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Abstract—Internet of things (IoeT) devices make up 30% of all
network-connected endpoints, introducing vulnerabilities and
novel attacks that make many companies as primary targets for
cybercriminals. To address this increasing threat surface, every
organization deploying IoT devices needs to consider security
risks to ensure those devices are secure and trusted. Among all
the solutions for security risks, firmware security analysis is
essential to fix software bugs, patch vulnerabilities, or add new
security features to protect users of those vulnerable devices.
However, firmware security analysis has never been an easy job
due to the diversity of the execution environment and the close
source of firmware. These two distinct features complicate the
operations to unpack firmware samples for detailed analysis.
They also make it difficult to create visual environments to emu-
late the running of device firmware. Although researchers have
developed many novel methods to overcome various challenges in
the past decade, critical barriers impede firmware security analy-
sis in practice. Therefore, this survey is motivated to systemati-
cally review and analyze the research challenges and their solu-
tions, considering both breadth and depth. Specifically, based on
the analysis perspectives, various methods that perform security
analysis on IoT devices are introduced and classified into four
categories. The challenges in each category are discussed in detail,
and potential solutions are proposed subsequently. We then dis-
cuss the flaws of these solutions and provide future directions for
this research field. This survey can be utilized by a broad range of
readers, including software developers, cyber security resear-
chers, and software security engineers, to better understand
firmware security analysis.

Index Terms—Firmware emulation, internet of things (IoT) firm-
ware, network fuzzing, security, static analysis.

1. INTRODUCTION

ARIOUS internet of things (IoT) devices have come into
V our sight, and their presence has brought us new life pat-
terns and convenience [1]-[4]. Recent statistics suggested that
the number of 10T devices will reach 75.44 billions by 2025
[5]. However, IoT devices have long been reported to be vul-
nerable to various attacks [6]-[11]. For example, Mirai [12],
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which was first exposed in 2016, used a huge number of com-
promised IoT devices to launch distributed denial of service
(DDoS) attacks on valuable/sensitive targets including the
website of US White House. According to Paloalto’s report
released in 2020 [13], over 50% of the IoT devices in the
world are vulnerable to attacks whose severity were ranked
medium to high.

Security analysis is important for both software and hard-
ware [14]-[18]. To ensure that the devices are secure and
trusted, people usually investigate the firmware of IoT devices
and detect potential vulnerabilities in the firmware. Fig. |
presents the components of IoT devices and the current ways
to analyze firmware security. An IoT device is a small embed-
ded system that has firmware running on the system. It has
various peripheral devices, applications running in the
firmware, and a network communication processor that can
communicate with the Internet. Complex IoT devices are
equipped with the underlying operating system kernels and
drivers that help interact with peripheral devices. To detect
security flaws, most security analyses of IoT devices require
the access to firmware. With the firmware, analyzers can per-
form manual analysis, binary lifting or emulation to detect
flaws in firmware. Since IoT devices can communicate with
the outside world through network, another way of vulnerabil-
ity detection is to test IoT devices based on network.

Although many solutions have been proposed to detect vul-
nerabilities in IoT firmware (e.g., code analysis and fuzzing
with emulation [19]-[23]), there are still several challenges
that require further research. Compared with software secu-
rity analysis, inconsistent development standards and a closed
market environment make it more difficult to develop IoT
firmware vulnerability detection. Specifically, the two major
challenges for security analysis of firmware are the complex
execution environment and the close source of firmware. First,
IoT firmware runs independently in specially designed
embedded systems. Many security researchers try to use dif-
ferent methods (i.e., side channel or network-level monitor-
ing) to obtain more information for firmware analysis when
the IoT device is running. However, these methods are often
restrictive and can only obtain little information due to the
complex execution environment. Second, the acquisition of
firmware is often impractical due to the security concerns
from device manufacturers. Many manufacturers will not
open-source their firmware and will disable the Debug mode
or joint test action group (JTAG). Therefore, many methods
based on firmware analysis become impractical in the wild. In
order to overcome these challenges, researchers have designed
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Fig. 1.

various practical solutions to test firmware from different
analysis aspects. For example, emulator-based testing is a type
of method specifically designed to analyze IoT firmware. In
order to run firmware, a virtual environment is provided by
the emulator. The execution information then can be obtained
during runtime, and the virtual environment enables dynamic
analysis on firmware. In addition, some automatic code analy-
sis methods are designed for analyzing firmware without run-
ning the firmware. Moreover, there are also many studies that
perform manual reverse engineering analysis based on spe-
cific devices and scenarios. However, these analysis methods
require the acquisition of firmware. Considering the interac-
tive ability of IoT devices with the network, some other
researchers have proposed methods for testing IoT devices
through the network without firmware.

As the security of IoT device has been gradually taken seri-
ously in recent years, there are already some research surveys
published on it. For example, some studies have concluded
that vulnerabilities in IoT device firmware are more compli-
cated [24]-[27] and more difficult to detect [28], [29] com-
pared with detecting vulnerabilities in traditional software.
Another work focuses on the categorization of bugs in IoT
devices [25]. To present the challenges of emulation and re-
hosting in firmware, the problem encounted in dynamic analy-
sis is analyzed [30]. In addition, the taxonomy of approaches
in binary analysis is analyzed, including symbolic execution,
dynamic analysis, and static analysis [31].

To help researchers and developers better understand
firmware security, we conduct a more comprehensive study
on vulnerability detection techniques of IoT devices. In this
survey, we present the analysis solutions in three levels. At the
top level, we classify detection solutions based on the analy-
sis perspectives, and obtain four classes that are emulator-
based test, automatic code analysis, network test via fuzzing,
and manual reverse engineering. At the second level, detec-
tion solutions are categorized based on different challenges.
The third level includes detailed solutions for their corre-
sponding challenges. This survey also discusses the pros and
cons of the solutions as well as future directions in this area.

Emulator-based test

Firmware security and its solutions. The firmware security can be analyzed based on binary code, firmware image, loT network and manual analysis.

Different from existing surveys that are concerned about the
technical classification [31], [32], our survey focuses on the
challenges in vulnerability detection of IoT firmware. Since
we systematically analyze the solutions to those challenges,
our survey offers deep insights of vulnerability detection in
IoT devices.

The main contributions of this survey are summarized as
follows:

1) We describe three types of embedded systems that help
the analysis of emulator-based solutions. Moreover, we col-
lect four techniques, including fuzzing, symbolic execution,
fault injection, and binary lifting, which are commonly used in
existing vulnerability detection of IoT firmware.

2) We propose a taxonomy, which classifies vulnerability
detection of IoT firmware in three levels, including test per-
spectives, challenges, and solutions. Additionally, we system-
atically analyze the challenges and solutions, considering both
breadth and depth.

3) We further discuss the limitations for existing solutions.
Meanwhile, we provide future directions for readers to follow.

The rest of this survey is organized as follows. In Section I,
we first discuss the classification methods of IoT devices, and
introduce the taxonomy of various IoT firmware security anal-
ysis methods and some preliminary techniques. We then
respectively discuss the emulator-based test, automatic code
analysis, network test and manual reverse engineering meth-
ods in Sections III-VI. After that, we analyze the challenges
faced by these method categories and possible solutions in
Section VII and discuss the possible solutions in future direc-
tion in Section VIII, followed by Section IX for the conclu-
sion of this survey.

1L

In this section, we first introduce the classification criteria
for IoT devices. When discussing device emulation (Section
III-B), different classes of devices differ in their emulation
solutions. We then introduce the techniques that are com-
monly used in various vulnerability detection methods. After
that, we present the taxonomy of research perspectives and the

PRELIMINARY
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challenges they faced, as well as the collection of cutting-edge
IoT device firmware vulnerability detection methods.

A. Classification of loT and Embedded Devices

Based on functionality, embedded devices can be divided
into high-level categories, such as printers, smart meters, and
IP cameras. Additionally, the embedded systems of these
devices could be categorized by different criteria, such as the
field of usage, the computing power, their unit cost and so on
[28]. Moreover, the firmware of different kinds of embedded
systems also falls in a large range, from a few lines of code
program to customized versions of desktop OSes (e.g., Linux).
We follow the classification of embedded systems from two
works, which classify embedded systems based on the type of
firmware [28], [30]:

1) General purpose embedded system (GPES) is Type 1
embedded system, which uses general purpose operating sys-
tems (e.g., real-time Linux and embedded Windows).

2) Special purpose embedded system (SPES) is Type 2
embedded system. The operating systems (e.g., ZephyrOS and
VxWorks) IoT devices use are specifically developed for the
embedded system.

3) Bare-metal embedded system (BMES) is Type 3 embed-
ded system and they usually work without a true OS abstrac-
tion. Some of them have a light-weight OS-Library.

The categorization shown above is not accurate. For exam-
ple, the line between GPES and SPES is blurred [30]. How-
ever, this classification based on the type of firmware is help-
ful to determine and understand what emulation method
should be taken to emulate a target firmware (Section III).
Although the operating systems of GPES are often cut to fit
the embedded system, emulating these types of systems are
still well supported by desktop software [22] (i.e., QEMU and
Panda). Emulating the operating systems in SPES is more
challenging and often requires emulating both the kernel and
user space [30], because they are not derived from a desktop
operating system. BMES’s application can directly access
hardware. Recently, there are some works [33], [34] research-
ing how to emulate on these systems.

B. Preliminary Techniques

Before discussing how to analyze the firmware of IoT
devices, we first introduce some standard technologies in
security analysis. These technologies are more like basic ideas
or tools than complete solutions to help researchers solve
problems in specific situations. In other words, these methods
provide a framework for how to detect vulnerabilities, but
how to implement it on the firmware requires careful adjust-
ment by researchers.

1) Fuzzing: Fuzzing is one of the most successful software
testing techniques, and it has been used primarily for finding
security-related bugs [35]-[39]. The core idea of fuzzing is to
automatically or semi-automatically generate random data,
feed it into a program, and monitor program exceptions, such
as crashes or assertion failures, to find possible vulnerabilities,
i.e., memory leaks. Usually, the user must provide one or
more initial inputs as the original seed(s) before fuzzing cam-
paigns. A fuzzer (an implementation of a fuzzing algorithm)

will use these seeds as materials, generate new test cases
through mutation strategies, and then feed them to the pro-
gram. By monitoring the program, fuzzing can detect whether
the program is abnormal (e.g., crash) after using test cases as
inputs. The main steps of fuzzing are continuously generating
test cases, feeding the program with test cases, and detecting
whether the program is abnormal. These three steps will circu-
late continuously until the user stops them.

The composition of fuzzing also changes when faced with
different environments and test objectives. When testing
firmware, unlike the direct running and testing of binary exe-
cutable programs, the fuzzing algorithm requires a virtual
environment in which the program can run. In the test of com-
munication over the network, the fuzzing algorithm cannot
feed input to the target program through the standard input
(stdin). It takes the form of network communication messages
to send test cases to the target.

In recent years, coverage-guided fuzzing has been proven to
be successful and applied widely in finding vulnerabilities in
various applications [40]-[42]. The typical example of cover-
age-guided fuzz testing, American fuzzy lop (AFL) [43], first
inserts instrumentation into the program to get the code cover-
age of each test. These coverage-guided fuzzers will reward
inputs (e.g., retaining them as seeds) if they discover a new
coverage. Such a mechanism will make fuzzing continuously
explore new and unknown program states. Experimental
results show that more program coverage discovered by
fuzzing can help fuzzer find more vulnerabilities [44].

2) Symbolic Execution: Symbolic execution is a program
analysis technique, which can obtain the input that allows spe-
cific code areas to be executed by analyzing the program. By
symbolizing the variables, the symbolic execution maintains a
set of constraints for each execution path. When the target
code is reached, the analyzer can obtain the corresponding
path constraint and then use the constraint solver to obtain the
specific value that can trigger the target code. This technique
does not use fully specified input values but abstractly repre-
sents variables as symbols and uses a constraint solver to con-
struct actual instances that may cause attribute conflicts.

Many security practitioners have brought the concept of
symbolic execution to vulnerability detection. KLEE [45], a
method for automatically generating symbolic execution tests,
was proposed in 2008. S2E [46] is another popular open-
source symbolic execution platform proposed in 2011. Since it
is based on QEMU [47], it enables symbolic execution on full
system. It can also support testing on both user-space applica-
tions and drivers. In their practical tests, the test coverage of
BUSYBOX and other embedded system management suite
software exceeded 90% on average. Moreover, there is an
active community that constantly writes and maintains many
useful S2E plugins for the improvement of performance (e.g.,
better state pruning algorithms) or new program analysis tool
development [48]. Many existing security analysis methods
that use symbolic execution are based on KLEE and S2E.

3) Software Fault Injection: In software testing, the tech-
nique of fault injection is to inject errors to cover those situa-
tions that are not likely to occur under normal circumstances.
As a consequence, it will increase the coverage of the test
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[49], [50]. When testing a program and verifying the integrity
of its functions, the program’s robustness under certain
extreme conditions must also be considered in some scenarios.
The errors can be injected into related software environments
such as environmental variables, registers, memory, file sys-
tems, registries, and system calls when the software is run-
ning. One of the most commonly used implementation meth-
ods is hooking a system call. After the hook is reached, errors
are injected by modifying the call parameters and return val-
ues.

4) Disassembly & Binary Lifting: Disassembly converts tar-
get code or machine language into assembly language code.
Software security analysis methods often require the target
assembly code or source code. However, in the wild, it is
often challenging to get information from the program under
test (PUT). Although the disassembled program will be
slightly different from the original one, it is important to have
the capability of getting the readable assembly code [51]. In
the existing market, tools such as IDA Pro [52] and OllyDBG
[53] can complete the disassembly work well.

In addition, many static analysis methods need to convert
the binary machine code into another unified general higher-
level language. Intermediate language, as an equivalent inter-
nal representation code of a source program, featured by easy
translation into the target program that has nothing to do with
specific machine characteristics, is suitable to be the object of
various code analysis programs [54]. Therefore, in addition to
decompilation, researchers have begun studying binary lifting,
which converts machine code into various forms of intermedi-
ate representations. Regarding binary lifting, there have been
many mature studies and methods [51], [55], [56].

C. Taxonomy of loT Firmware Security Research

In Fig. 2, we present our taxonomy of loT firmware secu-
rity research perspectives. Based on different analysis per-
spectives, we classify [oT firmware security analysis methods
into four categories: emulator-based test, automatic code anal-
ysis, network test via fuzzing and manual reverse engineering.
Moreover, we analyze various challenges encountered in dif-

Analysis perspectives

ferent research methods, which is shown in Table I.

The emulator-based test refers to performing security test-
ing on the firmware after rehosting the device firmware with
an emulator. Firmware is an integral part of the emulation pro-
cess. However, obtaining firmware is not an easy task. In the
process of emulation, due to the existence of external devices
of each firmware, some firmware images depend on the inter-
action of external devices. How to learn or avoid the interac-
tion of external devices is a challenge for emulating firmware.
In addition, there is a lot of manual work in the process of
simulating firmware, and how to use it for large-scale testing
is also an issue. Emulating firmware is the first step in testing,
and how to test firmware in a constrained emulation environ-
ment is also a challenge.

Automatic code analysis is a category of vulnerability detec-
tion methods based on program code. Similar to emulation,
automatic code analysis methods rely on firmware code.
Many well-established analysis solutions [89]-[91] work on
source code, whereas in the context of IoT device firmware,
there is often only binary code. Moreover, the architecture
used by the device is also different. This means that auto-
matic code analysis needs to have the ability to work across
different platforms. There are also various vulnerabilities in
IoT devices, which may only exist in some specific environ-
ments or pieces of code. How to use automatic code analysis
methods to find such vulnerabilities is also a big challenge.

Communicating with the outside world through the net-
work is the most significant difference between IoT devices
and traditional embedded devices. Most of the existing net-
work methods to test [oT devices focus on fuzzing. Therefore,
we use the perspective of fuzzing theory to introduce and dis-
cuss various fuzzers for testing IoT devices. First, fuzzer algo-
rithms mostly require users to provide initial input (communi-
cation messages). Moreover, [oT devices have strict format
requirements for the input. Therefore, how to capture a set of
messages that can communicate with the device and let the
fuzzer generate messages that meet the requirements of the
device is a challenge for network communication testing. In
addition, due to the inability to perform monitoring methods
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TABLE FOR IOT DEVICE FIRMWARE VULNERABILITY DETECTION METHODS

Perspective Paper Year Challenge & solution Architecture
SymDrive [57] 2013 Emu.C4S1 x86
PROSPECT [58] 2014 Emu.C2S1 MIPS
Avatar [59] 2014 Emu.C2S1 ARM
SURROGATES [60] 2015 Emu.C2S1 ARM
CostinFA [61] 2016  Emu.C2S2; Emu.C3S1; Emu.C4S2 Multiple
Firmadyne [22] 2016 Emu.C1S1; Emu.C2S2; Emu.C4S2 ARM; MIPS
Avatar? [62] 2018 Emu.C2S1 Multiple
Pretender [63] 2019 Emu.C2S2 ARM mbed
FirmFuzz [64] 2019 Emu.C4S2 ARM; MIPS
FIRM-AFL [65] 2019 Emu.C4S3 ARM; MIPS
Emulation-Based test (Section III) PeriScope [66] 2019 Emu.C4S3 AArch64
P2IM [34] 2020 Emu.C3S1 ARM Cortex-M
Laelaps [67] 2020 Emu.C3S1 ARM Cortex-M
HALucinator [33] 2020 Emu.C3S1 ARM Cortex-M
FirmAE [68] 2020 Emu.C3S1 ARM; MIPS
FIFUZZ [23] 2020 Emu.C4S1 x
Jetset [69] 2021 Emu.C2S2; Emu.C4S1 AMD 486; ARM
ECMO [70] 2021 Emu.C2S1 ARM
DICE [71] 2021 Emu.C2S1 ARM Cortex-M; MIPS M4K/M
uEmu [72] 2021 Emu.C3S1 ARM
IF1ZZ [50] 2021 Emu.C4S1 ARM; MIPS
FIE [19] 2013 Auto.C2S2 MSP430
Firmalice [21] 2015 Auto.C3S1 ARM and PPC
DiscovRE [73] 2016 Auto.C1S1; Auto.C2S1 x86, x64, ARM and MIPS
Genius [74] 2016 Auto.C1S1; Auto.C2S1 x86, ARM and MIPS
FirmUSB [54] 2017 Auto.C2S2 ARM and x86
Automatic code analysis Gemini [75] 2017 Auto.C2S1 x86, ARM and MIPS
(Section IV) VulSeeker [76] 2018 Auto.C1S1; Auto.C2S1 Multiple
FirmUP [77] 2018 Auto.C1S1 MIPS32, ARM32, PPC32 and Inter-x86
KARONTE [78] 2020 Auto.C3S1 ARM, AARCH64 and PPC
CPScan [79] 2021 Auto.C3S1 MIPS and ARM
SaTC [80] 2021 Auto.C3S1 Multiple
PASAN [81] 2021 Auto.C3S1 ARM
RPFuzzer [82] 2013 Net.C3S1 NA*
BooFuzz [83] 2014 Net.C1S2; Net.C3S1 NA
IoTFuzzer [84] 2018 Net.C1S1; Net.C3S2 NA
Network test via fuzzing (Section V) SRFuzzer [85] 2019 Net.C1S2 NA
Diane [86] 2021 Net.C1S2; Net.C3S1 NA
Snipuzz [87] 2021 Net.C1S3; Net.C2S1; Net.C3S2 NA
ESRFuzzer [88] 2021 Net.C1S2 NA

CnSm means that the method belongs to themth solution under the nth challenge in the following discussion.

such as instrumentation to firmware, it is difficult for various
fuzzer algorithms to enable guidance mechanisms such as
coverage to optimize algorithms when testing devices. More-
over, since the operating environment of the device is similar
to a black box, it is difficult to know the change of the device

state during the testing process.

Unlike other research perspectives, manual reverse engi-
neering is not a one-size-fits-all methodology. In general,
manual reverse engineering requires researchers to obtain and
analyze firmware code through other methods such as decom-
pilation or disassembly, and reorganize its logic. After that,
researchers need to perform detailed inspection and analysis
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where there may be flaws in the code to find out the vulnera-
bilities. Such methods require careful manual analysis of the
case by the researcher. In this process, faced with different
cases, the research methods and analysis methods adopted by
researchers are very different. This means that the challenges
encountered in different cases are also different.

Table I shows the collected state-of-the-art methods under
different research perspectives. The column “Challenge &
solution” in the table represents the challenges faced by the
methods and the solutions proposed to solve those challenges.

I1II. EMULATOR-BASED TEST

The emulation of firmware has been an emerging technol-
ogy in recent years. Emulators allow security researchers to
run embedded software without hardware. Most dynamic test-
ing is often accompanied by destructiveness. For example,
fuzzing will cause the device to enter a crash state repeatedly.
Therefore, for fragile and expensive loT devices, emulation
along with dynamic testing is an attractive solution. However,
a successful emulation is not as simple as importing the
firmware into the emulator. It will face the challenges posed
by many real-world environmental constraints. For example,
Non-uniform firmware development principles lead to the
need for manual customization of the emulators required to
emulation firmware. In addition, it is challenging to deploy
various test tools on top of the emulator and test the running
firmware.

In this section, we categorize the challenges in emulator-
based test into four groups: acquisition of firmware; external
hardware & peripheral; large-scale testing; and detecting vul-
nerability. In each subsection, we also introduce existing tech-
niques and tools that can be different solutions to each chal-
lenge.

A. Acquisition of Firmware (Emu.Cl)

Firmware is the key to the entire emulation process. Many
existing methods discuss how to conduct emulations but
ignore the firmware acquisition process. To protect the secu-
rity of the product, most manufacturers do not release the rele-
vant firmware. Moreover, various debug ports of IoT devices
are blocked by manufacturers to prevent the leakage of
firmware. Therefore, it is challenging to obtain the target
firmware. To overcome this challenge, researcher have pro-
posed different solutions as follows:

1) Download Firmware From Wild (Emu.C1S1): Before
firmware security problems broke out on a large scale, many
manufacturers published firmware images of some products
on the Internet. For example, some researchers downloaded a
large number of firmware images from different vendors [22],
[73], [74]. However, the information about the downloaded
firmware is often incomplete. Moreover, researchers often
need to manually detect the format or architecture of the
firmware. For example, in an IoT device of type BMES or
SPES, the downloaded firmware might be a user-level appli-
cation. Therefore, emulation of such firmware requires an
additional operating system kernel.

2) Capturing via Network Traffic (Emu.C1S2): Intercepting
the firmware of IoT devices through network traffic is also a

possible approach. Many IoT devices have the ability to
update themselves over the network. They download the lat-
est firmware to the device itself by sending a request to the
target server. By assuming a network sniffer, the address of
the server and the requested message can be captured, and the
firmware can be downloaded to the local by replay or other
methods. However, this process may be encrypted or authenti-
cation (such as tokens and timestamps) may be required in the
message.

In addition, firmware can be extracted from the network
traffic of the device as it is being updated through a network
traffic capture tool (such as DroidSniff [92], EtherApe [93],
and NetworkMiner [94]) attached to the actual hardware. The
problem is, the update process for devices is often not loading
a fresh firmware, but applying a patch.

B. External Hardware & Peripherals (Emu.C2)

Emulating the firmware in a virtual environment is a chal-
lenge. Due to the lack of peripherals required for firmware,
some firmware cannot be emulated via a virtualizer such as
QEMU [47]. In addition, most devices customize their
firmware, resulting in diverse standards of architecture and
kernel. We divide existing solutions to this challenge into par-
tial emulation and full emulation.

1) Partial Emulation (Emu.C2S1): Partial emulation is pro-
posed to solve the problem that it is difficult to emulate the
peripherals of embedded devices. The partial emulation exe-
cutes the firmware in the emulator, and at the same time for-
wards the instructions sent by the firmware to the real periph-
erals. For example, PROSPECT [58] is a system that can
overcome the problem of being unable to emulate peripheral
hardware. It transparently forwards peripheral hardware
access from the original host system to the virtual machine so
that embedded software can be run without knowing how the
peripheral hardware components are accessed. In addition,
PROSPECT can dynamically analyze binary firmware codes
in any analysis environment.

Similar to PROSPECT, AVATAR [59], an emulator frame-
work, arranges the execution of the emulator with the real
peripheral hardware to realize dynamic analysis. AVATAR
improves the system’s performance by forwarding I/O acce-
sses from the emulator to the embedded device, and dynami-
cally optimizing the code and data distribution between the
two environments. In the evaluation [59], AVATAR was used
to perform analysis on three different devices, all with suc-
cess.

Based on AVATAR, SURROGATES [60] improves the
efficiency and stability of emulation by strengthening the con-
nection between external devices and firmware. Specifically,
SURROGATES uses a customized low-latency field-pro-
grammable gate arrays (FPGA) bridge between the host’s
peripheral component interconnect (PCI ) express bus and the
system under test, allowing the emulator to fully access the
firmware’s peripherals. In addition, it optimizes the entire
emulation system to overcome the problems that exist in pre-
vious emulators, such as interrupts handling, DMA, and clock
changes.

The emulation of ECMO [70] is based on a novel technol-
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ogy of peripheral transplantation. Its core idea is to port the
drivers of the specified peripherals to the target kernel binary
instead of manually adding the emulation of each external
device in QEMU. Specifically, ECMO transplants two com-
ponents during the emulation, namely, the emulator model of
the peripheral to QEMU and the device driver of the periph-
eral to the firmware kernel.

2) Full Emulation (Emu.C2S2): When peripherals of a
device can be successfully emulated, full emulation re-hosts
the firmware outside of the device. For example, for many
Linux-based embedded systems, full emulation of their
firmware is possible when full hardware setup documentation
is available.

To fully emulate the firmware, Firmadyne [22] extracts the
file system from the device and puts it into a precompiled gen-
eral-purpose Linux kernel that runs with QEMU. Due to the
scalability of full emulation, Firmadyne can perform a large-
scale test of target firmware. Firmadyne discovered 14
unknown vulnerabilities on 69 firmware images. ARM-X [95]
adopts a similar idea to Firmadyne in emulation, but requires
users to provide more information and configuration. More-
over, ARM-X can only be used for ARM architecture devices,
and requires rootfs and NVRAM in the firmware as support.
Pretender [63] is a framework that automatically re-hosts the
firmware of various embedded systems in a virtual environ-
ment. It records the interaction between the physical hard-
ware and the firmware and then these records are used to build
models for describing each peripheral by using machine learn-
ing. Therefore, Pretender can completely place the firmware
in a virtualized environment and does not need to maintain
long-term access to hardware devices.

C. Large-Scale Testing (Emu.C3)

The challenges of emulating peripheral devices also include
the difficulty of large-scale testing. Some loT device systems
have no peripheral devices, but some systems may be con-
nected to programmable logic controllers (PLC), FPGA, sen-
sors, databases, and many other peripheral devices. A lot of
partial emulation approaches often require manual efforts,
which include heavy engineering works to extend the method
to large-scale testing. The full emulation method such as Fir-
madyne also encounters some challenges in large-scale test-
ing. It does not successfully extract the desired filesystem
from every firmware image. For example, out of 23 035
firmware images, Firmadyne can only successfully extract
filesystem from 9486 images.

1) Custom Methods (Emu.C3S1): For better large-scale test-
ing, the existed methods [33], [34], [67], [68], [72] use differ-
ent ideas to solve this problem.

To find out the reasons for low emulation rates, the failing
cases of FIRMADYNE emulation [22] in large-scale data sets
were analyzed [68]. Although a failure behaves differently in
different cases, it is found that most of these problems can be
avoided by simple heuristics. Therefore, an automated proto-
type named FirmAE that can enhance the emulation effect
was further developed [68]. FirmAE proposes an arbitration
emulation technology and uses heuristics to help arbitration
technology solve the problems in various failed cases. It was

mentioned in the evaluation [68] that the number of firmware
that FirmAE can emulate is about 4.8 times to that of Firma-
dyne.

Furthermore, in order to scale up firmware testing,
researchers have tried various methods to automatically solve
the problem of interaction between external devices and
firmware. Laelaps [67] is an emulator for running software on
various microcontroller devices. It uses symbolic execution to
assist peripheral emulation to infer the expected behavior of
the firmware and generate appropriate inputs to guide the
operation. Based on the inference, Laelaps can run a variety of
firmware without prior knowledge. However, Laclaps only
stays in the mode of symbolic execution for a short period,
which can mitigate the influence of the problem called path
explosion. In other words, Laelaps can only be supported by
symbolic execution in a short-term execution.

Firmware developers sometimes use abstraction to develop
code, such as hardware abstraction layer (HAL), which sim-
plifies the development. Based on this observation, HALuci-
nator, a method that provides high-level emulation through the
HAL functions, was proposed [33]. It uses heuristics to locate
the code belonging to the hardware abstraction layer (i.e., a
vendor-provided API for interacting with the hardware) in the
firmware and replaces it with manually created handlers.
HALucinator takes firmware as input and produces a fully-
featured emulation environment.

P2ZIM [34] is a software framework that can test firmware
independently without hardware. It abstracts peripheral
devices and dynamically processes firmware I/Os based on an
automatically generated model. It takes the target firmware
and its memory map as input and fuzzes the code by feeding
the input from an off-the-shelf fuzzer (i.e., AFL) to the periph-
eral device. Then P2IM analyzes the device access patterns
exercised during this fuzzing phase to infer details about the
MMIO (memory-mapped I/O) interactions between the firm-
ware and peripheral devices, which can execute the firmware
without crashing.

uEmu [72] is used to emulate firmware with unknown
peripherals. It tries to learn how to emulate firmware execu-
tion at each peripheral intervention point correctly. uEmu
accepts images as input, expresses unknown peripheral regis-
ters as representation objects for symbolic execution analysis,
and infers access rules for unknown devices. These rules will
help it perform dynamic firmware analysis.

D. Detecting Vulnerability (Emu.C4)

The purpose of using emulation is to help us better perform
vulnerability analysis and testing. However, as mentioned
before, emulation technology faces various challenges and
there are many limitations in practical applications. Therefore,
how to perform vulnerability detection on firmware in virtual
environments with various limitations is also a big challenge.

1) Error Handling in Driver (Emu.C4S1): A driver may
encounter errors when communicating between the operating
system kernel and the hardware. However, because this kind
of error does not happen frequently, the error handling code is
not taken seriously in most of the existing tests [49]. The
methods [96] of finding vulnerabilities in firmware often
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ignore the characteristics of device drivers, making it difficult
for them to find vulnerabilities in error handling code.

SymDrive [57] is a framework of symbolic testing for Linux
device drivers. There have been some studies [46], [97] trying
to implement symbolic execution for driver testing, but these
systems require developers to manually adjust when testing
new drivers. SymDrive solves this problem by using static-
analysis and source-to-source transformation to reduce the
effort of testing a new driver significantly. It inputs the C code
for the Linux drivers and attempts to find program paths that
violate user-written assertions. Static analysis helps Sym-
Drive analyze crucial features of the driver code, such as entry
point functions and loops. SymDrive uses a driver detection
program to test the driver on the firmware for error handling.

Fuzzing is a commonly used technique in dynamic testing,
but it is challenging for existing fuzzers to test the error han-
dling effectively. The reason lies in the fact that errors are
often triggered in corner situations, where fuzzing is hard to
reach. Furthermore, testing error handling code often leads to
execution crashes, preventing the fuzzer from tracing the error
path deeply. IFIZZ [50] is a new error detection system that
can solve these problems. It uses fuzzing to test the error han-
dling code in the Linux-based IoT firmware. IFIZZ first
adopts a binary-based automation method to recognize errors
and their conditions in actual operation by analyzing errors in
the firmware. After that, it uses state awareness and bounded
error generation to detect deep error paths effectively. In its
evaluation [50], the depth of error paths covered by IFIZZ in
IoT devices is on average 7.3 times that of traditional error
injection methods.

FIFUZZ [23] is another fuzzing framework for error han-
dling code. Unlike IFIZZ, FIFUZZ uses a context-sensitive
software fault injection method to effectively detect error han-
dling codes in different contexts. As a result, it finds pro-
found errors hidden in complex trigger situations. Compared
with some popular fuzzing tools [98], [99], FIFUZZ can find
vulnerabilities missed by these tools.

2) Web Interface (Emu.C4S2): Many loT devices have
built-in web application services. Web applications provide an
interface for the outside world to interact with the devices
when they are working.

There are a large number of vulnerabilities hidden in web
applications of IoT devices [61]. A fully automated frame-
work, aiming to use dynamic firmware analysis to automate
the discovery of vulnerabilities in embedded firmware in an
extensible manner, was implemented [61]. This kind of frame-
work only detects the vulnerabilities in the built-in web inter-
face of the embedded device when the firmware is running in
emulation. It was reported that 225 unknown serious vulnera-
bilities were found in 45 firmware images.

In addition to the emulator, FIRMADYNE [22] provides a
set of methods for testing web services in the firmware. It
implements three primary channels of automatic dynamic
analysis in its system to facilitate analysis. FIRMADYNE
uses 60 persistent vulnerabilities to check the firmware in the
data set for similar vulnerabilities. Each vulnerability is exe-
cuted in order, and the vulnerabilities are successfully veri-
fied by checking the corresponding logs. There are many

exploited vulnerabilities, such as buffer overflow, command
injection, information disclosure, and denial of service.

FirmFuzz [64] is a framework for independent emulation
and automatic dynamic analysis of Linux-based firmware. It
uses a grey-box-based generational fuzzer, combined with
static analysis and system introspection to detect vulnerabili-
ties in the firmware. In order to effectively detect more pro-
found vulnerabilities in web applications, FirmFuzz uses the
program interfaces of these web applications as entry points to
generate grammatically valid input. Meanwhile, it injects
monitors into the firmware running environment to monitor
the context.

3) Others (Emu.C4S3): In addition to error handling codes
and web applications, the dynamic detection methods are used
to analyze vulnerabilities in many other scenarios and spe-
cific code segments. For example, the complete system emula-
tion is about ten times slower than the user-mode emulation
(i.e., AFL) [28]. Part of the reason that the emulation through-
put is not ideal is the software implementation of the memory
management unit [65]. FIRM-AFL [65] solves the perfor-
mance bottleneck caused by system emulation through a new
technology called enhanced process emulation. Furthermore,
it solves compatibility issues by enabling fuzzing POSIX
(Portable Operating System Interface) compatible firmware,
which can be emulated in the system emulator. With such
enhancement, the throughput of FIRM-AFL is on average 8.2
times higher than that of a fuzzer under full system emulation.

Generally, most attacks against the kernel are mainly
located on the boundary of system calls [66]. However, as
shown in some exploiting cases, there are kernel compromise
paths that do not involve system calls [100]. Attackers can
gain control of the kernel by destroying peripheral devices. In
order to detect and fix such vulnerabilities that occur on the
hardware-operating system boundary, PeriScope [66] was pro-
posed. It can perform a fine-grained analysis of the interac-
tion between the device and the driver. PeriScope hooks the
page fault handling mechanism of the firmware’s kernel to
detect and record the traffic between device drivers and
related hardware. In addition, PeriScope provides a fuzzing
framework called PeriFuzz, which can emulate attacks on
peripheral devices.

IV. AUTOMATIC CODE ANALYSIS

Automatic code analysis techniques have been proved to be
effective in software engineering security. For example, a tool
was proposed [101] to use the code attribute graph in the
source code to match code segments with the same pattern in
other programs. Similar to this approach, CCFinder [89], CP-
Miner [90] and DECKARD [91] also adopt pattern matching
techniques to detect vulnerabilities. As a vulnerability mining
technique that uses code features for analysis, code analysis
methods can work without device entities. In addition, the
code-matching solution is suitable for large-scale testing.

However, the false positive and the false negative rate are
the evaluation criteria that code analysis cannot avoid. How to
balance analysis efficiency and accuracy is a major challenge
in code analysis. In addition, it is difficult to directly apply
automatic code analysis methods to analyze firmware of IoT
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devices because real-world environments are different.

A. Lacking of Source Code (Auto.C1)

In Section III-A, we have introduced the difficulty of
obtaining device firmware. Some automatic code analysis
tools commonly used in software engineering are based on
firmware source code. In a real-world environment where it is
difficult to obtain device firmware, it is almost impossible to
find the source code of the firmware.

1) Working on Binary Executable (Auto.C1S1): After recog-
nizing the difficulty of obtaining source code, researchers
focus on automatic vulnerability analysis of binary code [20],
[73], [74], [76], [77], [102], [103]. Moreover, detecting vul-
nerabilities from a binary perspective may yield more accu-
rate results than that from source code [73]. For example,
when compilers get code from source to binary, the optimizer
may introduce new vulnerabilities that are difficult to be iden-
tified by existing methods based on source code [73], [76].

When analyzing vulnerabilities on firmware binary, Bin-
Arm [102] uses a novel fine-grained multi-stage function
matching method to find the candidate functions. It first col-
lects a large database of vulnerable firmware programs as the
search basis. Then, BinArm filters out some functions accord-
ing to heterogeneous features and execution paths, and finds
functions that may have vulnerabilities based on fuzzy graph
matching. Experiments show that BinArm is three orders of
magnitude faster than existing fuzzy matching methods, and it
successfully finds 93 CVE vulnerabilities.

B. Architectures (Auto.C2)

Functions in binary executable may have similarities at the
source code level, but they are quite different in the assembly
version. For example, we might witness big differences in the
structure of the control flow graph and the offsets of local
variables on the stack. Different registers are also used for the
same operation.

1) Features & Control Flow Graph (Auto.C251): To
address cross-platform vulnerability search in general, many
recent works [73]-[76], [103] proposed using different kinds
of features and control flow graphs in the binary.

DiscovRE [73] mainly calculates the similarity between
functions through the structure of the control flow graph, and
uses this method to find potential vulnerabilities through func-
tions with known vulnerabilities. Using a control flow graph
structure allows DiscovRE’s approach to avoid the impact of
code differences caused by compilers, optimization levels,
operating systems, and CPU architectures. In the prototype,
DiscovRE supports four different instruction sets (x86, x64,
ARM, and MIPS).

Genius [74] borrows ideas from the computer vision com-
munity to deal with similar problems. It directly uses CFG for
matching, but chooses to extract higher-level numerical fea-
tures from CFG and search for vulnerabilities based on
numerical features. Such an approach makes Genius more
immune to architectural changes. Moreover, the overhead of
graph matching is usually expensive, and converting the con-
trol flow graph into higher-level features can significantly
improve the efficiency of the searching process.

In addition, there are some works [75], [76] that optimize
control flow graphs and code feature search algorithms
through deep learning. To optimize the search algorithm,
VulSeeker [76] is constructed by labeled semantic flow graph
(LSFG) and the semantic-aware deep neural network (DNN)
based function semantic generation. This approach captures
more semantic information than using the control flow graph
alone. Gemini [75] adopts deep neural network to generate
embeddings of binary functions for similarity detection. It
uses the graph embedding network to convert control flow
graphs into embedding (i.e., numeric vector). By combining
the graph embedded network with the Siamese network [104],
the network can naturally capture two similar functions and
make them close to each other.

2) Intermediate Representation (Auto.C2S2): There are also
some methods [19], [54] using intermediate representation
code to solve the problem of architecture. They first translate
the code under different frameworks to the intermediate repre-
sentation code in the same language, and then conduct vulner-
ability analysis on this basis. Many existing vulnerability anal-
ysis techniques already support a variety of different interme-
diate representation codes. For example, KLEE [45] supports
LLVM intermediate representation (IR), but KLEE cannot run
on binary executables.

A symbolic execution framework called FIE [19] was
designed to detect vulnerabilities in firmware of the popular
MSP430 microcontroller. FIE transfers source code into
LLVM bytecode by using the Clang compiler. It then ana-
lyzes the bytecode by using the modified KLEE, which is a
symbolic execution engine. It takes as input a piece of
firmware, a memory map (e.g., regions such as RAM, ROM,
and MMIO), and an interrupt specification that describes all
locations where interrupts could be triggered. FIE will stop
analyzing if the analysis exceeds pre-determined time or all
possible states have been analyzed.

Similar to FIE, FirmUSB [54] uses a binary booster to con-
vert binary files to bitcode and then deploys symbolic execu-
tion (based on KLEE) on Intel 8051 MCU. It analyzes USB
firmware images by using domain-specific analyses to iden-
tify malicious behavior that targets USB (Universal Serial
Bus) devices.

C. Various Bug (Auto.C3)

The automatic code analysis tools we introduced earlier are
mostly based on a huge library of known vulnerabilities, using
matching ideas (functions, control flow graphs or feature vec-
tors) to find similar vulnerabilities in the library. However,
such methods are difficult to work in some special cases, such
as detecting vulnerabilities in the interaction between binary
files, or in network application interfaces.

1) Specific Situation and Cases (Auto.C3S1): In addition to
systematic methods such as matching analysis, many methods
are designed for detecting specific types of vulnerabilities in
IoT devices, such as integer overflow [105], [106], use-after-
free [48], and buffer overflow [107]. Some other methods
focus on detecting vulnerabilities in specific situations or code
segments.

Firmalice [21] provides a framework for detecting authenti-
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cation bypass vulnerabilities in binary firmware based on
symbolic execution and program slicing. Firmalice observes
that if an attacker can obtain the input of a privileged opera-
tion performed by the driver firmware, the authentication
mechanism is either vulnerable or can be bypassed. Because
there are many different manifestations of privileged opera-
tions in a device, Firmalice can customize the strategy of
security analysis for each firmware.

Many existing devices have functions implemented through
multiple binary file interactions, but static or dynamic secu-
rity analysis has little effect on such multiple binary interac-
tion services. Therefore, KARONTE [78] leverages static
analysis techniques to perform multi-binary taint analysis and
accurately finds the vulnerability by tracking the data flow in
the firmware. It uses the commonality of the inter-process
communication (IPC) paradigm to detect where an user input
is introduced into the firmware and it also identifies various
components. Then, KARONTE performs binary taint analysis
by tracking the data flow between components.

Code pruning is common in customizing the Linux kernels
of devices by IoT vendors. However, due to the inherent com-
plexity of the Linux kernel and the lack of long-term mainte-
nance, in the process of code tailoring, a manufacturer may
mistakenly delete some necessary security operations [79],
resulting in various types of vulnerabilities. CPScan [79] is a
system that can automatically detect vulnerabilities caused by
code pruning in an IoT kernel. A graph-based method can also
effectively identify the deleted security operation (DSO) in the
kernel.

There are many vulnerabilities in the web services of
embedded systems. SaTC [80], proposed in 2021, is a secu-
rity solution based on taint checking for Web services of
embedded systems. The string text of a web interface is usu-
ally shared between the front-end and back-end binary files.
Based on this observation, SaTC extracts these commonly
used keywords from the front-end files and uses them as a
positioning reference in the back-end files. Finally, SaTC ana-
lyzes whether there are dangerous operations in the user input
stream based on data flow analysis.

Concurrent error is one of the most challenging software
vulnerabilities to be detected and debugged [81]. Due to the
non-deterministic conditions of triggering such errors, it is
challenging to design a method for concurrent errors. A code
analysis tool, PASAN [81], was designed to detect concur-
rency of peripheral access in embedded firmware. PASAN
uses a parser-ready memory layout document to find the
MMIO address range of each peripheral device automatically.
Specifically, it uses the corresponding device driver to extract
the internal state machine of the external device and com-
bines the MMIO address range to automatically detect concur-
rent vulnerabilities in the access of the peripheral device.

V. NETWORK TEST VIA FUZZING

Benefiting from the ability of IoT devices to communicate
with the network, security researchers have found the method
to test IoT devices without requiring the device firmware or
source code. The new method runs testing through network
communication. Most of the emulator-based test methods and

static code analyses need a large amount of knowledge about
the device, such as manufacture information, firmware archi-
tecture, and even the firmware’s source code. Manufacturers
often do not release firmware publicly due to device security
issues. They also develop many new techniques to prevent
their firmware from various reverse engineering attempts,
such as the one to block device’s debug mode. Compared with
other test methods, fuzzing does not require much device
information. This advantage makes fuzzing a mainstream
choice for testing IoT devices over the network. However, the
types of vulnerabilities that can be found by such methods are
also limited due to the nature of fuzzing.

A. Input Acquisition & Format Requirement (Net.CI)

Fuzzing techniques usually require users to provide inputs
as the original seeds to participate in the mutation phase. The
generation-based fuzzer may not require a specific input, but it
also requires users to customize the method of generating
inputs before testing. The input refers to a complete communi-
cation message that includes the protocol. For network fuzzers
that use communication packets as test cases, the original
input(s) can be one message, multiple different messages, or a
sequence of messages. For example, many devices need to
verify customer information (e.g., login account, password,
etc.) before performing various functional operations. At this
time, the user needs to send more than two messages (one is
for login verification) to complete an operational command.
Therefore, using one message as input will make it difficult to
bypass the verification mechanism, resulting in low test cover-
age. For some bridge IoT devices, they connect many differ-
ent JoT devices. When the users need to use a device under
the bridge, they need to select the device first and then send
commands to it. Such an operation requires the cooperation of
multiple messages, and a relative order between the messages
is also required. It is difficult for the messages to be executed
correctly without sequence matching for multiple different
messages.

In addition, IoT devices have strict requirements for input
(communication messages). The communication messages
usually comply with the protocol used by the device (i.e.,
HTTPS, MQTT, etc.). The content in the message also needs
to comply with the corresponding format (JSON, XML, etc.).
Messages that do not meet these requirements will be rejected
by the IoT device firmware in the syntax detection part.
Therefore, it is a significant challenge for the fuzzers to ensure
the generated test cases meet the grammatical requirements.

1) Companion App (Net.C1S1): 1oTFuzzer [84] uses soft-
ware such as MonkeyRunner to randomly click the UI in the
app to send requests to the device automatically. IoTFuzzer
first analyzes the Ul elements of the app, and then uses data
flow analysis to reversely identify the relevant program ele-
ments that send messages to the device from the control
events. For example, the variable name in the function is iden-
tified through the switch button in UI. The name is highly rel-
evant to the sending process of switch commands in the pro-
gram. According to the fuzzing strategy specified by IoT-
Fuzzer, these fields will be recorded once they are identified.
If the request for changes involves the recorded protocol
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fields, IoTFuzzer uses function hooks to replace these fields
so that it can achieve mutation in the fuzzing process.

Diane [86] is also a black-box fuzzing framework for test-
ing IoT devices. It is observed that there are functions in the
official companion app that can be used to generate optimal
fuzzing input. Such a function can find it in the program after
completing various verification codes in the execution posi-
tion but before starting various character encryption or con-
version [86]. Diane’s core idea is to use a combination of
static and dynamic analysis to capture such functions and then
generate test cases to fuzz the target device.

Both IoTFuzzer and Diane find messages in the correct for-
mat from the official device app. Moreover, since their tests
are all used to trigger the communication function of the app
to send messages to the device, the commands issued in this
way often consist of a series of messages with correct com-
mands. Therefore, IoTFuzzer and Diane do not consider find-
ing the correct format of the original message and the order
among messages.

2) Human-Knowledge Guide & Learning Dataset (Net.
C1S2): BooFuzz [83] uses human knowledge guidance to
solve the problem of input problems. Before generating a net-
work communication session, Boofuzz requires users to pro-
vide relevant network information of the target such as IP
address and port number. It also requires a set of highly cus-
tomized messages. In these messages, various attributes pro-
vided by Boofuzz can be used as features to present the mes-
sages. Users can use these attributes to further mark which
characters in the message participate in the mutation phase
and which characters will not change during the mutation pro-
cess. Furthermore, users can specify which type of mutation
strategy will be used. This method allows the user to specify
the range of character segments for mutation operations in the
message. In other words, if users are familiar with the mes-
sage protocol and content format used by the device, they can
instruct BooFuzz to generate various test cases without break-
ing the protocol and format.

Different from Boofuzz, SRFuzzer [85] captures a large
number of web requests from the running devices, and then
models the user-input semantics to generate test cases.
SRFuzzer establishes a CONF-READ model to constrain the
generated message sequence after observing the message
sequence of the user’s request to read the configure-related
attributes initiated by the router device. Subsequently, to gen-
erate meaningful CONF requests and READ operations,
SRFuzzer establishes a Key-Value model for each message
content in the request. The Key-Value model can guarantee
the generation of messages if the type of a variable is a
domain name. The variable assigned to it will be a domain
name. However, due to the lack of effective scheduling, the
CONF-READ model makes SRFuzzer not be able to identify
some critical vulnerabilities. To solve this problem, the team
proposed ESRFuzzer [88] based on SRFuzzer in 2021. The
improved ESRFuzzer can perform fuzzing in two modes. The
first one is to use the Key-Value and CONF-READ models as
the indicator to explore the vulnerabilities in these two types
of situations. The second is to be used explicitly for testing
when D-CONF Work aims at discovering a vulnerability that

is ignored in CONF-READ mode. Both SRFuzzer and ESR-
Fuzzer use models to standardize the format correctness of the
generated input use cases. However, the standard model is
based on collecting a large number of accurate communica-
tion records.

3) Inference (Net.C1S3): From the perspective of code anal-
ysis, the strict input syntax requirements are actually a large
number of branch judgments of magic number and checksum.
Among various types of fuzzing for binary, there are already
fuzzers that can infer the role of each character in the input
without the guidance of human knowledge. However, it
remains a challenge to infer the input format required by IoT
devices in a near-black-box test.

Snipuzz [87] takes the device’s response message to infer
the role of each character in the input. It first generates a
sequence of probe messages based on modifying the original
input. Then, the responses of the probe message sequence are
used as a standard to segment the message snippets that play
different roles in the message. When Snipuzz is generating
test cases, each message snippet is used as a unit to mutate.
Such method can ensure that while testing the syntax check-
ing in part of the firmware, it can also generate some test
cases that conform to the syntax.

B. Feedback Mechanism (Net.C2)

When testing executable binary programs, coverage-guided
fuzzers have been widely proven to work well. They add
instrumentation to the target program to obtain more internal
execution coverage and then use it to guide the fuzzing pro-
cess by exploring new execution paths. Since part of the infor-
mation is collected from the inside of the program, this type of
coverage-guided fuzzer uses the grey-box testing. However, it
is too difficult to add instrumentation to IoT devices. There-
fore, most of the existing network fuzzers [83], [84], [86] for
IoT devices use black-box testing methods. In their fuzzing
process, there is no feedback from the devices to guide the
optimization of the mutation process.

1) Response-Based Guide (Net.C2S51): Snipuzz [87] first
proposed using the device’s response messages as feedback to
guide the fuzzing strategy. Precisely, Snipuzz can determine
whether different test cases have reached different execution
paths in the device firmware through the content of the
response messages. Based on this mechanism, Snipuzz uses a
novel heuristic algorithm to detect the role of each byte in the
message. Adjacent bytes have the same role in the initial mes-
sage snippets, and can be packed together and linked to a
basic unit of mutation. Snipuzz makes good use of the charac-
teristics of IoT devices to build a set of fuzzing frameworks
suitable for testing [oT devices.

C. Monitoring (Net.C3)

When we use vulnerability detection methods to test soft-
ware programs, information such as program execution input
and output and standard errors can be collected in time. Even
while the program is running, various tools can be used to
capture additional execution information such as program exe-
cution logs and CPU utilization. However, the kernel and
binaries of IoT devices are closed to us. Even after each round
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of test, it is difficult to know whether a vulnerability in an IoT
device has been triggered. Therefore, how to monitor the sta-
tus of device is a challenge that various network testing meth-
ods need to face.

1) Local Monitor (Net.C3S1): Although we analog the
firmware operation of IoT devices to a black box, some loT
devices themselves can provide some information as a refer-
ence for the state at runtime. For example, many routers pro-
vide users with a built-in web page to monitor and adjust the
status of the device in real time while they are working.
RPFuzzer [82] decides whether the router is abnormal by
monitoring the CPU utilization, data regularity and the
routers’ system log. Such routers can provide rich informa-
tion about traffic, and the local monitoring method is able to
perform well in detecting the crash of routers and find abnor-
malities such as reboot and DoS attacks.

If the firmware can be run in a virtual machine, Boofuzz
provides a proxy module that can monitor the running status
of the virtual machine. It can restart the software in the virtual
machine to continue the fuzzing test after the software
crashes. However, network fuzzers such as BooFuzz are not
designed for IoT devices. Their monitoring objects are more
appropriate to software programs or servers. So the virtual
machine monitoring service provided by BooFuzz is ineffi-
cient for IoT devices.

2) Heartbeat via Messages (Net.C3S2): When the device
cannot provide additional internal execution information, the
network testing methods often use the heartbeat detection to
determine whether the device crashes. The heartbeat detection
method sends a simple message to the target, and if the device
does not reply to the message normally or does not reply to
the message, it can be determined that the device is in the
crash state.

Different network testing methods will customize the heart-
beat detection method according to their own design. For
instance, loTFuzzer and Diane use the simple heartbeat mes-
sage to detect whether the device has crashed every time after
sending a message. Snipuzz sends a sequence of messages that
are preset after each test to help the device return to the initial
state of the test. It can find out whether a crash occurs through
the network traffic. Moreover, since Snipuzz powers on the
device through the smart plug, if the device crashes, Snipuzz
can physically restart the device by temporarily powering off
the smart plug remotely.

BooFuzz provides an uninterrupted monitoring proxy. After
sending data to the target, Boofuzz will contact the proxy to
determine whether the fault is triggered. If a fault occurs, the
high-level information about the fault will be sent back to the
session and stored.

VI. MANUAL REVERSE ENGINEERING

Unlike other research perspectives, the goal of manual
reverse engineering analysis is to analyze and find vulnerabili-
ties in a particular device or specific scenario. Researchers
usually use manual solutions (e.g., reverse engineering) to
launch various attacks on targets to detect whether the devices
has exploitable vulnerabilities. Many interesting or high-
threatening vulnerabilities in reality often require carefully

constructed actions or inputs to trigger [108], [109]. Such vul-
nerabilities are often found only by delicate handwork like
manual reverse engineering.

However, it is difficult to find the tools or solutions belong-
ing to the same challenge with such a case-by-case research
test. Therefore, in this section, we present some successful
manual reverse engineering cases only.

In 2013, the remote firmware update (RFU) vulnerabilities
on IoT devices and some real-world cases discovered in HP
LaserJet printers were analyzed [110]. The printer vulnerabili-
ties they discussed can be made into malware and embedded
in harmless document formats such as PostScript. This type of
malware can be delivered generally via PJL commands. It is
worth noting that, this kind of defect does not only exist in
printers. All kinds of devices that can perform remote
firmware updates and use vulnerable third-party libraries may
involve RFU.

An in-depth security analysis on a large number of medical
devices that were deployed in various hospitals was con-
ducted [108]. It is found that some of these devices rely on
standard Wi-Fi security measures, which make them prone to
man-in-the-middle attacks. In addition, such attack can steal
medical records such as health insurance acquaintance bureau,
medical history, and prescriptions, through medical devices.

The low-power Bluetooth devices have been widely
adopted, which attracts the researchers’ attention to the secu-
rity of Bluetooth. By reverse engineering analysis, some vul-
nerabilities regarding remote code execution at the lowest
level of the bluetooth low energy (BLE) protocol stack on
firmware of multiple Bluetooth vendors were found [111]. By
exploiting these vulnerabilities, an attacker can pair Bluetooth
devices without authentication.

Problems on how to conduct safety research on connected
cars were discussed [109]. A test platform that can test vari-
ous related intelligent components in a car at a low cost was
first proposed. Then, based on this platform, a set of attack
chains that can penetrate from outside to the inside of a vehi-
cle were designed. Using the vulnerabilities involved in the
attack chain, the door could be remotely unlocked or the
engine could be started. These vulnerabilities affected more
than two million Mercedes-Benz smart-connected cars in
China.

VIL

With the expansion of loT market, manufacturers and secu-
rity researchers are paying attention to IoT firmware security.
For future research, researchers need to test IoT device
firmware more systematically. Meanwhile, the security test-
ing needs to cover all aspects of the firmware system and
drivers. In this section, we discuss the directions for future
development of security testing for IoT firmware.

DiscussioN

A. Peripherals in Emulation Process

The emulator-based test process can be divided into two
steps: emulation of firmware and dynamic test based on emu-
lation. For the firmware emulator, a significant challenge that
cannot be bypassed is to emulate many hardware peripherals.
Although we mention solutions such as partial emulation as
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well as full emulation, there are many limitations when emu-
lating devices in reality. For instance, the use of dedicated
bridge hardware usually increases the complexity of perform-
ing emulation and makes it difficult to extend to other devices.
In addition, the communication efficiency between peripheral
devices and analog firmware also has room for improvement
[60].

The full emulation often has relatively high requirements for
the device firmware. Typically, it requires that the device
firmware is based on a specific architecture or the firmware
conforms to use a specific kernel [22], [95]. Moreover, altho-
ugh many existing tools attempt to apply simulation methods
to large-scale testing from different perspectives, there are still
many limitations. For example, HALucinator [33] uses HAL
to conduct a full-feature emulation on target firmware. How-
ever, the HAL library is provided by various microcontroller
unit (MCU) vendors, and HALucinator cannot test the system
on chips (SoCs) with proprietary SDKs [72] (e.g., Samsung
SmartThings [112] and Philips [113]).

B. False Positive in Automatic Code Analysis

In theory, most code analysis methods rely on matching and
code scanning, which means that false positives are likely to
occur [73]-[75]. In their evaluation, these code analysis meth-
ods report the number and proportion of false positives. The
traditional way to confirm false positives is manual detection.
However, the cost of manual testing is unaffordable when we
come to large-scale testing.

C. Black-Box Network Test

The challenges of analyzing device firmware security using
network testing methods stem from a black-box-like testing
environment. Since a similar environment is not available, the
method used to test the firmware of IoT devices cannot fol-
low the idea of testing binary programs. For example, some
grammar-based fuzzing algorithms can produce and mutate
input that meets the stringent requirements of binary pro-
grams. Also, many fuzzer algorithms [43], [98] use instrumen-
tation to obtain program execution coverage and guide seed
selection and mutation strategies. Because of the closed opera-
tion of IoT devices, such methods cannot be used for network
test.

There are some aforementioned works that attempt to solve
this problem. For example, Snipuzz uses response messages as
a feedback mechanism and builds a fuzzing framework that
can infer the role of input characters. When RPFuzzer tests the
router, it uses the router’s own system log and CPU monitor-
ing capabilities to monitor the firmware status. However, nei-
ther of the two methods can solve this problem very well. It
depends on the type of the device itself to determine the type
of the response messages of the device. It also suggests
whether the device provides self-checking functions.

D. Cost of Manual Reverse Engineering

Manual reverse engineering of firmware can find various
types of vulnerabilities lurking deep within the logic of the
code. However, this operation is too expensive to process.
Typically, it requires researchers to have products’ firmware

so that they can decompile the firmware for reverse engineer-
ing. Through repeated reading and guessing the meaning of
the code, researchers can organize the operation logic of the
code and identify the vulnerabilities. Therefore, it is difficult
to scale up such manual detection-based methods to large-
scale testing.

VIII. FUTURE DIRECTION

1) Automatic Emulation (Section III): When emulating the
firmware, existing methods face many challenges. The large
number of differential structures and configurations make
emulating different firmware need a manual-work support by
researchers. However, works such as [33], [34], [71], [72] are
already trying to automate the simulation process. They pro-
vide us methods such as using machine learning, fuzzing, and
symbolic execution to try to solve the interaction problems of
peripheral devices. Although, we have discussed in Section
VII-A that these methods have various limitations, they are
still a great contribution to the development of fully auto-
mated emulation.

2) Hybrid Approach (Section 1V): Various hybrid approa-
ches have been proven to be effective when testing binary
executives. Fuzzing methods combined with symbolic execu-
tion [114] can use the advantages of both methods to comple-
ment each other and get better test results. There are also some
directed fuzzing methods [115], [116] combined with static
code analysis, which utilize the fuzzer to test suspected vul-
nerable code regions found in static analysis. However, using
a similar hybrid approach on loT devices may double the chal-
lenges. For example, to use code analysis and simulator-based
combined testing methods, it is necessary to solve the chal-
lenges of both methods. Nevertheless, such methods can also
solve some problems for each other. For example, code analy-
sis can be used to model the interaction of peripheral devices
to help the emulator better emulate the firmware.

3) Multiple Ways to Monitor (Section V): Monitoring devi-
ces is a significant challenge for network test methods. Usu-
ally the network test environment of the firmware is consid-
ered as a black box, and only the output of the device can be
observed. The local monitoring of routers by RPFuzzer gave a
good inspiration. Monitoring device should not be limited to
methods such as instrumentation that can directly obtain the
execution status. Some other statuses of the device or records
(i.e., logs) describing the status of the device should be
included in the scope of monitoring. Moreover, some energy
states, such as voltage and heat, can be considered within the
scope of reactions of devices.

IX. CONCLUSION

In this survey, we systematically review and analyze exist-
ing solutions for detecting vulnerabilities in IoT firmware. We
collect various methods that perform security analysis on IoT
devices, and classify them into four categories, including emu-
lator-based test, automatic code analysis, network test and
manual reverse engineering. Based on each category, we dis-
cuss the challenges they encounter and summarize how exist-
ing methods address them. In addition, we discuss the limita-
tions of current development of these security analysis solu-
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tions and possible directions in future work.
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