hardware. Recently, there are some works [33], [34] research-
ing how to emulate on these systems.  

B.  Preliminary Techniques
Before  discussing  how  to  analyze  the  firmware  of  IoT

devices,  we  first  introduce  some  standard  technologies  in
security analysis. These technologies are more like basic ideas
or  tools  than  complete  solutions  to  help  researchers  solve
problems in specific situations. In other words, these methods
provide  a  framework  for  how  to  detect  vulnerabilities,  but
how to  implement  it  on  the  firmware  requires  careful  adjust-
ment by researchers.

1) Fuzzing: Fuzzing is one of the most successful software
testing techniques,  and it  has been used primarily for  finding
security-related bugs [35]–[39]. The core idea of fuzzing is to
automatically  or  semi-automatically  generate  random  data,
feed it into a program, and monitor program exceptions, such
as crashes or assertion failures, to find possible vulnerabilities,
i.e.,  memory  leaks.  Usually,  the  user  must  provide  one  or
more initial inputs as the original seed(s) before fuzzing cam-
paigns.  A  fuzzer  (an  implementation  of  a  fuzzing  algorithm)

will  use  these  seeds  as  materials,  generate  new  test  cases
through  mutation  strategies,  and  then  feed  them  to  the  pro-
gram. By monitoring the program, fuzzing can detect whether
the program is abnormal (e.g., crash) after using test cases as
inputs. The main steps of fuzzing are continuously generating
test  cases,  feeding the program with test  cases,  and detecting
whether the program is abnormal. These three steps will circu-
late continuously until the user stops them.

The  composition  of  fuzzing  also  changes  when  faced  with
different  environments  and  test  objectives.  When  testing
firmware, unlike the direct running and testing of binary exe-
cutable  programs,  the  fuzzing  algorithm  requires  a  virtual
environment in which the program can run. In the test of com-
munication  over  the  network,  the  fuzzing  algorithm  cannot
feed  input  to  the  target  program  through  the  standard  input
(stdin). It takes the form of network communication messages
to send test cases to the target.

In recent years, coverage-guided fuzzing has been proven to
be successful  and applied widely in  finding vulnerabilities  in
various applications [40]–[42]. The typical example of cover-
age-guided fuzz testing, American fuzzy lop (AFL) [43], first
inserts instrumentation into the program to get the code cover-
age  of  each  test.  These  coverage-guided  fuzzers  will  reward
inputs  (e.g.,  retaining  them  as  seeds)  if  they  discover  a  new
coverage. Such a mechanism will  make fuzzing continuously
explore  new  and  unknown  program  states.  Experimental
results  show  that  more  program  coverage  discovered  by
fuzzing can help fuzzer find more vulnerabilities [44].

2)  Symbolic  Execution: Symbolic  execution  is  a  program
analysis technique, which can obtain the input that allows spe-
cific code areas to be executed by analyzing the program. By
symbolizing the variables, the symbolic execution maintains a
set  of  constraints  for  each  execution  path.  When  the  target
code  is  reached,  the  analyzer  can  obtain  the  corresponding
path constraint and then use the constraint solver to obtain the
specific value that can trigger the target code. This technique
does not use fully specified input values but abstractly repre-
sents variables as symbols and uses a constraint solver to con-
struct actual instances that may cause attribute conflicts.

Many  security  practitioners  have  brought  the  concept  of
symbolic  execution  to  vulnerability  detection.  KLEE  [45],  a
method for automatically generating symbolic execution tests,
was  proposed  in  2008.  S2E  [46]  is  another  popular  open-
source symbolic execution platform proposed in 2011. Since it
is based on QEMU [47], it enables symbolic execution on full
system. It can also support testing on both user-space applica-
tions  and drivers.  In  their  practical  tests,  the  test  coverage of
BUSYBOX  and  other  embedded  system  management  suite
software  exceeded  90% on  average.  Moreover,  there  is  an
active  community  that  constantly  writes  and  maintains  many
useful S2E plugins for the improvement of performance (e.g.,
better state pruning algorithms) or new program analysis tool
development  [48].  Many  existing  security  analysis  methods
that use symbolic execution are based on KLEE and S2E.

3)  Software  Fault  Injection: In  software  testing,  the  tech-
nique of fault injection is to inject errors to cover those situa-
tions that are not likely to occur under normal circumstances.
As  a  consequence,  it  will  increase  the  coverage  of  the  test
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[49], [50]. When testing a program and verifying the integrity
of  its  functions,  the  program’s  robustness  under  certain
extreme conditions must also be considered in some scenarios.
The errors can be injected into related software environments
such  as  environmental  variables,  registers,  memory,  file  sys-
tems,  registries,  and  system  calls  when  the  software  is  run-
ning. One of the most commonly used implementation meth-
ods is hooking a system call. After the hook is reached, errors
are injected by modifying the call  parameters  and return val-
ues.

4) Disassembly & Binary Lifting: Disassembly converts tar-
get  code  or  machine  language  into  assembly  language  code.
Software  security  analysis  methods  often  require  the  target
assembly  code  or  source  code.  However,  in  the  wild,  it  is
often  challenging to  get  information from the  program under
test  (PUT).  Although  the  disassembled  program  will  be
slightly different from the original one, it is important to have
the  capability  of  getting  the  readable  assembly  code  [51].  In
the existing market, tools such as IDA Pro [52] and OllyDBG
[53] can complete the disassembly work well.

In  addition,  many  static  analysis  methods  need  to  convert
the  binary  machine  code  into  another  unified  general  higher-
level language. Intermediate language, as an equivalent inter-
nal representation code of a source program, featured by easy
translation into the target program that has nothing to do with
specific machine characteristics, is suitable to be the object of
various code analysis programs [54]. Therefore, in addition to
decompilation, researchers have begun studying binary lifting,
which converts machine code into various forms of intermedi-
ate  representations.  Regarding binary lifting,  there  have been
many mature studies and methods [51], [55], [56].  

C.  Taxonomy of IoT Firmware Security Research
In Fig. 2,  we  present  our  taxonomy  of  IoT  firmware  secu-

rity  research  perspectives.  Based  on  different  analysis  per-
spectives, we classify IoT firmware security analysis methods
into four categories: emulator-based test, automatic code anal-
ysis, network test via fuzzing and manual reverse engineering.
Moreover,  we analyze various challenges encountered in dif-

ferent research methods, which is shown in Table I.
The  emulator-based  test  refers  to  performing  security  test-

ing on the firmware after  rehosting the device firmware with
an emulator. Firmware is an integral part of the emulation pro-
cess. However, obtaining firmware is not an easy task. In the
process of emulation, due to the existence of external devices
of each firmware, some firmware images depend on the inter-
action of external devices. How to learn or avoid the interac-
tion of external devices is a challenge for emulating firmware.
In  addition,  there  is  a  lot  of  manual  work  in  the  process  of
simulating firmware, and how to use it  for large-scale testing
is also an issue. Emulating firmware is the first step in testing,
and how to test firmware in a constrained emulation environ-
ment is also a challenge.

Automatic code analysis is a category of vulnerability detec-
tion  methods  based  on  program  code.  Similar  to  emulation,
automatic  code  analysis  methods  rely  on  firmware  code.
Many  well-established  analysis  solutions  [89]–[91]  work  on
source  code,  whereas  in  the  context  of  IoT  device  firmware,
there  is  often  only  binary  code.  Moreover,  the  architecture
used  by  the  device  is  also  different.  This  means  that  auto-
matic  code  analysis  needs  to  have  the  ability  to  work  across
different  platforms.  There  are  also  various  vulnerabilities  in
IoT devices,  which  may only  exist  in  some specific  environ-
ments or pieces of code. How to use automatic code analysis
methods to find such vulnerabilities is also a big challenge.

Communicating  with  the  outside  world  through  the  net-
work  is  the  most  significant  difference  between  IoT  devices
and  traditional  embedded  devices.  Most  of  the  existing  net-
work methods to test IoT devices focus on fuzzing. Therefore,
we use the perspective of fuzzing theory to introduce and dis-
cuss various fuzzers for testing IoT devices. First, fuzzer algo-
rithms mostly require users to provide initial input (communi-
cation  messages).  Moreover,  IoT  devices  have  strict  format
requirements for the input. Therefore, how to capture a set of
messages  that  can  communicate  with  the  device  and  let  the
fuzzer  generate  messages  that  meet  the  requirements  of  the
device  is  a  challenge  for  network  communication  testing.  In
addition,  due  to  the  inability  to  perform monitoring  methods
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Fig. 2.     Firmware security and its solutions. The firmware security can be analyzed based on code, firmware image, IoT network and manual work.
 

 28 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 1, JANUARY 2023



such as instrumentation to firmware, it is difficult for various
fuzzer  algorithms  to  enable  guidance  mechanisms  such  as
coverage to optimize algorithms when testing devices.  More-
over, since the operating environment of the device is similar
to a black box, it is difficult to know the change of the device
state during the testing process.

Unlike  other  research  perspectives,  manual  reverse  engi-
neering  is  not  a  one-size-fits-all  methodology.  In  general,
manual reverse engineering requires researchers to obtain and
analyze firmware code through other methods such as decom-
pilation  or  disassembly,  and  reorganize  its  logic.  After  that,
researchers  need  to  perform  detailed  inspection  and  analysis

 

TABLE I 

Table for IoT Device Firmware Vulnerability Detection Methods

Perspective Paper Year Challenge & solution Architecture

Emulation-Based test (Section III)

SymDrive [57] 2013 Emu.C4S1 x86

PROSPECT [58] 2014 Emu.C2S1 MIPS

Avatar [59] 2014 Emu.C2S1 ARM

SURROGATES [60] 2015 Emu.C2S1 ARM

CostinFA [61] 2016 Emu.C2S2; Emu.C3S1; Emu.C4S2 Multiple

Firmadyne [22] 2016 Emu.C1S1; Emu.C2S2; Emu.C4S2 ARM; MIPS

Avatar2 [62] 2018 Emu.C2S1 Multiple

Pretender [63] 2019 Emu.C2S2 ARM mbed

FirmFuzz [64] 2019 Emu.C4S2 ARM; MIPS

FIRM-AFL [65] 2019 Emu.C4S3 ARM; MIPS

PeriScope [66] 2019 Emu.C4S3 AArch64

P2IM [34] 2020 Emu.C3S1 ARM Cortex-M

Laelaps [67] 2020 Emu.C3S1 ARM Cortex-M

HALucinator [33] 2020 Emu.C3S1 ARM Cortex-M

FirmAE [68] 2020 Emu.C3S1 ARM; MIPS

FIFUZZ [23] 2020 Emu.C4S1 ×

Jetset [69] 2021 Emu.C2S2; Emu.C4S1 AMD 486; ARM

ECMO [70] 2021 Emu.C2S1 ARM

DICE [71] 2021 Emu.C2S1 ARM Cortex-M; MIPS M4K/M

uEmu [72] 2021 Emu.C3S1 ARM

IFIZZ [50] 2021 Emu.C4S1 ARM; MIPS

Automatic code analysis
(Section IV)

FIE [19] 2013 Auto.C2S2 MSP430

Firmalice [21] 2015 Auto.C3S1 ARM and PPC

DiscovRE [73] 2016 Auto.C1S1; Auto.C2S1 x86, x64, ARM and MIPS

Genius [74] 2016 Auto.C1S1; Auto.C2S1 x86, ARM and MIPS

FirmUSB [54] 2017 Auto.C2S2 ARM and x86

Gemini [75] 2017 Auto.C2S1 x86, ARM and MIPS

VulSeeker [76] 2018 Auto.C1S1; Auto.C2S1 Multiple

FirmUP [77] 2018 Auto.C1S1 MIPS32, ARM32, PPC32 and Inter-x86

KARONTE [78] 2020 Auto.C3S1 ARM, AARCH64 and PPC

CPScan [79] 2021 Auto.C3S1 MIPS and ARM

SaTC [80] 2021 Auto.C3S1 Multiple

PASAN [81] 2021 Auto.C3S1 ARM

Network test via fuzzing (Section V)

RPFuzzer [82] 2013 Net.C3S1 NA*

BooFuzz [83] 2014 Net.C1S2; Net.C3S1 NA

IoTFuzzer [84] 2018 Net.C1S1; Net.C3S2 NA

SRFuzzer [85] 2019 Net.C1S2 NA

Diane [86] 2021 Net.C1S2; Net.C3S1 NA

Snipuzz [87] 2021 Net.C1S3; Net.C2S1; Net.C3S2 NA

ESRFuzzer [88] 2021 Net.C1S2 NA

CnSm means that the method belongs to themth solution under the nth challenge in the following discussion.
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where there may be flaws in the code to find out the vulnera-
bilities.  Such  methods  require  careful  manual  analysis  of  the
case  by  the  researcher.  In  this  process,  faced  with  different
cases, the research methods and analysis methods adopted by
researchers are very different. This means that the challenges
encountered in different cases are also different.

Table I shows  the  collected  state-of-the-art  methods  under
different  research  perspectives.  The  column “Challenge  &
solution” in  the  table  represents  the  challenges  faced  by  the
methods and the solutions proposed to solve those challenges.  

III.  Emulator-Based Test

The  emulation  of  firmware  has  been  an  emerging  technol-
ogy  in  recent  years.  Emulators  allow  security  researchers  to
run embedded software without hardware. Most dynamic test-
ing  is  often  accompanied  by  destructiveness.  For  example,
fuzzing will cause the device to enter a crash state repeatedly.
Therefore,  for  fragile  and  expensive  IoT  devices,  emulation
along with dynamic testing is an attractive solution. However,
a  successful  emulation  is  not  as  simple  as  importing  the
firmware  into  the  emulator.  It  will  face  the  challenges  posed
by  many  real-world  environmental  constraints.  For  example,
Non-uniform  firmware  development  principles  lead  to  the
need  for  manual  customization  of  the  emulators  required  to
emulation  firmware.  In  addition,  it  is  challenging  to  deploy
various test  tools  on top of  the emulator  and test  the running
firmware.

In  this  section,  we  categorize  the  challenges  in  emulator-
based test  into  four  groups:  acquisition  of  firmware;  external
hardware & peripheral; large-scale testing; and detecting vul-
nerability. In each subsection, we also introduce existing tech-
niques  and  tools  that  can  be  different  solutions  to  each  chal-
lenge.  

A.  Acquisition of Firmware (Emu.C1)
Firmware  is  the  key to  the  entire  emulation process.  Many

existing  methods  discuss  how  to  conduct  emulations  but
ignore  the  firmware acquisition process.  To protect  the  secu-
rity of the product, most manufacturers do not release the rele-
vant firmware. Moreover, various debug ports of IoT devices
are  blocked  by  manufacturers  to  prevent  the  leakage  of
firmware.  Therefore,  it  is  challenging  to  obtain  the  target
firmware.  To  overcome  this  challenge,  researcher  have  pro-
posed different solutions as follows:

1)  Download  Firmware  From  Wild  (Emu.C1S1): Before
firmware security problems broke out  on a large scale,  many
manufacturers  published  firmware  images  of  some  products
on the Internet. For example, some researchers downloaded a
large number of firmware images from different vendors [22],
[73],  [74].  However,  the  information  about  the  downloaded
firmware  is  often  incomplete.  Moreover,  researchers  often
need  to  manually  detect  the  format  or  architecture  of  the
firmware.  For  example,  in  an  IoT  device  of  type  BMES  or
SPES,  the  downloaded firmware might  be  a  user-level  appli-
cation.  Therefore,  emulation  of  such  firmware  requires  an
additional operating system kernel.

2) Capturing via Network Traffic (Emu.C1S2): Intercepting
the firmware of IoT devices through network traffic is  also a

possible  approach.  Many  IoT  devices  have  the  ability  to
update  themselves  over  the  network.  They  download  the  lat-
est  firmware  to  the  device  itself  by  sending  a  request  to  the
target  server.  By  assuming  a  network  sniffer,  the  address  of
the server and the requested message can be captured, and the
firmware  can  be  downloaded  to  the  local  by  replay  or  other
methods. However, this process may be encrypted or authenti-
cation (such as tokens and timestamps) may be required in the
message.

In  addition,  firmware  can  be  extracted  from  the  network
traffic of the device as it  is  being updated through a network
traffic  capture  tool  (such  as  DroidSniff  [92],  EtherApe  [93],
and NetworkMiner [94]) attached to the actual hardware. The
problem is, the update process for devices is often not loading
a fresh firmware, but applying a patch.  

B.  External Hardware & Peripherals (Emu.C2)
Emulating  the  firmware  in  a  virtual  environment  is  a  chal-

lenge.  Due  to  the  lack  of  peripherals  required  for  firmware,
some  firmware  cannot  be  emulated  via  a  virtualizer  such  as
QEMU  [47].  In  addition,  most  devices  customize  their
firmware,  resulting  in  diverse  standards  of  architecture  and
kernel. We divide existing solutions to this challenge into par-
tial emulation and full emulation.

1) Partial Emulation (Emu.C2S1): Partial emulation is pro-
posed  to  solve  the  problem  that  it  is  difficult  to  emulate  the
peripherals  of  embedded  devices.  The  partial  emulation  exe-
cutes the firmware in the emulator, and at the same time for-
wards the instructions sent by the firmware to the real periph-
erals.  For  example,  PROSPECT  [58]  is  a  system  that  can
overcome the  problem of  being  unable  to  emulate  peripheral
hardware.  It  transparently  forwards  peripheral  hardware
access from the original host system to the virtual machine so
that embedded software can be run without knowing how the
peripheral  hardware  components  are  accessed.  In  addition,
PROSPECT  can  dynamically  analyze  binary  firmware  codes
in any analysis environment.

Similar to PROSPECT, AVATAR [59], an emulator frame-
work,  arranges  the  execution  of  the  emulator  with  the  real
peripheral  hardware  to  realize  dynamic  analysis.  AVATAR
improves  the  system’s  performance  by  forwarding  I/O  acce-
sses from the emulator to the embedded device,  and dynami-
cally  optimizing  the  code  and  data  distribution  between  the
two environments. In the evaluation [59], AVATAR was used
to  perform  analysis  on  three  different  devices,  all  with  suc-
cess.

Based  on  AVATAR,  SURROGATES  [60]  improves  the
efficiency and stability of emulation by strengthening the con-
nection  between  external  devices  and  firmware.  Specifically,
SURROGATES  uses  a  customized  low-latency  field-pro-
grammable  gate  arrays  (FPGA)  bridge  between  the  host’s
peripheral component interconnect (PCI ) express bus and the
system  under  test,  allowing  the  emulator  to  fully  access  the
firmware’s  peripherals.  In  addition,  it  optimizes  the  entire
emulation system to overcome the problems that exist in pre-
vious emulators, such as interrupts handling, DMA, and clock
changes.

The emulation of ECMO [70] is  based on a novel  technol-
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ogy  of  peripheral  transplantation.  Its  core  idea  is  to  port  the
drivers of the specified peripherals to the target kernel binary
instead  of  manually  adding  the  emulation  of  each  external
device  in  QEMU.  Specifically,  ECMO  transplants  two  com-
ponents during the emulation, namely, the emulator model of
the  peripheral  to  QEMU and the  device  driver  of  the  periph-
eral to the firmware kernel.

2)  Full  Emulation  (Emu.C2S2): When  peripherals  of  a
device  can  be  successfully  emulated,  full  emulation  re-hosts
the  firmware  outside  of  the  device.  For  example,  for  many
Linux-based  embedded  systems,  full  emulation  of  their
firmware is possible when full hardware setup documentation
is available.

To fully emulate the firmware, Firmadyne [22] extracts the
file system from the device and puts it into a precompiled gen-
eral-purpose  Linux  kernel  that  runs  with  QEMU.  Due  to  the
scalability  of  full  emulation,  Firmadyne can perform a  large-
scale  test  of  target  firmware.  Firmadyne  discovered  14
unknown vulnerabilities on 69 firmware images. ARM-X [95]
adopts a similar idea to Firmadyne in emulation, but requires
users  to  provide  more  information  and  configuration.  More-
over, ARM-X can only be used for ARM architecture devices,
and requires  rootfs  and NVRAM in  the  firmware  as  support.
Pretender  [63]  is  a  framework that  automatically  re-hosts  the
firmware  of  various  embedded  systems  in  a  virtual  environ-
ment.  It  records  the  interaction  between  the  physical  hard-
ware and the firmware and then these records are used to build
models for describing each peripheral by using machine learn-
ing.  Therefore,  Pretender  can  completely  place  the  firmware
in  a  virtualized  environment  and  does  not  need  to  maintain
long-term access to hardware devices.  

C.  Large-Scale Testing (Emu.C3)
The challenges of emulating peripheral devices also include

the difficulty of large-scale testing. Some IoT device systems
have  no  peripheral  devices,  but  some  systems  may  be  con-
nected to programmable logic controllers (PLC),  FPGA, sen-
sors,  databases,  and  many  other  peripheral  devices.  A  lot  of
partial  emulation  approaches  often  require  manual  efforts,
which include heavy engineering works to extend the method
to large-scale testing. The full emulation method such as Fir-
madyne  also  encounters  some  challenges  in  large-scale  test-
ing.  It  does  not  successfully  extract  the  desired  filesystem
from  every  firmware  image.  For  example,  out  of  23  035
firmware  images,  Firmadyne  can  only  successfully  extract
filesystem from 9486 images.

1) Custom Methods (Emu.C3S1): For better large-scale test-
ing, the existed methods [33], [34], [67], [68], [72] use differ-
ent ideas to solve this problem.

To find out the reasons for low emulation rates,  the failing
cases of FIRMADYNE emulation [22] in large-scale data sets
were analyzed [68]. Although a failure behaves differently in
different cases, it is found that most of these problems can be
avoided by simple  heuristics.  Therefore,  an automated proto-
type  named  FirmAE  that  can  enhance  the  emulation  effect
was  further  developed  [68].  FirmAE  proposes  an  arbitration
emulation  technology  and  uses  heuristics  to  help  arbitration
technology solve the problems in various failed cases.  It  was

mentioned in the evaluation [68] that the number of firmware
that FirmAE can emulate is about 4.8 times to that of Firma-
dyne.

Furthermore,  in  order  to  scale  up  firmware  testing,
researchers have tried various methods to automatically solve
the  problem  of  interaction  between  external  devices  and
firmware. Laelaps [67] is an emulator for running software on
various microcontroller devices. It uses symbolic execution to
assist  peripheral  emulation  to  infer  the  expected  behavior  of
the  firmware  and  generate  appropriate  inputs  to  guide  the
operation. Based on the inference, Laelaps can run a variety of
firmware  without  prior  knowledge.  However,  Laelaps  only
stays  in  the  mode  of  symbolic  execution  for  a  short  period,
which  can  mitigate  the  influence  of  the  problem  called  path
explosion.  In  other  words,  Laelaps  can  only  be  supported  by
symbolic execution in a short-term execution.

Firmware developers  sometimes use  abstraction to  develop
code,  such  as  hardware  abstraction  layer  (HAL),  which  sim-
plifies  the  development.  Based  on  this  observation,  HALuci-
nator, a method that provides high-level emulation through the
HAL functions, was proposed [33]. It uses heuristics to locate
the  code  belonging  to  the  hardware  abstraction  layer  (i.e.,  a
vendor-provided API for interacting with the hardware) in the
firmware  and  replaces  it  with  manually  created  handlers.
HALucinator  takes  firmware  as  input  and  produces  a  fully-
featured emulation environment.

P2IM  [34]  is  a  software  framework  that  can  test  firmware
independently  without  hardware.  It  abstracts  peripheral
devices and dynamically processes firmware I/Os based on an
automatically  generated  model.  It  takes  the  target  firmware
and its memory map as input and fuzzes the code by feeding
the input from an off-the-shelf fuzzer (i.e., AFL) to the periph-
eral  device.  Then  P2IM  analyzes  the  device  access  patterns
exercised  during  this  fuzzing  phase  to  infer  details  about  the
MMIO (memory-mapped  I/O)  interactions  between  the  firm-
ware and peripheral devices, which can execute the firmware
without crashing.

uEmu  [72]  is  used  to  emulate  firmware  with  unknown
peripherals.  It  tries  to  learn  how to  emulate  firmware  execu-
tion  at  each  peripheral  intervention  point  correctly.  uEmu
accepts images as input, expresses unknown peripheral regis-
ters as representation objects for symbolic execution analysis,
and infers access rules for unknown devices. These rules will
help it perform dynamic firmware analysis.  

D.  Detecting Vulnerability (Emu.C4)
The purpose of using emulation is to help us better perform

vulnerability  analysis  and  testing.  However,  as  mentioned
before,  emulation  technology  faces  various  challenges  and
there are many limitations in practical applications. Therefore,
how to perform vulnerability detection on firmware in virtual
environments with various limitations is also a big challenge.

1)  Error  Handling  in  Driver  (Emu.C4S1): A  driver  may
encounter  errors  when communicating between the  operating
system kernel  and  the  hardware.  However,  because  this  kind
of error does not happen frequently, the error handling code is
not  taken  seriously  in  most  of  the  existing  tests  [49].  The
methods  [96]  of  finding  vulnerabilities  in  firmware  often
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ignore the characteristics of device drivers, making it difficult
for them to find vulnerabilities in error handling code.

SymDrive [57] is a framework of symbolic testing for Linux
device drivers. There have been some studies [46], [97] trying
to implement symbolic execution for driver testing, but these
systems  require  developers  to  manually  adjust  when  testing
new  drivers.  SymDrive  solves  this  problem  by  using  static-
analysis  and  source-to-source  transformation  to  reduce  the
effort of testing a new driver significantly. It inputs the C code
for the Linux drivers and attempts to find program paths that
violate  user-written  assertions.  Static  analysis  helps  Sym-
Drive analyze crucial features of the driver code, such as entry
point  functions  and  loops.  SymDrive  uses  a  driver  detection
program to test the driver on the firmware for error handling.

Fuzzing is  a  commonly used technique in  dynamic testing,
but it is challenging for existing fuzzers to test the error han-
dling  effectively.  The  reason  lies  in  the  fact  that  errors  are
often  triggered  in  corner  situations,  where  fuzzing  is  hard  to
reach. Furthermore, testing error handling code often leads to
execution crashes, preventing the fuzzer from tracing the error
path  deeply.  IFIZZ  [50]  is  a  new error  detection  system that
can solve these problems. It uses fuzzing to test the error han-
dling  code  in  the  Linux-based  IoT  firmware.  IFIZZ  first
adopts a binary-based automation method to recognize errors
and their conditions in actual operation by analyzing errors in
the firmware. After that,  it  uses state awareness and bounded
error  generation  to  detect  deep  error  paths  effectively.  In  its
evaluation [50], the depth of error paths covered by IFIZZ in
IoT  devices  is  on  average  7.3  times  that  of  traditional  error
injection methods.

FIFUZZ  [23]  is  another  fuzzing  framework  for  error  han-
dling  code.  Unlike  IFIZZ,  FIFUZZ  uses  a  context-sensitive
software fault injection method to effectively detect error han-
dling  codes  in  different  contexts.  As  a  result,  it  finds  pro-
found  errors  hidden  in  complex  trigger  situations.  Compared
with some popular fuzzing tools [98], [99], FIFUZZ can find
vulnerabilities missed by these tools.

2)  Web  Interface  (Emu.C4S2): Many  IoT  devices  have
built-in web application services. Web applications provide an
interface  for  the  outside  world  to  interact  with  the  devices
when they are working.

There  are  a  large  number  of  vulnerabilities  hidden  in  web
applications  of  IoT  devices  [61].  A  fully  automated  frame-
work,  aiming  to  use  dynamic  firmware  analysis  to  automate
the  discovery  of  vulnerabilities  in  embedded  firmware  in  an
extensible manner, was implemented [61]. This kind of frame-
work only detects the vulnerabilities in the built-in web inter-
face of the embedded device when the firmware is running in
emulation. It was reported that 225 unknown serious vulnera-
bilities were found in 45 firmware images.

In  addition  to  the  emulator,  FIRMADYNE [22]  provides  a
set  of  methods  for  testing  web  services  in  the  firmware.  It
implements  three  primary  channels  of  automatic  dynamic
analysis  in  its  system  to  facilitate  analysis.  FIRMADYNE
uses 60 persistent vulnerabilities to check the firmware in the
data  set  for  similar  vulnerabilities.  Each  vulnerability  is  exe-
cuted  in  order,  and  the  vulnerabilities  are  successfully  veri-
fied  by  checking  the  corresponding  logs.  There  are  many

exploited  vulnerabilities,  such  as  buffer  overflow,  command
injection, information disclosure, and denial of service.

FirmFuzz  [64]  is  a  framework  for  independent  emulation
and  automatic  dynamic  analysis  of  Linux-based  firmware.  It
uses  a  grey-box-based  generational  fuzzer,  combined  with
static  analysis  and  system introspection  to  detect  vulnerabili-
ties  in  the  firmware.  In  order  to  effectively  detect  more  pro-
found  vulnerabilities  in  web  applications,  FirmFuzz  uses  the
program interfaces of these web applications as entry points to
generate  grammatically  valid  input.  Meanwhile,  it  injects
monitors  into  the  firmware  running  environment  to  monitor
the context.

3)  Others  (Emu.C4S3): In  addition  to  error  handling  codes
and web applications, the dynamic detection methods are used
to  analyze  vulnerabilities  in  many  other  scenarios  and  spe-
cific code segments. For example, the complete system emula-
tion  is  about  ten  times  slower  than  the  user-mode  emulation
(i.e., AFL) [28]. Part of the reason that the emulation through-
put is not ideal is the software implementation of the memory
management  unit  [65].  FIRM-AFL  [65]  solves  the  perfor-
mance bottleneck caused by system emulation through a new
technology  called  enhanced  process  emulation.  Furthermore,
it  solves  compatibility  issues  by  enabling  fuzzing  POSIX
(Portable  Operating  System  Interface)  compatible  firmware,
which  can  be  emulated  in  the  system  emulator.  With  such
enhancement, the throughput of FIRM-AFL is on average 8.2
times higher than that of a fuzzer under full system emulation.

Generally,  most  attacks  against  the  kernel  are  mainly
located  on  the  boundary  of  system  calls  [66].  However,  as
shown in some exploiting cases, there are kernel compromise
paths  that  do  not  involve  system  calls  [100].  Attackers  can
gain control of the kernel by destroying peripheral devices. In
order  to  detect  and  fix  such  vulnerabilities  that  occur  on  the
hardware-operating system boundary, PeriScope [66] was pro-
posed.  It  can  perform  a  fine-grained  analysis  of  the  interac-
tion  between  the  device  and  the  driver.  PeriScope  hooks  the
page  fault  handling  mechanism  of  the  firmware’s  kernel  to
detect  and  record  the  traffic  between  device  drivers  and
related  hardware.  In  addition,  PeriScope  provides  a  fuzzing
framework  called  PeriFuzz,  which  can  emulate  attacks  on
peripheral devices.  

IV.  Automatic Code Analysis

Automatic code analysis techniques have been proved to be
effective in software engineering security. For example, a tool
was  proposed  [101]  to  use  the  code  attribute  graph  in  the
source code to match code segments with the same pattern in
other programs. Similar to this approach, CCFinder [89], CP-
Miner [90] and DECKARD [91] also adopt pattern matching
techniques to detect vulnerabilities. As a vulnerability mining
technique  that  uses  code  features  for  analysis,  code  analysis
methods  can  work  without  device  entities.  In  addition,  the
code-matching solution is suitable for large-scale testing.

However,  the  false  positive  and  the  false  negative  rate  are
the evaluation criteria that code analysis cannot avoid. How to
balance analysis efficiency and accuracy is a major challenge
in  code  analysis.  In  addition,  it  is  difficult  to  directly  apply
automatic  code  analysis  methods  to  analyze  firmware  of  IoT
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devices because real-world environments are different.  

A.  Lacking of Source Code (Auto.C1)
In  Section  III-A,  we  have  introduced  the  difficulty  of

obtaining  device  firmware.  Some  automatic  code  analysis
tools  commonly  used  in  software  engineering  are  based  on
firmware source code. In a real-world environment where it is
difficult  to obtain device firmware,  it  is  almost  impossible to
find the source code of the firmware.

1) Working on Binary Executable (Auto.C1S1): After recog-
nizing  the  difficulty  of  obtaining  source  code,  researchers
focus on automatic vulnerability analysis of binary code [20],
[73],  [74],  [76],  [77],  [102],  [103].  Moreover,  detecting  vul-
nerabilities  from  a  binary  perspective  may  yield  more  accu-
rate  results  than  that  from  source  code  [73].  For  example,
when compilers get code from source to binary, the optimizer
may introduce new vulnerabilities that are difficult to be iden-
tified by existing methods based on source code [73], [76].

When  analyzing  vulnerabilities  on  firmware  binary,  Bin-
Arm  [102]  uses  a  novel  fine-grained  multi-stage  function
matching method to  find  the  candidate  functions.  It  first  col-
lects a large database of vulnerable firmware programs as the
search basis. Then, BinArm filters out some functions accord-
ing  to  heterogeneous  features  and  execution  paths,  and  finds
functions that  may have vulnerabilities  based on fuzzy graph
matching.  Experiments  show  that  BinArm  is  three  orders  of
magnitude faster than existing fuzzy matching methods, and it
successfully finds 93 CVE vulnerabilities.  

B.  Architectures (Auto.C2)
Functions in binary executable may have similarities at  the

source code level, but they are quite different in the assembly
version. For example, we might witness big differences in the
structure  of  the  control  flow  graph  and  the  offsets  of  local
variables on the stack. Different registers are also used for the
same operation.

1)  Features  &  Control  Flow  Graph  (Auto.C2S1): To
address  cross-platform  vulnerability  search  in  general,  many
recent  works  [73]–[76],  [103]  proposed  using  different  kinds
of features and control flow graphs in the binary.

DiscovRE  [73]  mainly  calculates  the  similarity  between
functions through the structure of the control flow graph, and
uses this method to find potential vulnerabilities through func-
tions  with  known vulnerabilities.  Using  a  control  flow graph
structure allows DiscovRE’s approach to avoid the impact of
code  differences  caused  by  compilers,  optimization  levels,
operating  systems,  and  CPU  architectures.  In  the  prototype,
DiscovRE  supports  four  different  instruction  sets  (x86,  x64,
ARM, and MIPS).

Genius  [74]  borrows  ideas  from the  computer  vision  com-
munity to deal with similar problems. It directly uses CFG for
matching,  but  chooses  to  extract  higher-level  numerical  fea-
tures  from  CFG  and  search  for  vulnerabilities  based  on
numerical  features.  Such  an  approach  makes  Genius  more
immune  to  architectural  changes.  Moreover,  the  overhead  of
graph matching is usually expensive, and converting the con-
trol  flow  graph  into  higher-level  features  can  significantly
improve the efficiency of the searching process.

In  addition,  there  are  some  works  [75],  [76]  that  optimize
control  flow  graphs  and  code  feature  search  algorithms
through  deep  learning.  To  optimize  the  search  algorithm,
VulSeeker [76] is constructed by labeled semantic flow graph
(LSFG)  and  the  semantic-aware  deep  neural  network  (DNN)
based  function  semantic  generation.  This  approach  captures
more semantic information than using the control  flow graph
alone.  Gemini  [75]  adopts  deep  neural  network  to  generate
embeddings  of  binary  functions  for  similarity  detection.  It
uses  the  graph  embedding  network  to  convert  control  flow
graphs  into  embedding  (i.e.,  numeric  vector).  By  combining
the graph embedded network with the Siamese network [104],
the  network  can  naturally  capture  two  similar  functions  and
make them close to each other.

2) Intermediate Representation (Auto.C2S2): There are also
some  methods  [19],  [54]  using  intermediate  representation
code to solve the problem of architecture. They first translate
the code under different frameworks to the intermediate repre-
sentation code in the same language, and then conduct vulner-
ability analysis on this basis. Many existing vulnerability anal-
ysis techniques already support a variety of different interme-
diate representation codes. For example, KLEE [45] supports
LLVM intermediate representation (IR), but KLEE cannot run
on binary executables.

A  symbolic  execution  framework  called  FIE  [19]  was
designed  to  detect  vulnerabilities  in  firmware  of  the  popular
MSP430  microcontroller.  FIE  transfers  source  code  into
LLVM  bytecode  by  using  the  Clang  compiler.  It  then  ana-
lyzes  the  bytecode  by  using  the  modified  KLEE,  which  is  a
symbolic  execution  engine.  It  takes  as  input  a  piece  of
firmware, a memory map (e.g.,  regions such as RAM, ROM,
and  MMIO),  and  an  interrupt  specification  that  describes  all
locations  where  interrupts  could  be  triggered.  FIE  will  stop
analyzing  if  the  analysis  exceeds  pre-determined  time  or  all
possible states have been analyzed.

Similar to FIE, FirmUSB [54] uses a binary booster to con-
vert binary files to bitcode and then deploys symbolic execu-
tion  (based  on  KLEE)  on  Intel 8051 MCU.  It  analyzes  USB
firmware  images  by  using  domain-specific  analyses  to  iden-
tify  malicious  behavior  that  targets  USB  (Universal  Serial
Bus) devices.  

C.  Various Bug (Auto.C3)
The automatic code analysis tools we introduced earlier are

mostly based on a huge library of known vulnerabilities, using
matching ideas (functions, control flow graphs or feature vec-
tors)  to  find  similar  vulnerabilities  in  the  library.  However,
such methods are difficult to work in some special cases, such
as  detecting  vulnerabilities  in  the  interaction  between  binary
files, or in network application interfaces.

1) Specific Situation and Cases (Auto.C3S1): In addition to
systematic methods such as matching analysis, many methods
are  designed  for  detecting  specific  types  of  vulnerabilities  in
IoT devices,  such as integer overflow [105],  [106],  use-after-
free  [48],  and  buffer  overflow  [107].  Some  other  methods
focus on detecting vulnerabilities in specific situations or code
segments.

Firmalice [21] provides a framework for detecting authenti-

FENG et al.: DETECTING VULNERABILITY ON IOT DEVICE FIRMWARE: A SURVEY 33 



cation  bypass  vulnerabilities  in  binary  firmware  based  on
symbolic  execution  and  program  slicing.  Firmalice  observes
that  if  an attacker  can obtain the input  of  a  privileged opera-
tion  performed  by  the  driver  firmware,  the  authentication
mechanism is  either  vulnerable  or  can  be  bypassed.  Because
there  are  many  different  manifestations  of  privileged  opera-
tions  in  a  device,  Firmalice  can  customize  the  strategy  of
security analysis for each firmware.

Many existing devices have functions implemented through
multiple  binary  file  interactions,  but  static  or  dynamic  secu-
rity  analysis  has  little  effect  on  such  multiple  binary  interac-
tion  services.  Therefore,  KARONTE  [78]  leverages  static
analysis techniques to perform multi-binary taint analysis and
accurately finds the vulnerability by tracking the data flow in
the  firmware.  It  uses  the  commonality  of  the  inter-process
communication (IPC) paradigm to detect where an user input
is  introduced  into  the  firmware  and  it  also  identifies  various
components. Then, KARONTE performs binary taint analysis
by tracking the data flow between components.

Code pruning is common in customizing the Linux kernels
of devices by IoT vendors. However, due to the inherent com-
plexity of the Linux kernel and the lack of long-term mainte-
nance,  in  the  process  of  code  tailoring,  a  manufacturer  may
mistakenly  delete  some  necessary  security  operations  [79],
resulting in various types of vulnerabilities.  CPScan [79] is a
system that can automatically detect vulnerabilities caused by
code pruning in an IoT kernel. A graph-based method can also
effectively identify the deleted security operation (DSO) in the
kernel.

There  are  many  vulnerabilities  in  the  web  services  of
embedded  systems.  SaTC  [80],  proposed  in  2021,  is  a  secu-
rity  solution  based  on  taint  checking  for  Web  services  of
embedded systems.  The string text  of  a web interface is  usu-
ally  shared  between  the  front-end  and  back-end  binary  files.
Based  on  this  observation,  SaTC  extracts  these  commonly
used  keywords  from  the  front-end  files  and  uses  them  as  a
positioning reference in the back-end files. Finally, SaTC ana-
lyzes whether there are dangerous operations in the user input
stream based on data flow analysis.

Concurrent  error  is  one  of  the  most  challenging  software
vulnerabilities  to  be  detected  and  debugged  [81].  Due  to  the
non-deterministic  conditions  of  triggering  such  errors,  it  is
challenging to design a method for concurrent errors. A code
analysis  tool,  PASAN  [81],  was  designed  to  detect  concur-
rency  of  peripheral  access  in  embedded  firmware.  PASAN
uses  a  parser-ready  memory  layout  document  to  find  the
MMIO address range of each peripheral device automatically.
Specifically, it uses the corresponding device driver to extract
the  internal  state  machine  of  the  external  device  and  com-
bines the MMIO address range to automatically detect concur-
rent vulnerabilities in the access of the peripheral device.  

V.  Network Test via Fuzzing

Benefiting  from the  ability  of  IoT devices  to  communicate
with the network, security researchers have found the method
to  test  IoT  devices  without  requiring  the  device  firmware  or
source  code.  The  new  method  runs  testing  through  network
communication. Most of the emulator-based test methods and

static code analyses need a large amount of knowledge about
the device,  such as manufacture information,  firmware archi-
tecture,  and  even  the  firmware’s  source  code.  Manufacturers
often do not release firmware publicly due to device security
issues.  They  also  develop  many  new  techniques  to  prevent
their  firmware  from  various  reverse  engineering  attempts,
such as the one to block device’s debug mode. Compared with
other  test  methods,  fuzzing  does  not  require  much  device
information.  This  advantage  makes  fuzzing  a  mainstream
choice for testing IoT devices over the network. However, the
types of vulnerabilities that can be found by such methods are
also limited due to the nature of fuzzing.  

A.  Input Acquisition & Format Requirement (Net.C1)
Fuzzing  techniques  usually  require  users  to  provide  inputs

as the original seeds to participate in the mutation phase. The
generation-based fuzzer may not require a specific input, but it
also  requires  users  to  customize  the  method  of  generating
inputs before testing. The input refers to a complete communi-
cation message that includes the protocol. For network fuzzers
that  use  communication  packets  as  test  cases,  the  original
input(s) can be one message, multiple different messages, or a
sequence  of  messages.  For  example,  many  devices  need  to
verify  customer  information  (e.g.,  login  account,  password,
etc.)  before  performing various  functional  operations.  At  this
time,  the user  needs to send more than two messages (one is
for  login  verification)  to  complete  an  operational  command.
Therefore, using one message as input will make it difficult to
bypass the verification mechanism, resulting in low test cover-
age.  For  some bridge IoT devices,  they connect  many differ-
ent  IoT  devices.  When  the  users  need  to  use  a  device  under
the  bridge,  they  need  to  select  the  device  first  and  then  send
commands to it. Such an operation requires the cooperation of
multiple messages, and a relative order between the messages
is also required. It is difficult for the messages to be executed
correctly  without  sequence  matching  for  multiple  different
messages.

In  addition,  IoT  devices  have  strict  requirements  for  input
(communication  messages).  The  communication  messages
usually  comply  with  the  protocol  used  by  the  device  (i.e.,
HTTPS, MQTT, etc.). The content in the message also needs
to comply with the corresponding format (JSON, XML, etc.).
Messages that do not meet these requirements will be rejected
by  the  IoT  device  firmware  in  the  syntax  detection  part.
Therefore, it is a significant challenge for the fuzzers to ensure
the generated test cases meet the grammatical requirements.

1)  Companion  App  (Net.C1S1): IoTFuzzer  [84]  uses  soft-
ware such as MonkeyRunner to randomly click the UI in the
app  to  send  requests  to  the  device  automatically.  IoTFuzzer
first  analyzes  the  UI  elements  of  the  app,  and  then  uses  data
flow  analysis  to  reversely  identify  the  relevant  program  ele-
ments  that  send  messages  to  the  device  from  the  control
events. For example, the variable name in the function is iden-
tified through the switch button in UI. The name is highly rel-
evant to the sending process of switch commands in the pro-
gram.  According  to  the  fuzzing  strategy  specified  by  IoT-
Fuzzer, these fields will be recorded once they are identified.
If  the  request  for  changes  involves  the  recorded  protocol
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fields,  IoTFuzzer  uses  function  hooks  to  replace  these  fields
so that it can achieve mutation in the fuzzing process.

Diane  [86]  is  also  a  black-box fuzzing  framework for  test-
ing IoT devices.  It  is  observed that  there are functions in the
official  companion  app  that  can  be  used  to  generate  optimal
fuzzing input. Such a function can find it in the program after
completing  various  verification  codes  in  the  execution  posi-
tion  but  before  starting  various  character  encryption  or  con-
version  [86].  Diane’s  core  idea  is  to  use  a  combination  of
static and dynamic analysis to capture such functions and then
generate test cases to fuzz the target device.

Both IoTFuzzer and Diane find messages in the correct for-
mat  from  the  official  device  app.  Moreover,  since  their  tests
are all  used to trigger the communication function of the app
to  send  messages  to  the  device,  the  commands  issued  in  this
way  often  consist  of  a  series  of  messages  with  correct  com-
mands. Therefore, IoTFuzzer and Diane do not consider find-
ing  the  correct  format  of  the  original  message  and  the  order
among messages.

2)  Human-Knowledge  Guide  &  Learning  Dataset  (Net.
C1S2): BooFuzz  [83]  uses  human  knowledge  guidance  to
solve the problem of input problems. Before generating a net-
work  communication  session,  Boofuzz  requires  users  to  pro-
vide  relevant  network  information  of  the  target  such  as  IP
address and port number. It  also requires a set of highly cus-
tomized  messages.  In  these  messages,  various  attributes  pro-
vided by Boofuzz can be used as features to present the mes-
sages.  Users  can  use  these  attributes  to  further  mark  which
characters  in  the  message  participate  in  the  mutation  phase
and which characters will not change during the mutation pro-
cess.  Furthermore,  users  can  specify  which  type  of  mutation
strategy will  be used.  This method allows the user to specify
the range of character segments for mutation operations in the
message.  In  other  words,  if  users  are  familiar  with  the  mes-
sage protocol and content format used by the device, they can
instruct BooFuzz to generate various test cases without break-
ing the protocol and format.

Different  from  Boofuzz,  SRFuzzer  [85]  captures  a  large
number  of  web  requests  from  the  running  devices,  and  then
models  the  user-input  semantics  to  generate  test  cases.
SRFuzzer  establishes  a  CONF-READ model  to  constrain  the
generated  message  sequence  after  observing  the  message
sequence  of  the  user’s  request  to  read  the  configure-related
attributes initiated by the router device. Subsequently, to gen-
erate  meaningful  CONF  requests  and  READ  operations,
SRFuzzer  establishes  a  Key-Value  model  for  each  message
content  in  the  request.  The  Key-Value  model  can  guarantee
the  generation  of  messages  if  the  type  of  a  variable  is  a
domain  name.  The  variable  assigned  to  it  will  be  a  domain
name.  However,  due  to  the  lack  of  effective  scheduling,  the
CONF-READ model makes SRFuzzer not be able to identify
some critical  vulnerabilities.  To solve  this  problem,  the  team
proposed  ESRFuzzer  [88]  based  on  SRFuzzer  in  2021.  The
improved ESRFuzzer can perform fuzzing in two modes. The
first one is to use the Key-Value and CONF-READ models as
the  indicator  to  explore  the  vulnerabilities  in  these  two types
of  situations.  The  second  is  to  be  used  explicitly  for  testing
when D-CONF Work aims at discovering a vulnerability that

is  ignored  in  CONF-READ mode.  Both  SRFuzzer  and  ESR-
Fuzzer use models to standardize the format correctness of the
generated  input  use  cases.  However,  the  standard  model  is
based  on  collecting  a  large  number  of  accurate  communica-
tion records.

3) Inference (Net.C1S3): From the perspective of code anal-
ysis,  the  strict  input  syntax  requirements  are  actually  a  large
number of branch judgments of magic number and checksum.
Among various types of  fuzzing for  binary,  there are already
fuzzers  that  can  infer  the  role  of  each  character  in  the  input
without  the  guidance  of  human  knowledge.  However,  it
remains a challenge to infer the input format required by IoT
devices in a near-black-box test.

Snipuzz  [87]  takes  the  device’s  response  message  to  infer
the  role  of  each  character  in  the  input.  It  first  generates  a
sequence of  probe messages based on modifying the original
input. Then, the responses of the probe message sequence are
used as a standard to segment the message snippets that  play
different  roles  in  the  message.  When  Snipuzz  is  generating
test  cases,  each  message  snippet  is  used  as  a  unit  to  mutate.
Such  method can  ensure  that  while  testing  the  syntax  check-
ing  in  part  of  the  firmware,  it  can  also  generate  some  test
cases that conform to the syntax.  

B.  Feedback Mechanism (Net.C2)
When testing executable binary programs, coverage-guided

fuzzers  have  been  widely  proven  to  work  well.  They  add
instrumentation to  the target  program to obtain more internal
execution  coverage  and  then  use  it  to  guide  the  fuzzing  pro-
cess by exploring new execution paths. Since part of the infor-
mation is collected from the inside of the program, this type of
coverage-guided fuzzer uses the grey-box testing. However, it
is  too  difficult  to  add  instrumentation  to  IoT  devices.  There-
fore, most of the existing network fuzzers [83], [84], [86] for
IoT  devices  use  black-box  testing  methods.  In  their  fuzzing
process,  there  is  no  feedback  from  the  devices  to  guide  the
optimization of the mutation process.

1)  Response-Based  Guide  (Net.C2S1): Snipuzz  [87]  first
proposed using the device’s response messages as feedback to
guide  the  fuzzing  strategy.  Precisely,  Snipuzz  can  determine
whether  different  test  cases  have  reached  different  execution
paths  in  the  device  firmware  through  the  content  of  the
response messages. Based on this mechanism, Snipuzz uses a
novel heuristic algorithm to detect the role of each byte in the
message. Adjacent bytes have the same role in the initial mes-
sage  snippets,  and  can  be  packed  together  and  linked  to  a
basic unit of mutation. Snipuzz makes good use of the charac-
teristics  of  IoT  devices  to  build  a  set  of  fuzzing  frameworks
suitable for testing IoT devices.  

C.  Monitoring (Net.C3)
When  we  use  vulnerability  detection  methods  to  test  soft-

ware programs,  information such as  program execution input
and output and standard errors can be collected in time. Even
while  the  program  is  running,  various  tools  can  be  used  to
capture additional execution information such as program exe-
cution  logs  and  CPU  utilization.  However,  the  kernel  and
binaries of IoT devices are closed to us. Even after each round
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of test, it is difficult to know whether a vulnerability in an IoT
device has been triggered. Therefore, how to monitor the sta-
tus of device is a challenge that various network testing meth-
ods need to face.

1)  Local  Monitor  (Net.C3S1): Although  we  analog  the
firmware  operation  of  IoT  devices  to  a  black  box,  some  IoT
devices  themselves  can  provide  some information  as  a  refer-
ence for the state at runtime. For example, many routers pro-
vide users with a built-in web page to monitor and adjust the
status  of  the  device  in  real  time  while  they  are  working.
RPFuzzer  [82]  decides  whether  the  router  is  abnormal  by
monitoring  the  CPU  utilization,  data  regularity  and  the
routers’ system  log.  Such  routers  can  provide  rich  informa-
tion about  traffic,  and the local  monitoring method is  able  to
perform well in detecting the crash of routers and find abnor-
malities such as reboot and DoS attacks.

If  the  firmware  can  be  run  in  a  virtual  machine,  Boofuzz
provides  a  proxy module  that  can  monitor  the  running  status
of the virtual machine. It can restart the software in the virtual
machine  to  continue  the  fuzzing  test  after  the  software
crashes.  However,  network  fuzzers  such  as  BooFuzz  are  not
designed  for  IoT  devices.  Their  monitoring  objects  are  more
appropriate  to  software  programs  or  servers.  So  the  virtual
machine  monitoring  service  provided  by  BooFuzz  is  ineffi-
cient for IoT devices.

2)  Heartbeat  via  Messages  (Net.C3S2): When  the  device
cannot  provide  additional  internal  execution  information,  the
network  testing  methods  often  use  the  heartbeat  detection  to
determine whether the device crashes. The heartbeat detection
method sends a simple message to the target, and if the device
does  not  reply  to  the  message  normally  or  does  not  reply  to
the  message,  it  can  be  determined  that  the  device  is  in  the
crash state.

Different network testing methods will customize the heart-
beat  detection  method  according  to  their  own  design.  For
instance,  IoTFuzzer  and Diane use the simple heartbeat  mes-
sage to detect whether the device has crashed every time after
sending a message. Snipuzz sends a sequence of messages that
are preset after each test to help the device return to the initial
state of the test. It can find out whether a crash occurs through
the  network  traffic.  Moreover,  since  Snipuzz  powers  on  the
device through the smart  plug,  if  the device crashes,  Snipuzz
can physically restart  the device by temporarily powering off
the smart plug remotely.

BooFuzz provides an uninterrupted monitoring proxy. After
sending  data  to  the  target,  Boofuzz  will  contact  the  proxy  to
determine whether the fault is triggered. If a fault occurs, the
high-level information about the fault will be sent back to the
session and stored.  

VI.  Manual Reverse Engineering

Unlike  other  research  perspectives,  the  goal  of  manual
reverse engineering analysis is to analyze and find vulnerabili-
ties  in  a  particular  device  or  specific  scenario.  Researchers
usually  use  manual  solutions  (e.g.,  reverse  engineering)  to
launch various attacks on targets to detect whether the devices
has  exploitable  vulnerabilities.  Many  interesting  or  high-
threatening  vulnerabilities  in  reality  often  require  carefully

constructed actions or inputs to trigger [108], [109]. Such vul-
nerabilities  are  often  found  only  by  delicate  handwork  like
manual reverse engineering.

However, it is difficult to find the tools or solutions belong-
ing  to  the  same  challenge  with  such  a  case-by-case  research
test.  Therefore,  in  this  section,  we  present  some  successful
manual reverse engineering cases only.

In  2013,  the  remote  firmware  update  (RFU)  vulnerabilities
on  IoT  devices  and  some  real-world  cases  discovered  in  HP
LaserJet printers were analyzed [110]. The printer vulnerabili-
ties  they discussed can be made into malware and embedded
in harmless document formats such as PostScript. This type of
malware  can  be  delivered  generally  via  PJL commands.  It  is
worth  noting  that,  this  kind  of  defect  does  not  only  exist  in
printers.  All  kinds  of  devices  that  can  perform  remote
firmware updates and use vulnerable third-party libraries may
involve RFU.

An in-depth security analysis on a large number of medical
devices  that  were  deployed  in  various  hospitals  was  con-
ducted  [108].  It  is  found  that  some  of  these  devices  rely  on
standard Wi-Fi security measures, which make them prone to
man-in-the-middle  attacks.  In  addition,  such  attack  can  steal
medical records such as health insurance acquaintance bureau,
medical history, and prescriptions, through medical devices.

The  low-power  Bluetooth  devices  have  been  widely
adopted, which attracts the researchers’ attention to the secu-
rity of Bluetooth.  By reverse engineering analysis,  some vul-
nerabilities  regarding  remote  code  execution  at  the  lowest
level  of  the  bluetooth  low  energy  (BLE)  protocol  stack  on
firmware of multiple Bluetooth vendors were found [111]. By
exploiting these vulnerabilities, an attacker can pair Bluetooth
devices without authentication.

Problems  on  how  to  conduct  safety  research  on  connected
cars  were  discussed  [109].  A test  platform that  can  test  vari-
ous related intelligent  components  in  a  car  at  a  low cost  was
first  proposed.  Then,  based  on  this  platform,  a  set  of  attack
chains that can penetrate from outside to the inside of a vehi-
cle  were  designed.  Using  the  vulnerabilities  involved  in  the
attack  chain,  the  door  could  be  remotely  unlocked  or  the
engine  could  be  started.  These  vulnerabilities  affected  more
than  two  million  Mercedes-Benz  smart-connected  cars  in
China.  

VII.  Discussion

With the expansion of IoT market, manufacturers and secu-
rity researchers are paying attention to IoT firmware security.
For  future  research,  researchers  need  to  test  IoT  device
firmware  more  systematically.  Meanwhile,  the  security  test-
ing  needs  to  cover  all  aspects  of  the  firmware  system  and
drivers.  In  this  section,  we  discuss  the  directions  for  future
development of security testing for IoT firmware.  

A.  Peripherals in Emulation Process
The  emulator-based  test  process  can  be  divided  into  two

steps: emulation of firmware and dynamic test based on emu-
lation. For the firmware emulator, a significant challenge that
cannot be bypassed is to emulate many hardware peripherals.
Although  we  mention  solutions  such  as  partial  emulation  as

 36 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 10, NO. 1, JANUARY 2023



well as full emulation, there are many limitations when emu-
lating  devices  in  reality.  For  instance,  the  use  of  dedicated
bridge hardware usually increases the complexity of perform-
ing emulation and makes it difficult to extend to other devices.
In addition, the communication efficiency between peripheral
devices  and analog firmware also has  room for  improvement
[60].

The full emulation often has relatively high requirements for
the  device  firmware.  Typically,  it  requires  that  the  device
firmware  is  based  on  a  specific  architecture  or  the  firmware
conforms to use a specific kernel [22], [95]. Moreover, altho-
ugh many existing tools attempt to apply simulation methods
to large-scale testing from different perspectives, there are still
many  limitations.  For  example,  HALucinator  [33]  uses  HAL
to conduct  a  full-feature emulation on target  firmware.  How-
ever,  the  HAL library is  provided by various  microcontroller
unit (MCU) vendors, and HALucinator cannot test the system
on  chips  (SoCs)  with  proprietary  SDKs  [72]  (e.g.,  Samsung
SmartThings [112] and Philips [113]).  

B.  False Positive in Automatic Code Analysis
In theory, most code analysis methods rely on matching and

code scanning,  which  means  that  false  positives  are  likely  to
occur [73]–[75]. In their evaluation, these code analysis meth-
ods  report  the  number  and  proportion  of  false  positives.  The
traditional way to confirm false positives is manual detection.
However, the cost of manual testing is unaffordable when we
come to large-scale testing.  

C.  Black-Box Network Test
The challenges of analyzing device firmware security using

network  testing  methods  stem  from  a  black-box-like  testing
environment. Since a similar environment is not available, the
method  used  to  test  the  firmware  of  IoT  devices  cannot  fol-
low  the  idea  of  testing  binary  programs.  For  example,  some
grammar-based  fuzzing  algorithms  can  produce  and  mutate
input  that  meets  the  stringent  requirements  of  binary  pro-
grams. Also, many fuzzer algorithms [43], [98] use instrumen-
tation  to  obtain  program  execution  coverage  and  guide  seed
selection and mutation strategies. Because of the closed opera-
tion of IoT devices, such methods cannot be used for network
test.

There are some aforementioned works that attempt to solve
this problem. For example, Snipuzz uses response messages as
a  feedback  mechanism  and  builds  a  fuzzing  framework  that
can infer the role of input characters. When RPFuzzer tests the
router, it uses the router’s own system log and CPU monitor-
ing capabilities to monitor the firmware status. However, nei-
ther  of  the  two methods  can  solve  this  problem very  well.  It
depends on the type of the device itself to determine the type
of  the  response  messages  of  the  device.  It  also  suggests
whether the device provides self-checking functions.  

D.  Cost of Manual Reverse Engineering
Manual  reverse  engineering  of  firmware  can  find  various

types  of  vulnerabilities  lurking  deep  within  the  logic  of  the
code.  However,  this  operation  is  too  expensive  to  process.
Typically,  it  requires  researchers  to  have  products’ firmware

so that they can decompile the firmware for reverse engineer-
ing.  Through  repeated  reading  and  guessing  the  meaning  of
the  code,  researchers  can  organize  the  operation  logic  of  the
code  and identify  the  vulnerabilities.  Therefore,  it  is  difficult
to  scale  up  such  manual  detection-based  methods  to  large-
scale testing.  

VIII.  Future Direction

1)  Automatic  Emulation  (Section  III): When  emulating  the
firmware,  existing  methods  face  many  challenges.  The  large
number  of  differential  structures  and  configurations  make
emulating different firmware need a manual-work support by
researchers. However, works such as [33], [34], [71], [72] are
already  trying  to  automate  the  simulation  process.  They  pro-
vide us methods such as using machine learning, fuzzing, and
symbolic execution to try to solve the interaction problems of
peripheral  devices.  Although,  we  have  discussed  in  Section
VII-A  that  these  methods  have  various  limitations,  they  are
still  a  great  contribution  to  the  development  of  fully  auto-
mated emulation.

2)  Hybrid  Approach  (Section  IV): Various  hybrid  approa-
ches  have  been  proven  to  be  effective  when  testing  binary
executives. Fuzzing methods combined with symbolic execu-
tion [114] can use the advantages of both methods to comple-
ment each other and get better test results. There are also some
directed  fuzzing  methods  [115],  [116]  combined  with  static
code  analysis,  which  utilize  the  fuzzer  to  test  suspected  vul-
nerable code regions found in static analysis. However, using
a similar hybrid approach on IoT devices may double the chal-
lenges. For example, to use code analysis and simulator-based
combined  testing  methods,  it  is  necessary  to  solve  the  chal-
lenges of both methods. Nevertheless, such methods can also
solve some problems for each other. For example, code analy-
sis can be used to model the interaction of peripheral devices
to help the emulator better emulate the firmware.

3) Multiple Ways to Monitor (Section V): Monitoring devi-
ces  is  a  significant  challenge  for  network  test  methods.  Usu-
ally  the  network  test  environment  of  the  firmware  is  consid-
ered as a black box, and only the output of the device can be
observed. The local monitoring of routers by RPFuzzer gave a
good  inspiration.  Monitoring  device  should  not  be  limited  to
methods  such  as  instrumentation  that  can  directly  obtain  the
execution status. Some other statuses of the device or records
(i.e.,  logs)  describing  the  status  of  the  device  should  be
included in  the  scope of  monitoring.  Moreover,  some energy
states, such as voltage and heat, can be considered within the
scope of reactions of devices.  

IX.  Conclusion

In this  survey,  we systematically review and analyze exist-
ing solutions for detecting vulnerabilities in IoT firmware. We
collect various methods that perform security analysis on IoT
devices, and classify them into four categories, including emu-
lator-based  test,  automatic  code  analysis,  network  test  and
manual reverse engineering. Based on each category, we dis-
cuss the challenges they encounter and summarize how exist-
ing methods address them. In addition, we discuss the limita-
tions  of  current  development  of  these  security  analysis  solu-
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tions and possible directions in future work.
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