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Abstract This paper investigates cluster synchronization of a class of multi-agent systems with a directed

bipartite graph topology, and presents a number of new results by using the neighbor’s rules for the following

two cases: I) there is competition among the agents of different clusters, and II) there are both competition and

cooperation among the agents. Firstly, for case I), a linear control protocol is designed for cluster synchronization

of multi-agent systems, and a method is presented to determine the final state with the initial conditions based on

state-space decomposition. Secondly, we study case II), and design a control protocol based on the information

of neighbors and that of two-hop neighbors (that is, neighbors’ neighbors). Finally, two examples are studied by

using our presented results. The study of illustrative examples with simulations shows that our results as well

as designed control protocols work very well in studying the cluster synchronization of this class of multi-agent

systems.
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1 Introduction

Recently, multi-agent systems have attracted a good deal of attention in the field of control and automa-

tion, partly because of their broad applications in many areas such as distributed formation control [1–4],

flocking [5–9], and congestion control in communication networks [10,11]. The cooperation among agents

plays an important role for the design of control protocols in many fields such as unmanned air vehicles,

computer network [12–15] and distributed data fusion in sensor networks [16–18].

However, there exists another case completely different from the cooperation, i.e., the relationship

among agents is not cooperation but competition with each other, or partly cooperation with some

agents and partly competition against some other agents. This relationship was introduced, but not

discussed deeply, in [19], where the authors believed that how to introduce competition to distributed

coordination to represent more realistic scenarios is both interesting and important. Actually, this class of

problems with competition exists extensively in reality such as the pursuer-invader problem, competition

among several species in a specified area, etc. One of this class of problems is that agents in a coupled

multi-agent system can realize cluster synchronization; that is, the system is required to split into several
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clusters so that the agents in the same cluster can synchronize, while difference of interest quantities

exists between each couple of different clusters [20]. To the authors’ best knowledge, most researches in

the literature are only based on local cooperation. Therefore, it is very meaningful and challenging for

us to study this class of problems with competition relationship.

In this paper, we investigate cluster synchronization of a class of multi-agent systems with a directed

bipartite graph topology, and present a number of new results by using the neighbor’s rules for the

following two cases: I) there is competition among the agents of different clusters, and II) there are both

competition and cooperation among the agents. The main contributions of this paper are as follows: (i)

a new method is presented to describe the competition among agents in a multi-agent network; (ii) based

on the competition among agents, two kinds of control protocols are designed for a class of multi-agent

systems with and without cooperation among the agents, respectively; (iii) a new method is obtained to

determine the final states of the systems with the initial conditions by decomposition of the state space.

The remainder of the paper is organized as follows. Section 2 is the problem formulation and prelim-

inaries. Section 3 is the main results of the paper. In this section, some properties on bipartite graphs

are provided first, and two control protocols are designed. In Section 4, we give two illustrative examples

to support our new results followed by the conclusion in Section 5.

2 Problem statement and preliminaries

In this section, we give the problem statement first, and then provide some preliminaries on algebraic

graphs, which will be used in the sequel.

Consider the following system with n agents:{
ẋi = ui,

xi(t0) = x
(0)
i , i = 1, 2, . . . , n,

(1)

where xi ∈ R is the state of agent i, ui ∈ R is the control input of agent i, and xi(t0) = x
(0)
i is the initial

condition of agent i, i = 1, 2, . . . , n.

The objective of this paper is to design control protocols such that system (1) can realize cluster

synchronization in the following two cases, respectively:

Case I: The agents evolve on a bipartite graph only with a competitive relationship.

Case II: The agents evolve on a bipartite graph with both competition and cooperation among them.

Remark 1. It is noted that a bipartite graph is a special topology structure. In this paper, for ease of

expression and analysis, we only consider the bipartite graph. In fact, for an arbitrary topology, cluster

synchronization can hardly be achieved unless some strong additional conditions are added.

In the following, we recall some fundamental knowledge on algebraic graph theory and matrix theory,

which will be used in the development of this research.

Let G = {V , E ,A} be a directed graph of nth order with the set of nodes V := {v1, v2, . . . , vn}, the set

of edges (i.e., ordered pairs of the agents) E ⊆ V × V , and A : E → R
+ assigning a (positive) weight to

each edge such that if eij := (vi, vj) ∈ E ,A(eij) = aij . The matrix A = [aij ]n×n is named the adjacency

matrix of the graph G. For any i, j ∈ V , aij > 0 if and only if j ∈ Ni, where Ni = {j | eij = (vi, vj) ∈ E}.
For notational convenience, we just consider the case of simple graphs in this study, that is, eii /∈ E , i =
1, 2, . . . , n. The matrix D = [dij ] ∈ R

n×n is the valency matrix of the topology G, and dij is defined as

dij =

⎧⎪⎨
⎪⎩

∑
k∈Ni(t)

aik, j = i,

0, j �= i.

(2)

A directed tree is such a directed graph whose every vertex except the root, which has only children but

no parent, has exactly one parent. A spanning tree of a digraph is a directed tree that contains all the

vertices of the digraph [21]. The graph G is called a bipartite graph, if its vertices can be divided into

two disjoint sets U and V such that every edge connects a vertex in U to one in V (See Figure 1).
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Figure 1 A bipartite digraph with n nodes.

We say that {X1, X2, . . . , Xk}, k > 1, is a partition of set X = {x1, x2, . . . , xn} if Xi �= ∅, Xi

⋂
Xj = ∅,

and
⋃k

i=1 Xi = X . Thus, for any xi ∈ X , there exists a unique subset Xj in the partition such that

xi ∈ Xj . Furthermore, for xi ∈ X , we use î to denote the index of the subset in which xi lies (that is,

xi ∈ Xî), 1 � î � k. Obviously, if xi and xj are in the same cluster, then î = ĵ.

Consider system (1), and assume that {X1, X2, . . . , Xk} is a partition of all the agents. The following

definition is cited from [20].

Definition 1. Multi-agent system (1) is said to realize k-cluster synchronization with the partition

{X1, X2, . . . , Xk} if limt→∞ ‖xi(t)− xj(t)‖ = 0 for î = ĵ and limt→∞ sup ‖xi(t)− xj(t)‖ > 0 for î �= ĵ.

Remark 2 (See [20]). A similar concept “group consensus” of multi-agent systems was defined in [22].

The group consensus is weaker than the cluster synchronization defined here, because we require addi-

tionally that the differences between different clusters do not go to 0 as t → ∞.

3 Main results

This section studies cluster synchronization of multi-agent system (1) with a directed bipartite graph

topology (See Figure 1), and presents a number of new results for the following two cases: I) the agents

compete against their adjacent agents; II) the agents compete against their neighbors and cooperate with

two-hop neighbors at the same time. Meanwhile, we give a method to determine the final state with the

initial condition by decomposing state space.

3.1 The case that agents compete against their neighbors

In this subsection, we consider the case in which there is only competition among the agents.

Consider system (1), and assume that its information topology is a directed bipartite graph which has

a spanning tree, denoted by G, and the adjacency matrix of G is A = [aij ]n×n.

Motivated by competition models of Ecology systems [23,24] and cooperation model [1], we can use

(xi − xj) to express the cooperation relationship between agents i and j, and (xi + xj) to describe the

competitive exclusion principle. Based on this, we design a linear cluster synchronization protocol for

the case where there is only competition among the agents as follows:

ui = −
∑
j∈Ni

aij(xi + xj), (3)

where aij is the weight between agents i and j.

Substituting (3) into system (1) yields

ẋi = −
∑
j∈Ni

aij(xi + xj), i = 1, 2, . . . , n, (4)

which can be rewritten as

ẋ = −(D +A)x, (5)

where x = [x1, x2, . . . , xn]
T ∈ R

n, and D is the valency matrix of the graph G.
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To study the cluster synchronization of system (5), we now present a lemma on the properties of

bipartite graphs.

Lemma 1. Assume that G is a bipartite digraph with n nodes {v1, . . . , vn} and has a spanning tree.

Then, rank(D +A) = n− 1, and each non-zero eigenvalue λ of matrix D +A has a positive real part,

where D is the valency matrix of G, and A = [aij ]n×n is its adjacency matrix.

Proof. For the detailed proof, please refer to Appendix.

Now, we consider cluster synchronization of system (5), and present the main result of this part.

Theorem 1. Consider the multi-agent system (1) with the bipartite digraph G. Then, the system is

stable and all the agents can realize cluster synchronization under control protocol (3).

Proof. Consider system(1). Since G is a bipartite digraph and has a spanning tree, according to Lemma 1,

rank(D +A) = n− 1, and Re(D +A) � 0.

Denote by λ1, λ2, . . . , λs and ξ1, ξ2, . . . , ξn the different eigenvalues and n linearly independent gener-

alized eigenvectors of matrix D+A, respectively. According to Lemma 1, the zero eigenvalue of D+A

is simple. Without loss of generality, let λ1 = 0 and

ξ1 = [1, . . . , 1︸ ︷︷ ︸
r

,−1, . . . ,−1︸ ︷︷ ︸
n−r

]T (6)

be the corresponding eigenvector. We construct matrix T := [ξ1, ξ2, . . . , ξn], and take z = T−1x as a

coordinate transformation. Then, under the new coordinate transformation, system (5) can be changed

into

ż = −Jz, (7)

where z = [z1, z2, . . . , zn]
T ∈ R

n, and J is the Jordan canonical form of D +A.

Define ze = [z2, . . . , zn]
T ∈ R

n−1. Then z = [z1, z
T
e ]

T, with which closed-loop dynamics (7) can be

rewritten as

ż1 = 0, (8)

że = −Jeze, (9)

where Je = diag{J2,J3, . . . ,Js} ∈ R
(n−1)×(n−1), Ji is the Jordan canonical block with respect to the

eigenvalue λi.

Consider subsystem (9). Since Re(λi) > 0 for all i � 2, it is easy to see that ze → 0. On the other

hand, ż1(t) ≡ 0 implies that z1(t) ≡ z1(0). Thus, z(t) → [z1(0), 0, . . . , 0]
T as t → ∞. With this, noticing

x = Tz and the construction of T , we have

x(t) → z1(0)ξ1 (10)

as t → ∞, where z(0) = [z1(0), z2(0), . . . , zn(0)]
T = T−1x(0), x(0) is the initial condition of system (1).

Noticing ξ1 is given in (6), we see that system (5) can realize the cluster synchronization, and the final

state is z1(0)ξ1.

Remark 3. The proof of Theorem 1 itself provides a method to determine the final state when the

system reaches cluster synchronization. The method contains the following steps:

1) Calculate the eigenvalues and linearly independent generalized eigenvectors of (D+A): {λ1, λ2, . . . ,

λs} and {ξ1, ξ2, . . . , ξn}, where λ1 = 0, ξ1 is given in (6);

2) Construct matrix T := [ξ1, ξ2, . . . , ξn], and take z = T−1x;

3) Let x(0) = x(0) = [x1(0), . . . , xn(0)]
T, and calculate z(0) = T−1x(0) = [z1(0), z2(0), . . . , zn(0)]

T.

Then z1(0)ξ1 is the final state.

Remark 4. Theorem 1 is also applicable to m-dimensional systems. In fact, if x ∈ R
m, then system (5)

will become ẋ = −[(D + A) ⊗ Im]x. In this case, we can choose z = (T−1 ⊗ Im)x to prove the m-

dimensional version of Theorem 1.
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3.2 The case that there exist competition and cooperation among agents

In this part, we consider the case where there exist both competition and cooperation among the agents,

i.e., each agent competes with its neighbors and cooperates with its two-hop neighbors at the same time.

Consider system (1), and assume that its information topology is a directed bipartite graph which has

a spanning tree, denoted by G, and the adjacency matrix of G is A = [aij ]n×n. Motivated by [1,23,24],

we design a control protocol as follows:

ui = −
∑
j∈Ni

aij

[
(xi + xj) +

∑
k∈Nj

ajk(xi − xk)
]
, i = 1, 2, . . . , n, (11)

where the term (xi+xj) stands for the competition between agents i and j, and the term
∑

k∈Nj
ajk(xi−

xk) describes the cooperation of agent i with its two-hop neighbors.

Substituting (11) into system (1) yields

ẋi = −
∑
j∈Ni

aij

[
(xj + xi) +

∑
k∈Nj

ajk(xi − xk)
]

= −
∑
j∈Ni

aij(xj + xi)−
∑
j∈Ni

aij
∑
k∈Nj

ajk(xi − xk)

= −
∑
j∈Ni

aij(xj + xi)−
∑
k∈Nj

∑
j∈Ni

aijajk(xi − xk), i = 1, 2, . . . , n. (12)

Let A2 := [ãij ]n×n, and H = diag[h1, h2, . . . , hn]n×n, where hi =
∑n

j=1 ãij . Then, system (12) can be

rewritten as

ẋ = −(D +A)x− (H −A2)x = −(D +A+H −A2)x, (13)

where x = [x1, x2, . . . , xn]
T.

To study cluster synchronization of system (13), we give some lemmas first.

Lemma 2. Assume that G is a bipartite graph with n nodes {v1, . . . , vn}, and A is its adjacency matrix.

Then the matrix A2 is quasi-diagonal under a suitable labeling of nodes.

Proof. Since G is a bipartite graph, the matrix A can be expressed as

A :=

[
0r×r A1

A2 0(n−r)×(n−r)

]

under a suitable labeling of nodes. Thus, the matrix

A2 =

[
A1A2 0

0 A2A1

]
,

which implies that the matrix A2 is quasi-diagonal under a proper labeling of nodes.

For convenience, in system (13) we denote the matrix D +A+H −A2 := B = [bij ]n×n.

Lemma 3. Assume that G is a bipartite digraph with n nodes {v1, . . . , vn}. Then, the matrix B defined

as above has the following properties: a) bii =
∑

j �=i |bij |; b)
∑r

j=1 bij =
∑n

j=r+1 bij ; c) Furthermore, if

G has a spanning tree, then rank(B) = n− 1, and Re(λ(B)) � 0.

Proof. For the detailed proof, please refer to Appendix.

Now, we are ready to study cluster synchronization of system (13). Based on Lemma 1, Lemma 3 and

Theorem 1, we have the following theorem.

Theorem 2. Consider multi-agent system (1) with the bipartite graph G. Then, all the agents

can realize cluster synchronization under control protocol (11), and the final states are determined by

the initial conditions, that is, limt→∞ x(t) = z1(0)ξ1, where z1(0) and ξ1 are the same as those in

Theorem 1.
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3 4

Figure 2 A bipartite graph.

Proof. Notice system (1) is changed into (13) under control protocol (11). Let B := D+A+H −A2.

Then system (13) is expressed as ẋ = −Bx. From Lemma 3, rank(B) = n− 1 and Re(λ(B)) � 0. The

next of the proof is similar to that of Theorem 2, and thus is omitted.

Remark 5. The cluster synchronization problem was first studied in [25], where several interesting

results on the local synchronization of the reputation degrees were presented for Virtual Organizations.

Compared with [25], our results are global ones, that is, all the agents reach cluster synchronization even-

tually, while the results of [25] can only guarantee some of the agents/entities to realize synchronization.

Besides, this paper adopts a kind of control protocol of not only cooperation but also competition among

the agents to realize cluster synchronization, and the used technique is different from that of [25].

4 Illustrative examples

In this section, we give two illustrative examples to show how to use the results obtained in this study in

designing control protocols for cluster synchronization of multi-agent systems.

Example 1. Consider the following 4-agent system:

ẋi = ui, i = 1, 2, 3, 4, (14)

whose topology is shown as Figure 2 and initial condition is given as x(0) = [x1(0), x2(0), x3(0), x4(0)]
T =

[8,−3, 6,−2]T.

Now, we apply Theorem 1 to design a control protocol for cluster synchronization of the 4 agents only

by using the competition among them. From Theorem 1, the desired protocol can be designed as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 = −2(x1 + x3)− (x1 + x4) = −3x1 − 2x3 − x4,

u2 = −(x2 + x3)− (x2 + x4) = −2x2 − x3 − x4,

u3 = −2(x3 + x2)− (x3 + x1) = −x1 − 2x2 − 3x3,

u4 = −(x4 + x1) = −x1 − x4.

(15)

On the other hand, we readily have

D +A =

⎛
⎜⎜⎜⎜⎝

3 0 2 1

0 2 1 1

1 2 3 0

1 0 0 1

⎞
⎟⎟⎟⎟⎠ . (16)

It is easy to check that the eigenvalues of the matrix D + A are 0, 2, 2, 5 and the corresponding

eigenvectors are ξ1 = [1, 1,−1,−1]T, ξ2 = [0, 1,−1, 1]T, ξ3 = [1, 0,−1, 1]T, ξ4 = [8, 3, 7, 2]T. According

to Theorem 1 and Remark 3, multi-agent system (14) can realize cluster synchronization under the

protocol (15) and the final states are

Row1(T
−1x(0))ξ1 = [0.6, 0.6,−0.6,−0.6]T,

where T = [ξ1, ξ2, ξ3, ξ4], and Row1(T
−1x(0)) stands for the first component of T−1x(0).
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Figure 3 The state responses in Example 1. Figure 4 The controls used in Example 1.

To show the correctness of the above conclusion, we carry out some numerical simulations. The

simulation results are shown in Figures 3 and 4, which are the swing cures of the states and control

signals, respectively.

It can be seen from Figures 3 and 4 that the states of the 4 agents eventually realize cluster synchro-

nization under the protocol (15) and the final states are the same as the theoretical analysis. Simulations

show that our method is very effective in analyzing cluster synchronization of multi-agent system (14).

Example 2. Consider the multi-agent system (14), whose topology is shown as Figure 2 and initial

condition is given as x(0) = [8,−3, 6,−2]T. Assume that there are both competition and cooperation

among the agents.

Now, we apply Theorem 2 to design a control protocol for cluster synchronization of the 4 agents.

From Theorem 2, the desired protocol can be designed as⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u1 = −2(x1 + x3)− (x1 + x4)− (x1 − x2) = −4x1 + x2 − 2x3 − x4,

u2 = −(x2 + x3)− (x2 + x4)− (x2 − x1) = x1 − 3x2 − x3 − x4,

u3 = −2(x3 + x2)− (x3 + x1)− 2(x3 − x4) = −x1 − 2x2 − 5x3 + 2x4,

u4 = −(x4 + x1)− (x4 − x3) = −x1 + x3 − 2x4,

(17)

which implies that the matrix B (see Theorem 2) is given by

B =

⎛
⎜⎜⎜⎜⎝

4 − 1 2 1

−1 3 1 1

1 2 5 − 2

1 0 − 1 2

⎞
⎟⎟⎟⎟⎠ . (18)

It is checked that the eigenvalues of B are 0, 3, 5, 6 and the corresponding eigenvectors are ξ1 = [1, 1,

−1,−1]T, ξ2 = [2, 3,−1, 3]T, ξ3 = [4,−1, 1, 1]T, ξ4 = [1, 0, 1, 0]T. According to Theorem 2, the multi-

agent system (14) can realize cluster synchronization under the protocol (17) and the final states are

Row1(T
−1x(0))ξ1 = [0.6, 0.6,−0.6,−0.6]T,

where T = [ξ1, ξ2, ξ3, ξ4], and Row1(T
−1x(0)) stands for the first component of T−1x(0).

To show the correctness of the above conclusion, we carry out some numerical simulations. The

simulation results are shown in Figures 5 and 6, which are the swing cures of states and control signals,

respectively.

It can be observed from Figure 5 and 6 that the states of the 4 agents eventually realize cluster synchro-

nization under the protocol (17), and the final states coincide with the theoretical analysis. Moreover,
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Figure 5 The state responses in Example 2. Figure 6 The controls used in Example 2.

comparing Figures 5 and 6 with Figures 3 and 4, we observe that the 4 agents reach cluster synchronization

much faster than in Example 1. Simulations show that the protocol (17) is very effective in analyzing

the cluster synchronization of the multi-agent system.

Remark 6. From the study of these two examples, we know that protocol (11) can make agents reach

cluster synchronization faster than protocol (3). Protocol (3) needs less information of agents but has a

relatively slow convergence, while protocol (11) has a faster convergence but needs more information of

agents.

5 Conclusion

In this paper, we have investigated cluster synchronization of a class of multi-agent systems with a directed

bipartite graph topology, and presented a number of new results by using the neighbor’s rules. For the

case where there is only competition among agents of different clusters, a linear control protocol was

designed, and a new method was presented to determine the final state with the initial conditions based

on state-space decomposition. When there are both competition and cooperation among the agents, a

control protocol was designed based on the information of neighbors and that of two-hop neighbors. It has

been shown that such a protocol could make the multi-agent system achieve the cluster synchronization

faster. The study of illustrative examples with simulations has shown that our results as well as designed

control protocols work very well in studying cluster synchronization of this class of multi-agent systems.

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61074068, 61174036,

61034007), Research Fund for the Taishan Scholar Project of Shandong Province of China, Natural Science

Foundation of Shandong Province (Grant No. ZR2010FM013).

References

1 Fax J A, Murray R M. Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control,

2004, 49: 1465–1476

2 Hao H, Barooah P, Mahta P G. Stability margin scaling laws for distributed formation control as a function of network

structure. IEEE Trans Autom Control, 2011, 56: 923–929

3 Ni W, Cheng D Z. Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst

Control Lett, 2010, 59: 209–217

4 Wang Y, Zhang C, Liu Z. A matrix approach to graph maximum stable set and coloring problems with application to

multi-agent systems. Automatica, 2012, 48: 1227–1236



Wang Q, et al. Sci China Inf Sci January 2014 Vol. 57 012203:9

5 Hong Y G, Hu J P, Gao L X. Tracking control for multi-agent consensus with an active leader and variable topology.

Automatica, 2006, 42: 1177–1182

6 Tanner H G, Jadbabaie A, Pappas G J. Flocking in fixed and switching networks. IEEE Trans Autom Control, 2007,

52: 863–868

7 Su H S, Wang X F, Lin Z L. Flocking of multi-agents with a virtual leader. IEEE Trans Autom Control, 2009, 54:

293–307

8 Saber R O. Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans Autom Control, 2006, 51:

401–420

9 Lee D, Spong M W. Stable flocking of multiple inertial agents on balanced graphs. IEEE Trans Autom Control, 2007,

52: 1469–1475

10 Li T, Zhang J F. Asymptotically optimal decentralize control for large population stochastic multi-agent systems.

IEEE Trans Autom Control, 2008, 53: 1643–1660

11 Zhang Y, Tian Y P. Consentability and protocol design of multi-agent systems with stochastic switching topology.

Automatica, 2009, 45: 1195–1201

12 Zhang Y, Tian Y P. Consensus of data-sampled multi-agent systems with random communication delay and packet

loss. IEEE Trans Autom Control, 2010, 55: 939–943

13 Kale N V, Salapaka S M. Maximum entropy principle based algorithm for simultaneous resource location and multi-hop

routing in multi-agent networks. IEEE Trans Mob Comput, 2011, 1–12

14 Sun Y G, Wang L. Consensus of multi-agent systems in directed networks with nonuniform time-varying delays. IEEE

Trans Autom Control, 2009, 54: 1607–1613

15 Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changing interaction topologies.

IEEE Trans Autom Control, 2005, 50: 655–661

16 Saber R O. Distributed Kalman filter with embedded consensus filter. In: IEEE Conference on Decision and Control,

2005 and 2005 European Control Conference (CDC-ECC’05), Seville, 2005. 8179–8184

17 Yang T, Sun Y F. The reconstruction of gene regulatory network based on multi-agent systems by fusing multiple data

sources. In: IEEE International Conference on Computer Science and Automation Engineering (CSAE), Shanghai,

2011. 126–130

18 Saber R O, Shamma J S. Consensus filters for sensor networks and distributed sensor fusion. In: IEEE Conference on

Decision and Control, 2005 and 2005 European Control Conference (CDC-ECC’05), Seville, 2005. 6698–6703

19 Ren W, Cao Y C. Distributed Coordination of Multi-agent Networks. London: Springer-Verlag, 2010. 36–41

20 Xia W G, Cao M. Clustering in diffusively coupled networks. Automatica, 2011, 47: 2395–2405

21 Ma C Q, Zhang J F. Necessary and sufficient conditions for consensusability of linear multi-agent systems. IEEE Trans

Autom Control, 2010, 55: 1263–1268

22 Yu J Y, Wang L. Group consensus in multi-agent systems with switching topologies and communication delays. Syst

Control Lett, 2010, 59: 340–348

23 Xiao Y N, Chen L S. Stabilizing effect of cannibalism on structured competitive system (in Chinese). Acta Math Sci,

2002, 32: 210–216

24 Mao K, Li R H. The stability analysis of population competition model (in Chinese). J Biomath, 1999, 14: 288–292

25 Yu W W, Cao J D, Chen G R, et al. Local synchronization of a complex network model. IEEE Trans Syst Man

Cybern Part B-Cybern, 2009, 39: 230–241

Appendix The proofs of Lemmas 1 and 3

(1) The proof of Lemma 1.

Since G is a bipartite graph and has a spanning tree, we assume that {U, V } is a partition of the nodes, where

U = {v1, . . . , vr} and V = {vr+1, . . . , vn}. Then, the adjacency matrix A can be expressed as

A :=

[
0r×r A1

A2 0(n−r)×(n−r)

]
,

and the last column of matrix A1 is not equal to zero. Without loss of generality, we denote the vertex vn by the

root vertex.

Letting

ξ1 = [1, . . . , 1︸ ︷︷ ︸
r

,−1, . . . ,−1︸ ︷︷ ︸
n−r

]T,

according to the definitions of matrices D and A, we have (D +A)ξ1 = 0.
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Next, we prove that there exists an (n−1)th order block matrix M of matrix D+A such that rank(M) = n−1.

Let

M :=

[
D

(1)
r×r Ã1

Ã2 D
(2)

(n−r−1)×(n−r−1)

]

be the (n−1)th order principal minor matrix of matrix D+A, where Ã1 is a matrix obtained from A1 by removing

the last column, Ã2 is obtained from A2 by removing the last row, and D(1) and D(2) are the corresponding

parts in D. Since G has a spanning tree, and vn is the root node, there is not a zero row in the matrix M ; thus,

for any 1 � i � n − 1, di +
∑n−1

j=1 aij �= 0. On the other hand, since G is a bipartite graph, there exists at least

1 � i � r such that di >
∑n−1

j=r+1 aij , and di =
∑r

j=1 aij holds for r + 1 � i � n− 1. Let λ be any eigenvalue of

M , and y = [y1, . . . , yn−1]
T be the corresponding eigenvector, that is, My = λy. Letting |yr0 | = max

1�i�n−1
{|yi|},

we now prove λ �= 0 by the following three cases:

Case 1: |y1| = |y2| = · · · = |yn−1|. In this case, λ �= 0. In fact, if λ = 0, according the definitions of D + A

and M , for r + 1 � r0 � n− 1, My = λy = 0, which implies that

y = ±[1, . . . , 1︸ ︷︷ ︸
r

,−1, . . . ,−1︸ ︷︷ ︸
n−1−r

]T.

However, from the analysis as above, there exists at least 1 � r0 � r such that dr0 >
∑n−1

j=r+1 ar0j , which implies

that My �= 0, and this is a contradiction. Thus, λ �= 0.

Case 2: 1 � r0 � r. In this case, it is easy to obtain

(λ− dr0)yr0 =

n−1∑
j=r+1

ar0jyj . (A1)

Since dr0 +
∑n−1

j=1 ar0j �= 0, if
∑n−1

j=1 ar0j =
∑n−1

j=r+1 ar0j = 0, then λ = dr0 �= 0; if not, (A1) implies that

|λ− dr0 ||yr0 | =
∣∣∣∣

n−1∑
j=r+1

ar0jyj

∣∣∣∣ �
∣∣∣∣

n−1∑
j=r+1

ar0j

∣∣∣∣|yj | <
∣∣∣∣

n−1∑
j=r+1

ar0j

∣∣∣∣|yr0 | � dr0 |yr0 |.

Thus, we have |λ− dr0 | < dr0 , which implies that λ �= 0.

Case 3: r + 1 � r0 � n− 1. In this case, we have

(λ− dr0)yr0 =

r∑
j=1

ar0jyj .

From Case 2, it is easy to know that if
∑r

j=1 ar0j = 0, then λ = dr0 �= 0; if not,

|λ − dr0 ||yr0 | =
∣∣∣∣

r∑
j=1

ar0jyj

∣∣∣∣ �
∣∣∣∣

r∑
j=1

ar0j

∣∣∣∣|yj | <
∣∣∣∣

r∑
j=1

ar0j

∣∣∣∣|yr0 | = dr0 |yr0 |,

which implies that λ �= 0.

Summing up these three cases, we have rank(M) = n − 1. Therefore, we have rank(D + A) = n − 1. From

Gerschgorin theorem1) , each non-zero eigenvalue of matrix D +A has a positive real part.

(2) The proof of Lemma 3.

a) Since G is a bipartite graph, without loss of generality, we assume that {U, V } is a partition of the nodes,

where U = {v1, . . . , vr} and V = {vr+1, . . . , vn}. According to Lemma 1, Lemma 2 and the definitions of D and

H, it is easy to know that

B =

[
D1 +H1 −A1A2 A1

A2 D2 +H2 −A2A1

]
:=

[
B

(1)
r×r A1

A2 B
(2)
(n−r)×(n−r)

]
,

where D = diag[D1,D2], H = diag[H1,H2], B
(1) = D1 +H1 −A1A2 and B(2) = D2 +H2 −A2A1. Then,

we consider the following two cases:

Case A1: 1 � i � r. In this case, bii = dii + hii − ãii=
∑r

j �=i ãij +
∑n

j=r+1 aij =
∑

j �=i |bij |.
Case A2: r + 1 � i � n. In this case, bii =

∑r
j=1 aij +

∑n
j�r+1,j �=i ãij =

∑
j �=i |bij |.

1) Horn R, Johnson C. Matrix Analysis. New York: Cambridge University Press, 1985
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Summing up these two cases, we have bii =
∑

j �=i |bij |.
b) Based on the definition of matrix B and a), we consider the following cases:

Case B1: 1 � i � r. In this case, bii =
∑r

j �=i ãij +
∑n

j=r+1 aij = −∑r
j �=i bij +

∑n
j=r+1 bij .

Case B2: r + 1 � i � n. In this case, bii =
∑r

j=1 aij +
∑n

j=r+1,j �=i ãij =
∑r

j=1 bij −
∑n

j=r+1,j �=i bij .

Summing up these two cases, we have
∑r

j=1 bij =
∑n

j=r+1 bij .

c) From b), it can be seen that Bξ1 = 0, where ξ1 is given in (6). Thus, rank(B) � n− 1. Now, we prove that

there exists an (n− 1)-th order block matrix N of matrix B such that rank(N ) = n− 1.

Since G has a spanning tree, without loss of generality, we let the node vn be the root node, and choose N as

the (n− 1)-th order principal minor matrix of matrix B. Then N is expressed as

N :=

[
B

(1)
r×r Ã1

Ã2 B̃
(2)
(n−r−1)×(n−r−1)

]
,

where Ã1, Ã2 are the same as in Lemma 1, and B̃(2) is the corresponding part in B(2). By Lemma 1, we have∑n−1
j=1 bij �= 0, for any 1 � i � n− 1. On the other hand, according to the properties of matrix B, there at least

exists 1 � i � n− 1 such that bii >
∑n−1

j �=i |bij |.
Let μ be any eigenvalue of the matrix N , and let y = [y1, . . . , yn−1]

T be the corresponding eigenvector, that

is, Ny = μy. Letting |yr0 | = max
1�i�n−1

{|yi|}, we now prove μ �= 0 by the following two cases:

Case C1: |y1| = |y2| = · · · = |yn−1|. In this case, according to the analysis above, for the matrix N , there at

least exists 1 � i � n− 1 such that bii >
∑n−1

j �=i |bij |, that is, bii|yi| > ∑n−1
j �=i |bij ||yj |, which is a contradiction with

Ny = 0. Thus, μ �= 0.

Case C2: There exist 1 � i, j � n− 1 such that |yi| �= |yj |. In this case, it is easy to obtain

(μ− br0r0)yr0 =

n−1∑
j �=r0

br0jyj . (A2)

Since
∑n−1

j=1 bij �= 0, if
∑n−1

j �=r0
br0j = 0, μ = br0r0 > 0; if not, (A2) implies that

|μ− br0r0 ||yr0 | =
∣∣∣∣
n−1∑
j �=r0

br0jyj

∣∣∣∣ �
∣∣∣∣
n−1∑
j �=r0

br0j

∣∣∣∣|yj | <
∣∣∣∣
n−1∑
j �=r0

br0j

∣∣∣∣|yr0 | � br0r0 |yr0 |.

Then we have |μ− br0r0 | < br0r0 , which implies that μ �= 0.

Summing up these two cases, we have rank(N ) = n− 1. Therefore, we have rank(B) = n− 1. On the other

hand, from Gerschgorin theorem, each non-zero eigenvalue of matrix B has a positive real part.


