ON THE DIOPHANTINE EQUATION

$$\frac{ax^m-1}{abx-1}=by^2$$

CAO ZHEN-FU (曹珍富)

(Department of Mathematics, Harbin Institute of Technology, Harbin 150006, PRC)

Received October 31, 1989.

Keywords: Diophantine equation, Pell's equation, elementary method.

Let $a, b \in \mathbb{N}$. In this note we study the solutions of the Diophantine equation

$$\frac{ax^m - 1}{abx - 1} = by^2, \qquad 2 \nmid m > 1 \tag{1}$$

with elementary method of Pell's equation^[1], and the results we get is generalization of the studies of Ljunggren ^[2] (a=b=1) and Sun Qi et al. ^[3] (b=1).

Theorem 1. If a, $b \in \mathbb{N}$, then the Diophantine equation (1) only has solutions in positive integers x = y = 1 (when a > 1, b = 1) and m = 4s + 1, x = 3, $y = 3^{2s} + 2$ (when $a = \frac{1}{4}(3^{2s-1}+1)$, b = 1), where s is a positive integer.

For the Diophantine equation

$$\frac{ax^{m}+1}{abx+1} = by^{2}, \ 2 \nmid m > 1,$$
 (2)

we have

Theorem 2. If $a, b \in \mathbb{N}$, then the Diophantine Eq. (2) only has solutions in positive integers x = y = 1 (when b = 1) and m = 4s + 3, x = 3, $y = 3^{2s+1} - 2$ (when $a = \frac{1}{4}(3^{2s} - 1)$, b = 1), where s is a positive integer.

From Theorems 1 and 2, we have

Corollary. If $a \in \mathbb{N}$, then the Diophantine equations

$$ax^m = axy^{2n-2} + y^n - 1, 2 \nmid m > 1, n > 1,$$

$$ax^{m} = axy^{2n-2} - y^{n} + 1, 2 \nmid m > 1, n > 1$$

only have the solution x = y = 1, respectively.

Proof of Theorem 1. Suppose (m, x, y) is any positive integer solution of (1). Then (1) gives

$$ax^{m}-b(abx-1)y^{2}=1$$
,

and so

$$(ax^{m} + b(abx - 1)y^{2})^{2} - 4abx(abx - 1)(x^{\frac{m-1}{2}}y)^{2} = 1.$$
 (2)

Since $\varepsilon = 2abx - 1 + \sqrt{4abx (abx - 1)}$ is the fundamental solution of Pell's equation $u^2 - 4abx(abx - 1)v^2 = 1$ [1], thus (2') gives

$$ax^{m} + b(abx - 1)y^{2} = \frac{\varepsilon^{n} + \overline{\varepsilon}^{n}}{2} = 2ax^{m} - 1,$$
 (3)

$$x^{\frac{m-1}{2}}y = \frac{\varepsilon^n - \overline{\varepsilon}^n}{2\sqrt{4abx(abx-1)}},$$
 (4)

where $\bar{\varepsilon} = 2abx - 1 - \sqrt{4abx(abx - 1)}$, $n \in \mathbb{N}$.

First, we suppose 2|n. Put n=2l, $l \in \mathbb{N}$. Then by (3), we have

$$2ax^m-1=\frac{\varepsilon^{2l}+\overline{\varepsilon}^{2l}}{2}=2\left(\frac{\varepsilon^l+\overline{\varepsilon}^l}{2}\right)^2-1,$$

and so $ax = x_1^2 (x_1 \in \mathbb{N}), \frac{\varepsilon' + \overline{\varepsilon}'}{2} = x^{\frac{m-1}{2}} \cdot x_1$. From (4), we have

$$x^{\frac{m-1}{2}}y = 2 \cdot \frac{\varepsilon' + \overline{\varepsilon}'}{2} \cdot \frac{\varepsilon' - \overline{\varepsilon}'}{2\sqrt{2}} = 2x^{\frac{m-1}{2}} \cdot x_1 \cdot \frac{\varepsilon' - \overline{\varepsilon}'}{2\sqrt{2}}, \qquad (5)$$

where $\sqrt{} = \sqrt{4abx (abx-1)}$. Clearly, (5) gives $x_1 | y$, and so $x_1 = 1$ by (1). Thus $ax = x_1^2 = 1$, y = 0 which is impossible.

Next, we suppose $2 \nmid n$. From (3) and (4), we have x = y = 1 when b = 1, a > 1 if n = 1. If n > 1, and let p be any prime divisor of n, then n = pl, $2 \nmid l \in \mathbb{N}$. Put $\epsilon^l = a_l + b_l \sqrt{}$, $\bar{\epsilon}^l = a_l - b_l \sqrt{}$. Then (3) and (4) give respectively

$$2ax^{m}-1=a_{l}^{p}+\binom{p}{2}a_{l}^{p-2}(b_{l}\sqrt{})^{2}+\cdots+\binom{p}{p-1}a_{l}(b_{l}\sqrt{})^{p-1},$$
(6)

$$x^{\frac{m-1}{2}}y = b_{l} \left[\binom{p}{1} a_{l}^{p-1} + \binom{p}{3} a_{l}^{p-3} (b_{l} \sqrt{1})^{2} + \dots + \binom{p}{p} (b_{l} \sqrt{1})^{p-1} \right]. \tag{7}$$

Since $a_l + b_l \sqrt{} = \varepsilon^l \equiv (-1)^l + l (-1)^{l-1} \sqrt{} \pmod{x}$, thus by $2 \nmid l$ we have

$$a_l \equiv -1 \pmod{x}, b_l \equiv l \pmod{x}. \tag{8}$$

If $p \nmid x$, by $\sqrt{}^2 \equiv 0 \pmod{x}$ and (8), we have

$$\left(x, \binom{p}{1} a_{l}^{p-1} + \binom{p}{3} a_{l}^{p-3} \left(b_{l} \sqrt{}\right)^{2} + \dots + \binom{p}{p} \left(b_{l} \sqrt{}\right)^{p-1} \right) = (x, p) = 1,$$

and thus, (7) gives $x^{\frac{m-1}{2}} \left| b_l$, and so $b_l \geqslant x^{\frac{m-1}{2}}$. However, $p \geqslant 3$ and $a_l > 1$, by (6) we have

$$2ax^{m}-1>\left(\begin{array}{c}p\\2\end{array}\right)a_{l}^{p-2}(b_{l}\sqrt{})^{2}>b_{l}^{2}\cdot 4abx(abx-1)>b_{l}^{2}\cdot 2ax-1,$$

i. e. $b_l^2 < x^{m-1}$, which is a contradiction since $b_l \ge x^{\frac{m-1}{2}}$.

If p|x, and let $x=p^{\beta} \cdot x_2$, $p \nmid x_2$, $\beta > 0$, then (6) and (7) imply p=3 as follows.

Suppose p>3, we have m>3 in (6). Thus for (7) take modulus p^2 :

$$0 \equiv pb_l \pmod{p^2},$$

and so $b_l \equiv 0 \pmod{p}$. Let $p^{\alpha} || b_l, \alpha \geqslant 1$. By p > 3, we have

$$\frac{1}{p}\left[\binom{p}{1}a_l^{p-1}+\cdots+\binom{p}{p}(b_l\sqrt{-1})^{p-1}\right]\equiv 1 \pmod{x}.$$

Thus, (7) gives $\frac{m-1}{2} \beta = \alpha + 1$, $x_2^{\frac{m-1}{2}} | b_l$, and so $b_l \ge p^{\alpha} \cdot x_2^{\frac{m-1}{2}}$. Now, by p > 3, $b_l \ge p^{\alpha} \cdot x_2^{\frac{m-1}{2}}$, from (6) we have

$$2ax^{m}-1>\left(\begin{array}{c}p\\4\end{array}\right)a_{l}^{p-4}b_{l}^{4}\sqrt{}^{-4}>4b_{l}^{4}\cdot a^{2}b^{2}x^{2}>4p^{4\alpha}\cdot x_{2}^{2(m-1)}\cdot a^{2}b^{2}x^{2}.$$

which is impossible since $4\alpha \geqslant 2\alpha + 2 = (m-1)\beta$ and $x = p^{\beta} \cdot x_2$.

Hence p=3. Since p is any prime divisor of n, thus $n=3^u$, $u \in \mathbb{N}$, and so (6) and (7) give respectively

$$2ax^{m}-1=a_{l}^{3}+3a_{l}(b_{l}\sqrt{})^{2}, (9)$$

$$x^{\frac{m-1}{2}}y = b_l(3a_l^2 + b_l^2 \cdot \sqrt{2}), \qquad (10)$$

where $l=3^{u-1}$ and 3|x. If u>1, then $3|b_l$ by (8). Thus $3\|(3a_l^2+b_l^2\cdot\sqrt{2})$. Let $3^{\beta}\|x$, $x=3^{\beta}\cdot x_3$, $\beta\geqslant 1$, $3\nmid x_3$. Then $x_3^{\frac{m-1}{2}}\left|b_l,3^{\beta\frac{m-1}{2}-1}\|b_l$, and so $b_l\geqslant 3^{\beta\frac{m-1}{2}-1}\cdot x_3^{\frac{m-1}{2}}=\frac{1}{3}x^{\frac{m-1}{2}}$. However, from (9) and $a_l\geqslant 2$, we have

$$2ax^{m}-1>3a_{l}b_{l}^{2}\cdot 4abx(abx-1)\geqslant 3a_{l}\cdot \frac{1}{9}x^{m}\cdot 4ab(abx-1)>2ax^{m},$$

which is impossible. Hence u=1, $l=3^{u-1}=1$, $a_1=2abx-1$, $b_1=1$, and by substituting $l_1=1$, $a_1=2abx-1$, $b_1=1$ into (9) and (10), we have

$$2ax^{m}-1=(2abx-1)^{3}+3(2abx-1)\cdot 4abx(abx-1), \tag{11}$$

$$x^{\frac{m-1}{2}}v = 3(2abx - 1)^2 + 4abx(abx - 1). \tag{12}$$

From (12), x|3. Hence by 3|x we have x=3, and by (11) it is verified that

$$2a \cdot 3^{m} = (6ab - 1)^{3} + 3(6ab - 1) \cdot 12ab(3ab - 1) + 1$$

$$= 2a \cdot 3^{2} (48a^{2}b^{3} - 24ab^{2} + 3b)$$

$$= 2a \cdot 3^{3} \cdot b(16a^{2}b^{2} - 8ab + 1),$$

i. e. $3^{m-3} = b(4ab-1)^2$. Let $b = 3^{s_1}$, $0 \le s_1 \le m-3$. Then

$$3^{m-3-s_1} = (4a \cdot 3^{s_1} - 1)^2. \tag{13}$$

Clearly, (13) implies $m-3-s_1=0$ or $s_1=0$, and (13) is impossible if $m-3-s_1=0$. Thus $s_1=0$, and (13) gives $4a-1=3\frac{m-3}{2}$, $m\equiv 1 \pmod{4}$ and b=1. By (12), we have

$$3^{\frac{m-1}{2}}y = 3(6a-1)^{2} + 12a(3a-1) = 3(48a^{2} - 16a + 1)$$

$$= 3[3(4a-1)^{2} + 2(4a-1)] = 3^{\frac{m-1}{2}} \left(3 \cdot 3^{\frac{m-3}{2}} + 2\right),$$

which gives $y=3^{\frac{m-1}{2}}+2$. By $m \equiv 1 \pmod{4}$, m>1, we have m=4s+1, $s \in \mathbb{N}$, and thus, $a=\frac{1}{4}(3^{2s-1}+1)$, b=1, x=3, $y=3^{2s}+2$. It is easy to prove that these are the solution of Eq. (1).

Proof of Theorem 2 repeats completely the process of the proof of Theorem 1.

REFERENCES

- [1] 曹珍富,丢番图方程引论,哈尔滨工业大学出版社,1989.
- [2] Ljunggren, W., Norsk. Mat. Tidsskr., 25(1943), 1:17—20.
- [3] 孙 琦等,数学进展,18(1989),3:373—374.