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 Dear Editor,

This letter investigates a low-complexity data-driven adaptive pro-
portional-integral-derivative  (APID)  control  scheme  to  address  the
output  tracking  problem  of  a  class  of  nonlinear  systems.  First,  the
relationship  between  PID  parameters  is  established  to  reduce  the
number  of  adjustable  parameters  to  one.  Then,  based  on  the  incre-
mental  triangular  data  model,  a  data-driven  APID  tracking  control
(DD-APIDTC)  method  is  proposed  to  adjust  only  one  controller
parameter and one model parameter online, both of which have clear
physical meaning. Subsequently, sufficient conditions are derived for
the  boundedness  of  the  system  tracking  error.  Finally,  simulation
results  are  given  to  illustrate  the  effectiveness  of  the  proposed
method.

Nowadays, the requirement for the tracking control performance of
practical systems, especially unknown nonlinear systems, is increas-
ing [1].  To  simplify  the  analysis  and  design  of  nonlinear  systems,
they are  usually  transformed into  linear  forms by linear  approxima-
tion  at  some  operating  points,  such  as  three  dynamic  linearization
data  models  at  each  operating  point  were  established  in [2],  and  an
equivalent linearization design method for nonlinear controllers was
discussed in [3]. However, the data model and controller in the above
works are derived by Cauchy differential mean value theorem. Model
or  controller  parameters  are  solely  mathematical  concepts  without
analytical expression and actual physical meaning, which potentially
cause  the  inaccurate  parameter  estimation  in  practical  applications.
To solve this problem, an incremental triangular data model based on
the  system  impulse  response  model  was  proposed  in [4],  while  the
controller does not make full use of historical tracking error informa-
tion and the structure is not fixed.

PID control  method is  still  preferred in most  engineering applica-
tions,  which requires  suitable  adaptive  updating rules  to  adjust  con-
troller parameters in real time when system properties change. How-
ever, most existing adaptive updating rules highly depend on system
knowledge.  For  some  complex  systems,  especially  nonlinear  sys-
tems,  accurate  mathematical  models  are  difficult  to  be  established
[5]. To solve the tracking control problem of nonlinear systems, sev-
eral data-driven APID control schemes have been developed, such as
database-driven  APID control [6],  learning-based  APID control [7],
and  APID-like  control [8].  However,  in  the  aforementioned  works,
three  APID  control  parameters  are  adjusted  independently,  which
increases the complexity for  tuning parameters.  Although this  prob-
lem is  considered in [9],  the  design of  the  adaptive  update  rule  still
requires the system prior knowledge, which is difficult for nonlinear
systems  with  unknown  model.  The  above  discussion  motivates  this
study.  The  main  contributions  of  this  letter  are  summarized  as  fol-
lows. 1) A low-complexity APID controller is proposed by establish-

ing a relationship between three adjustable parameters. 2) Inspired by
[4], an online adaptive parameter tuning algorithm using more histor-
ical  data  of  the  system  is  presented.  3)  A  DD-APIDTC  method  is
proposed  to  address  the  tracking  control  problem  of  nonlinear  sys-
tems,  and  sufficient  conditions  for  the  boundedness  of  the  tracking
error are obtained.

R Z+

xt x̂t
∆xt = xt − xt−1

Notations:  and  are the sets of real numbers and positive inte-
gers,  respectively.  For  the  variable ,  denotes  its  estimate,  and

.
Design of APID controller: Consider a class of discrete-time non-

linear systems
 

yt+1 = f (yt,yt−1, . . . ,yt−ny ,ut,ut−1, . . . ,ut−nu ) (1)
yt ∈ R ut ∈ R
ny ∈ Z+ nu ∈ Z+ yt ut

f (·)
∂ f (·)
∂ut

where  and  are  the  system  output  and  input,  respec-
tively,  and  are  the  unknown  orders  of  and ,
respectively, and  is an unknown nonlinear function. Assume that
the partial derivative  is continuous, and system (1) satisfies the
generalized Lipschitz condition.

yref
t ∈ R

et = yref
t − yt

For a  given reference signal ,  the tracking error  is  defined
as . Then, an APID controller is designed as
 

∆ut = kp,t(et − et−1)+ ki,tet + kd,t(et −2et−1+ et−2) (2)
kp,t ki,t kd,t

kp,t ki,t kd,t
α > 0

where ,  and  are  the controller  parameters  to  be adjusted.
Obviously,  if  these  parameters  are  adjusted  independently,  the
parameter tuning process would be quite complex and time-consum-
ing. To solve this problem, the relationship between ,  and 
is built by introducing a coefficient , that is
 

kp,t = 2αkd,t, ki,t = α
2kd,t (3)

based on which, APID control law (2) is reexpressed as
 

∆ut = kd,tEt (4)
Et = (α+1)2et − (2α+2)et−1+ et−2 kd,t

0 < d1 ≤ kd,t ≤ d̄1 d1 d̄1

where ,  and  is  bounded,  i.e.,
 with two positive constants  and .

(z−1− (α+1))2 = 0 z = 1
α+1

α > 0 kd,t

kp,t ki,t kd,t

Remark 1: According to the parameter relationship in (3), it can be
obtained  that  the  characteristic  equation  of  APID  controller  (4)  is

,  and  the  characteristic  root  is  within  the
unit circle when , which allows that only  needs to be tuned
in  APID controller  (4).  In  addition,  it  is  noted  that  APID controller
(4)  can  also  be  designed  based  on  or  instead  of  by
redefining (3).

kd,tAdaptive parameter tuning rule: In order to obtain ,  the fol-
lowing performance index function is considered:
 

J(kd,t) = (yref
t+1− yt+1)2+λt(kd,t − kd,t−1)2 (5)

λt > 0
yt+1

where  is  a  time-varying  weighting  factor.  Since  the  system
output  is unknown at time t,  the dynamic linearization technol-
ogy is employed to predict the system output. According to [4], non-
linear system (1) can be equivalently transformed into the following
incremental triangular data model:
 

∆yt+1 = htωt (6)
ht h ≤ |ht | ≤ h̄ h h̄where  satisfies  with constants  and , and

 

ωt =

m∑
i=1

i
m
∆ut−i+1+

N∑
j=m+1

N − j
N −m

∆ut− j+1 (7)

N ≥ 2 0 < m < N
ht

with constant integers  and . For the physical mean-
ings of , N, and m as well as the selection of N and m, please refer
to [4].

kd,t

Substituting  (6)  and (7)  into  (5)  and minimizing cost  function  (5)
with respect to  yields
 

kd,t =
λt

γt
kd,t−1+

(yref
t+1− yt − ζtht)ht

1
mEt

γt
(8)
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γt = λt +h2
t

1
m2E2

t ζt =
∑m

i=2
i
m∆ut+1−i+

∑N
j=m+1

N− j
N−m ×

∆ut+1− j ht

where ,  and 
.  To  estimate ,  the  following  parameter  estimation  algo-

rithm is used [4]:
 

ĥt = ĥt−1+
ωt−1

µ+ω2
t−1

(∆yt − ĥt−1ωt−1) (9)

µ > 0
ĥt

where  is  an  estimation  weighting  factor.  The  corresponding
reset  algorithm is  adopted  to  prevent  from being too  small  or  its
sign being opposite, i.e.,
 

ĥt = ĥ0, if |ĥt | ≤ σ or sign(ĥt) , sign(ĥ0) (10)
where σ is a small positive constant.

The DD-APIDTC method: Combining (4) and (8)−(10), the over-
all DD-APIDTC method is formed as
 

ĥt = ĥt−1+
ωt−1

µ+ω2
t−1

(∆yt − ĥt−1ωt−1)

ĥt = ĥ0, if |ĥt | ≤ σ or sign(ĥt) , sign(ĥ0)

kd,t =
λt

γ̃t
kd,t−1+

(yref
t+1− yt − ζtĥt)ĥt

1
mEt

γ̃t

∆ut = kd,tEt

(11)

γ̃t = λt + ĥ2
t

1
m2E2

t ĥt h1 ≤ |ĥt | ≤
h̄1 h1 h̄1

where . The parameter estimate  satisfies 
, where  and  are positive constants.

kd,t

Remark 2: It can be seen from (11) that the proposed DD-APIDTC
method is a pure data-driven control method. Furthermore, only one
controller  parameter  is  required  to  be  adjusted  in  APID  con-
troller  (4),  which  simplifies  the  controller  structure  and  reduces  the
complexity  of  parameter  adjustment.  Compared  with [4],  the  con-
troller  (4)  uses  more  historical  tracking  error  information  and  has  a
fixed structure. Different from [9], the DD-APIDTC method does not
require  the  system  prior  knowledge  and  an  additional  fixed  con-
troller gain, which can better ensure the control effect when the sys-
tem properties  change,  such  as  the  time-varying  structure  and  time-
varying parameters.

yref
t = yref yref

Convergence analysis: For the convenience of analysis, the refer-
ence signal  is  set  as ,  where  is  a  constant.  Before giv-
ing the analysis results, two reasonable assumptions are listed here.

|∆ut | ≤ ρ t ≤ 0 ρ > 0
Assumption  1:  The  increment  of  the  historical  control  input  is

bounded, i.e.,  for , where  is a constant.
htAssumption 2: The sign of  is to be known and unchanged.

h̄ ≥ ht ≥ h > 0
ĥt ≥ h1 > 0

Without  loss  of  generality,  consider  that ,  and  thus
 by using (10).

λt

Theorem 1:  The  closed-loop DD-APIDTC system guarantees  that
the output tracking error is bounded, if there exist  and α satisfying
 

λt ≥ A > 0 (12)
 

1
m

max{h̄1, h̄}d̄1(α+1)2 < 1 (13)
 

d1h(α2−2) > 0 (14)

A ≜
(ĥt−h̄)ĥt

1
m2 E

2
t

1
m h̄d̄1(α+1)2−1

where .
Proof: From (6), the tracking error is derived as

 

et+1 = et −ht
1
m
∆ut −htζt. (15)

Then, according to (11), one has
 

∆ut = q(λt)et − (2α+2)p(λt)et−1+ p(λt)et−2− l(λt)ζt (16)

q(λt) =
ĥt

1
mE2

t +λtkd,t−1(α+1)2

γ̃t
p(λt) =

λtkd,t−1
γ̃t

l(λt) =
ĥ2

t
1
mE2

t
γ̃t

where , ,  and .
Substituting (16) into (15) yields
 

et+1 = β(λt)et + θ(λt)(2α+2)et−1− θ(λt)et−2+Θt (17)

β(λt) = 1−g(λt) Θt = (ĥtl1(λt)−ht)ζtwhere , , and
 

g(λt) =
ht

1
m (ĥt

1
mE2

t +λtkd,t−1(α+1)2)
γ̃t

θ(λt) =
ht

1
m (λtkd,t−1)
γ̃t

, l1(λt) =
ĥt

1
mE2

t

γ̃t
ht

1
m
.

Then, taking the absolute value on both sides of (17) gives
 

|et+1| ≤ Γ(λt)max{|et |, |et−1|, |et−2|}+ |Θt | (18)

Γ(λt) = |β(λt)|+ |θ(λt)(2α+2)|+ | − θ(λt)|where .
g(λt) λtThe partial derivative of  with respect to  is derived as

 

∂g(λt)
∂λt

=

1
m2 htĥtE2

t(
λt +

1
m2 (ĥtEt)2)2 ( 1

m
ĥtkd,t−1(α+1)2−1

)
. (19)

1
m ĥ(t)kd,t−1(α+1)2−1 ≤ 1

m h̄1d̄1(α+1)2−1 ≤
max{h̄1, h̄} 1

m d̄1(α+1)2−1 ≤ 0
0 g(λt)

g(λt) ≥ limλt→∞ g(λt) = 1
m htkd,t−1(α+1)2 ≥ 1

m d1h(α+1)2 > 0

From  (13),  one  has 
, which means that (19) is less or equal

to ,  i.e.,  is  a  non-increasing  function.  Thus,  one  obtains
.

λt
( 1

m h̄d̄1(α+1)2−1
) ≤ (ĥt−

h̄
)
ĥt

1
m2E2

t

Next,  combining  (12)  and  (13)  gives 
, which further yields

 

λt
1
m h̄d̄1(α+1)2+ 1

m2 h̄ĥtE2
t

λt +
1

m2 ĥ2
t E2

t

≤ 1

g(λt) ≤ 1 0 ≤ β(λt) = 1−g(λt) < 1
Γ(λt)

i.e., .  Therefore,  holds.  Then,  with
the definition of , it is derived that
 

Γ(λt) = 1−g(λt)+ θ(λt)(2α+3)
= 1− s(λt) (20)

s(λt) =
ht

1
m

(
ĥt

1
mE2

t +λtkd,t−1(α2−2)
)

γ̃t
where .

g(λt) s(λt)According to the definition of  and , one has
 

s(λt) <
ht

1
m (ĥt

1
mE2

t +λtkd,t−1(α+1)2)
γ̃t

= g(λt) ≤ 1.

s(λt) λtTaking the partial derivative of  with respect to , one yields
 

∂s(λt)
∂λt

=

1
m2 htĥtE2

t(
λt +

1
m2 (ĥtEt)2)2 ( 1

m
ĥtkd,t−1(α2−2)−1

)
. (21)

1
m ĥtkd,t−1(α2−2) < 1

m max{h̄1, h̄}d̄1(α+
1)2 < 1 0 s(λt)

ϵ s(λt) ≥ limλt→∞ s(λt) = 1
m htkd,t−1(α2−

2) ≥ 1
m d1h(α2−2) ≥ ϵ > 0 0 < Γ(λt) ≤ 1− ϵ

According  to  (13),  one  has 
,  which  means  that  (21)  is  less  to ,  i.e.,  is  a  non-

increasing function. Therefore, according to (14), there exist a small
positive  constant  such  that 

, i.e., .
g(λt)Then, from the definition of , it is derived that

 

0 < g(λt) = l1(λt)+
ht

1
mλtkd,t−1(α+1)2

γ̃t
≤ 1

0 < l1(λt) < 1i.e., . According to Assumption 1, one has
 

|Θt | = |ĥtl1(λt)−ht ||ζt |

≤ (|ĥtl1(λt)|+ |ht |)|
m∑

i=2

i
m
∆ut+1−i+

N∑
j=m+1

N − j
N −m

∆ut+1− j|

< (h̄1+ h̄)(N −2)ρ.

From (18), it is obtained that
 

|et+1| < Γ(λt)max{|et |, |et−1|, |et−2|}+ ι
< Γ(λt)2 max{|et−1|, |et−2|, . . . , |et−5|}+Γ(λt)ι+ ι
...

< Γ(λt)t+1|e0|+ ξ (22)

ι = (h̄1+ h̄)(N −2)ρ ξ = ιϵ et = 0 t < 0 e0
limt→∞ |e(t)| < ξ

where , ,  and  for .  Since  is
bounded, from (22), one has . 　 ■

Numerical simulation: The methods in [2]–[4] and [9] are used as
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comparison  with  the  proposed  DD-APIDTC  method.  Consider  a
structure-varying and parameter-varying nonlinear system
 

yt+1 =


yt−1

1+φty2
t−1

+u3
t−1, t < 350

0.1φtyt−1+0.2(yt−2+ut−1)+0.18ut−2, 350 ≤ t ≤ 600.

φt = 1+0.5sin( tπ
200 ) yref

t+1 =

0.5sign(sin( tπ
100 ))

I = [1 1 1]T

Υt = 1+ |et |

where .  The  reference  signal  is  set  as 
.  The  parameter  settings  for  the  five  control  meth-

ods are shown in Table 1, where . For the method in [9],
the core function is designed as .  For more details about
these parameters, please refer to [2]–[4] and [9].
  

Table 1. Parameter Settings
Control schemes Parameters

DD-APIDTC m = 2 N = 5 ĥ0 = 1 λt = 30 α = 1.5 kd,0 = 0, , , , , 

Method in [2] Ly = 2 Lu = 1 µ = 1 η = 1 ϕ̂f,Ly ,Lu (0) = 0.1I
ρ = 1.5I λ = 1.5

, , , , ,
, 

Method in [3] Le = 3 η = 1 ψ̂(1) = −0.6I λt = 50, , , 
Method in [4] m = 2 N = 5 ĥ0 = 1 µ = 1 λ = 1, , , , 

Method in [9] β = 1 σ0 = 0.1 σ1 = 0.1 δ = 1 kP0 = 0.15
kI0 = 0.2 kD0 = 0.2

, , , , ,
, 

 

∑600
t=200 |et |∑600

t=200 t|et | t < 350

t ≥ 350

The  simulation  results  are  given  in Fig.  1,  and  the  performance
indices are shown in Table 2, where the integral absolute error (IAE)
is  and  the  integrated  time  and  absolute  error  (ITAE)  is

.  It  can  be  seen  from Fig.  1 that,  when ,  the  DD-
APIDTC method has the minimum overshoot under almost the same
response  time,  and  when ,  the  response  time  of  the  DD-
APIDTC method is the shortest. Meanwhile, Table 2 shows that the

DD-APIDTC method has the smallest tracking error.
 
 

Table 2. Performance Indices
Control schemes IAE ITAE

DD-APIDTC 13.7485 5072.8

Method in [2] 21.3983 8250.5

Method in [3] 30.1603 10283

Method in [4] 22.4849 8755.4

Method in [9] 22.0856 8105.9

 
Conclusion: This  letter  has  proposed  a  DD-APIDTC  method  for

the tracking control problem of a class of discrete-time nonlinear sys-
tems. The relationship between the three adjustable parameters in the
APID controller has been established to simplify the controller struc-
ture. Then, based on the incremental triangular data model, an adap-
tive parameter tuning algorithm has been presented, where only one
controller  parameter  and one  model  parameter  are  estimated online.
In  addition,  the  sufficient  conditions  for  the  boundedness  of  the
tracking  error  have  been  obtained.  Finally,  the  comparative  simula-
tion results have been given to verify the effectiveness and superior-
ity of the proposed method.

It  is  well  known  that  the  integration  of  communication  networks
and control systems has become a hot topic in recent years, and thus
communication constraints and cyber attacks will be addressed in our
future work by extending the proposed method to networked nonlin-
ear systems [10] and networked multi-agent systems [11].
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Fig. 1. Tracking performance under different methods.
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