OPERATORS IN ® ARE M-HYPONORMAL

Received September 9, 1984.

Suppose that T is an operator in \mathfrak{B} , then T can determine a normal operator

$$C = 1/2[T + T^* + i\sqrt{4T^*T - (T + T^*)^2}].$$
 (1)

Lemma. Let T be an operator in B on a Hilbert space \mathscr{U} . Suppose that C is defined as in Eq. (1) and λ is a complex scalar. Then in case $\text{Im}\lambda > 0$, for all $x \in \mathscr{U}$, we have

$$||(T-\lambda)(C^*-\lambda)^{-1}x|| \leq ||x||.$$

In case $\text{Im}\lambda < 0$, for all $x \in \mathcal{U}$, we have

$$\|(T-\lambda)(C-\lambda)^{-1}x\| \leqslant \|x\|.$$

Theorem. Let T be an operator in B on \mathscr{X} , then for all $\lambda \in C$ and all $x \in \mathscr{X}$, we have

$$\|(T-\lambda)^*x\| \leq 3\|(T-\lambda)x\|, \tag{2}$$

that is, T is M-hyponormal.

Corollary 1 (Putnam-Fuglede Type Theorem). Suppose that T and S^* are operators in B. If there is an operator W such that TWS = W, then $\mathcal{N}(W)^{\perp}$ and $Cl\mathcal{R}(W)$ reduce S and T respectively, and $S|\mathcal{N}(W)^{\perp}$, $T|\mathcal{CLR}(W)$ are normal. Consequently, $T^*WS^* = W$.

Corollary 2. If T is an operator in \mathfrak{B} , and T^* is a dominant operator, then T must be normal.

(Institute of Mathematics, Fudan University, Shanghai)

 ω

SOME QUESTIONS ON INCRE-MENTS OF A WIENER PROCESS

Received September 26, 1984.

Hanson and Russo considered some forms of increments of a Wiener process (Ann. Probability, 11 (1983), 609-623). And they proposed five questions. Soon they answered the first question by themselves. We try to answer the rest. Let $\{W(t), t \ge 0\}$ be a standard Wiener process and

$$d(T,t) = \{2t[\log(T/t) + \log\log t]\}^{1/2}.$$

The following theorem answers Questions 2-4.

Theorem 1.

limsup sup sup
$$|W(T) - W(T - s)|/$$
 $T \to \infty$ 0
 $d(T, t) = 1$ a.s.

Combining this theorem with theorem 2.2 (Ann. Probability, 11 (1983), 1009-1015), we can

sharpen the latter.

Theorem 2. Suppose that a_T is measurable and that $0 < a_T \le T$ for all T > 0. Then the set of limit points $(as T \to \infty)$ of

$$\frac{W(T) - W(T - a_T)}{\{2a_T[\log(T/a_T) + \log\log T]\}^{1/2}}$$

is [-1,1] with probability one.

Theorem 3 partially answers Question 5.

Theorem 3. Under Conditions

(i) $a_T \rightarrow \infty$ continuously as $T \rightarrow \infty$.

(ii)
$$\lim \frac{\log T/a_T}{\log \log a_T} = \infty$$
,

we have

$$\lim_{T\to\infty} \sup_{0\leqslant t\leqslant T-a_T} |W(t+a_T)-W(t)|/$$

$$d(t+a_T,a_T)=1 a.s.$$

 $\lim_{T\to\infty} \sup_{0\leqslant t\leqslant T-a_T} \sup_{0\leqslant t\leqslant a_T} |W(t+s)-W(t)|/$

$$d(t + a_T, a_T) = 1 \qquad a.s.$$

LIN ZHENGYAN (林正炎) (Hangzhou University)