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Agroecosystems have a critical role in the terrestrial carbon cycling process. Soil organic carbon (SOC) in cropland is of great 
importance for mitigating atmospheric carbon dioxide increases and for global food security. With an understanding of soil 
carbon saturation, we analyzed the datasets from 95 global long-term agricultural experiments distributed across a vast area 
spanning wide ranges of temperate, subtropical and tropical climates. We then developed a statistical model for estimating 
SOC sequestration potential in cropland. The model is driven by air temperature, precipitation, soil clay content and pH, and 
explains 58% of the variation in the observed soil carbon saturation (n=76). Model validation using independent data observed 
in China yielded a correlation coefficient R2 of 0.74 (n=19, P<0.001). Model sensitivity analysis suggested that soils with high 
clay content and low pH in the cold, humid regions possess a larger carbon sequestration potential than other soils. As a case 
study, we estimated the SOC sequestration potential by applying the model in Henan Province. Model estimations suggested 
that carbon (C) density at the saturation state would reach an average of 32 t C ha−1 in the top 0–20 cm soil depth. Using SOC 
density in the 1990s as a reference, cropland soils in Henan Province are expected to sequester an additional 100 Tg C in the 
future. 
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Soil organic carbon (SOC) is a large proportion of the car-
bon pool that is part of the global carbon cycle [1]. It has an 
important role worldwide in mitigating climate change and 
guaranteeing food security [2]. The SOC level is a dynamic 
balance between soil carbon (C) inputs and outputs. Soils 
gain C from photosynthetic carbon input while losing C via 
soil respiration, organic matter erosion and leaching [3]. 
Globally, agricultural soils hold a remarkable potential for 
sequestrating carbon and play an irreplaceable role in the 
process of global carbon cycling [2]. However, SOC in 
agroecosystems is fragile and highly sensitive to human 
activities. Under improper practices such as reduction of 

carbon input (e.g., residue removal, without input of organic 
manure) and tillage, cropland is likely to lose soil carbon, 
acting as a carbon source [4,5]. By contrast, practices that 
increase the photosynthetic input of carbon into the soil 
(e.g., application of organic manure) or slow the release of 
soil carbon (e.g., no-tillage) help to increase the amount of 
stored carbon, thereby sequestering C from the atmosphere 
[2,6,7]. Although it has been well recognized that agricul-
tural soils have the potential for the expansion of carbon 
sequestration, quantifying this potential is far from robust 
due to the spatial heterogeneity of soils and region-specific 
climates.  

SOC sequestration potential (SOCP) refers to the soil’s 
organic carbon holding capacity under local circumstances. 
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Two main approaches have been widely adopted to estimate 
the regional or global potential. One is based on long-term 
field experiments, and the other is based on model simula-
tion under various scenarios [8]. Improved agricultural 
management practices such as application of manure, re-
duction of tillage intensity, increased rotation complexity 
and the addition of nitrogen fertilizer together with crop 
residues are recognized to have the potential to increase 
SOC storage [9–11]. When the SOC sequestration rates 
were obtained from long-term field experiments where one 
or several improved practices were adopted, site-specific 
SOCP could be estimated. By upscaling the rates of SOCP 
into China’s cropland, Lal [12] and Lu et al. [13] estimated 
SOC sequestration potential on a national scale. However, 
upscaling site-specific SOC sequestration rates to a larger 
area may introduce errors into the estimates of the total 
SOCP because natural circumstances in some areas may not 
be suitable to put specific management options into practice. 
Moreover, climate and soil conditions regulate SOC turn-
over, and hence soil carbon sequestration potential. Ignoring 
the role of climate and soil conditions in determining SOC 
sequestration potential will inevitably result in uncertainties 
in the estimates when the site-specific rates of SOCP are 
upscaled.  

Several process-level models such as CEVSA [14–16], 
CENTURY [17], DNDC [18], Roth C [19] and EPIC [20] 
could be used to estimate cropland SOCP for specific man-
agement practices. Although process-level models have a 
theoretical foundation, and thus the model estimates are 
reliable at least on a regional scale, they have several limita-
tions. Some process-level models need site-specific pa-
rameters that are not available in practice, and some may 
accurately simulate the observed SOC change in a given 
area but not in others [14], which makes it hard to extrapo-
late these models to a wider area [21].  

In this paper, we establish a new statistical model based 
on global datasets of long-term field experiments, aiming to  

estimate cropland SOCP. And we estimate SOCP in Henan 
Province, China using the model. Our objective is to de-
velop a practical approach to quantifying cropland SOC 
sequestration potential. 

1  Materials and methods 

1.1  Rationale 

We adopted the concept of SOC evolution with time and 
organic C input from Stewart et al. [22] and West et al. [23] 
as shown in Figure 1. Changes in SOC are time asymptotic 
for certain carbon input levels. Soils with low C concentra-
tions accumulate significant amounts of C in the prelimi-
nary stage. Thereafter, the sequestration rate becomes lower 
and SOC tends to reach a steady state [24,25]. Increasing 
carbon input into a soil with relatively low C concentration 
continues to promote SOC accumulation until SOC 
achieves another steady state (Figure 1A). However, the 
gradual accumulation process is neither necessary nor un-
limited for a given soil. Theoretically speaking, soils may 
not hold additional carbon even with increasing carbon in-
put when a maximum equilibrium C level is reached. The 
maximum equilibrium C level is termed soil C saturation 
[23]. 

For the SOC evolution with input organic C, the C con-
centration at a steady state also increases in an asymptotical 
pattern (Figure 1B). Soils with low C concentration easily 
reach an equilibrium C level with increasing carbon input 
over a certain time. The equilibrium SOC increases with 
greater C input rates, but the rate of increase declines gradu-
ally. When SOC approaches the saturation level, increasing C 
input no longer results in additional soil carbon [22]. 

Previously, “saturation” patterns have been ignored or 
not well recognized [22]. Studies of soil carbon storage, or 
soil carbon sequestration potential, have been based on the 

 

 

Figure 1  Dynamics of SOC following time and C input changes. (A) SOC content changes with time under different C input levels; (B) SOC content at 
steady state changes with C input levels. Redrawn from Stewart et al. [22] and West et al. [23]. 
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assumption that SOC content changes linearly with the level 
of carbon input. In other words, SOC could increase without 
limit when carbon input increases (dash-dot line as shown 
in Figure 1B). Stewart et al. [22] explained that the linear 
relationship of SOC and carbon input was a result of using a 
narrow range of carbon input. Without a large enough car-
bon input, soil could not reach its saturation level, and thus 
a temporary change was mistaken as linearity. When C in-
put is maximized, the soil C content approaches a saturation 
level.  

With this understanding of SOC saturation, we hypothe-
size that the SOC level at saturation [22,23] is the C seques-
tration potential, and that the spatial variation of SOCP is 
mainly determined by climate and soil conditions 
[2,8,14,26]. The site specific SOCP may be determined from 
long-term field experiments with maximum carbon input.  

1.2  Data sources 

1.2.1  Long-term experiment data 

We extracted datasets from the literature and compiled a 
database to develop a SOCP model. The database includes 
information from 95 global long-term agricultural experi-
ments (LTE) distributed across a vast cropland area span-
ning wide ranges of temperate, subtropical and tropical cli-
mates1) (Figure 2, Appendix A). The annual input rate of 
organic matter as manure, or crop straw, ranged from 10 to 
40 t ha-1 in these experiments. Of the 95 experiments, 22 
lasted 10–14 years and 73 lasted longer than 15 years (Ap-
pendix A). We presumed that the SOC measured at last sev-
eral years had approached saturation, and thus regarded it as 
SOCP. 

The database consists of site-specific information in-
cluding location (longitude, latitude), climate (temperature, 
precipitation), soil properties (clay fraction, pH, total nitro-
gen, bulk density), experimental detail and measurements 
(experiment duration, crop rotation and irrigation, amount 
of annual organic matter input, soil sampling depth), and 
SOC concentration. 

Where the literature did not report some of this related 
data, we acquired data from other sources, including inter-
net web sites (for site and climate information), World Soil 
Database from FAO [30] (for complementing and checking 
soil information), and an online soil database2) from the 
Institute of Soil Science, Chinese Academy of Sciences. We 
contacted several authors of these papers to obtain missing 
information and unpublished data. The SOMNET database3), 
a global network and database containing many long-term 
experiments concerning soil organic matter, was used to get 
necessary experimental information. 

1.2.2  Spatial database of Henan Province 

We developed a spatial database to quantify the SOCP in 
Henan Province. Henan Province is located at latitudes be-
tween 31°23′–36°22′N and longitudes between 110°21′– 
116°39′E (Figure 3) with a total area of ~16.5 million ha, 
presenting a humid-semi humid monsoon climate, with a 
cold dry winter and warm wet summer. The mean annual 
temperature in Henan Province ranges from 12°C to 16 °C, 
(−3°C to 3°C in January and 24°C to 29°C in July). The 
mean annual precipitation is about 500–900 mm, of which 
50% occurs in the summer season. The cropping system 
tends to be winter wheat followed by maize over the course 
of the year. 

 

 
Figure 2  Distribution of global cropland long-term experiments. Shaded areas indicate the global cropland distribution (cropland fraction is the percentage 

of cropland area to whole grid area. Source: Ramankutty et al. [27]; Folley et al. [28]; Leff [29]); Solid dots(·) represent the sites for model establishment 
(n=76), cross points (+) represent sites in China (n=19), for model validation. 

                  
1) Global cropland distribution, see: http://www.sage.wisc.edu/iamdata/ 
2) Institute of Soil Science, Chinese Academy of Sciences. Chinese Soil Database. See: http://www.soil.csdb.cn/ 
3) SOMNET. A Global Network and Database of Soil Organic Matter Models and Long-Term Experimental Datasets. From: 

http://www.rothamsted.bbsrc.ac.uk/aen/somnet/intro.html 
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Figure 3  Cropland (shaded area) distribution in China (RESDC, see: http://www.resdc.cn/). Henan Province (HN) is located in the North China Plain. 

The spatial database of Henan Province used to estimate 
regional SOCP, included climate, soil and land use data. 
Climate data consist of mean annual temperatures and mean 
annual precipitation, which were calculated from tempera-
ture and precipitation data for years 1990 to 1999 from 751 
nation-wide meteorological stations. Soil data (SOC, clay 
fraction and pH) were extracted from the 1:1000000 scale 
Soil Database of China, developed by the Institute of Soil 
Science, Chinese Academy of Sciences [31–33]. Both cli-
mate and soil data were converted to spatial raster data (10 
km×10 km grid) through ArcGIS spatial analysis [34]. Land 
use data was used to classify the cropland areas. According 
to remote sensing land use data from RESDC and cropland 
area estimation of Liu et al. [35], we defined, in Henan, the 
grids with >42.8% upland area as cropland grids, and others 
lower than this value as non-cropland grids. 

1.3  Determination of site specific SOCP 

Using datasets from the 95 LTEs, the site specific SOCP 
was determined by [36]: 

 1(1 ) 10pSOC SOC H BD F −= × × × − × , (1), 

where SOCP is SOC sequestration potential per unit area (t 
ha−1). SOC is the corresponding SOC concentration (g kg−1). 
H and F represent the soil depth (cm) and the fraction of >2 
mm fragments (%) in soil, respectively. BD is the soil bulk 
density (g cm−3). In the experiments where bulk density was 
not available, BD was estimated from soil organic matter 

content (SOM, %) by Eqn. 2: [26,37]: 

 
100
100

0.244 1.64

BD
SOM SOM

=
−

+
 (2) 

SOCP in the top soil layer (0–20 cm) was calculated from 
the SOCP at different depths, according to SOC vertical dis-
tribution (cm) [38,39]: 

0 10 10 20 20 30 30 40 23 :18 :13 :10.- - - -SOC : SOC : SOC : SOC =  

1.4  Statistical method and model estimation 

Bivariate correlation evaluates the degree of relationship 
between two quantitative variables without distinction be-
tween the independent and dependent variables. Partial cor-
relation measures the degree of association between two 
variables, while taking away the effects of a set of control-
ling variables on this relationship. We used these two 
methods to investigate the impacts of climate and soil on 
SOCP. Levenberg-Marquardt (LM) and Universal Global 
Optimization (UGO) algorithms (convergence at 1.00E-10) 
[40,41] were used to determine the SOCP model. Of the 95 
LTE datasets, 76 datasets from sites outside China were 
used to perform a correlation analysis and parameterize the 
model, and 19 LTEs from within China were used to vali-
date the model. Model sensitivity analysis [42] was also 
conducted to clarify factor sensitivities to SOCP. With spa-
tial database of climate and soil in Henan Province, we es-
timated the provincial SOCP using the model, and assessed 
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the SOCP spatial distribution through spatial analysis [34]. 

2  Results 

2.1  Dependence of SOCP on soil and climate parame-
ters 

The values of rMT, rMP, rCL and rPH in Table 1 represent the 
Pearson correlation coefficient (Bivariate correlation) and 
Partial correlation coefficient between SOCP and the mean 
annual temperature (MT), annual total water input (MP), 
soil clay fraction (CL) and soil pH (PH). Results in Table 1 
suggested that SOCP is negatively correlated to MT and soil 
pH, regardless of whether the Pearson correlation or Partial 
correlation was applied. In contrast, the Pearson correlation 
shows no significant impact of MP and CL on SOCP, while 
the Partial correlation, that controlled all potentially con-
founding variables, suggested a positive impact (Table 1), 
which agrees with previous findings that climate and soil 
conditions regulate SOC accumulation [3,43–46]. 

2.2  Model establishment and validation 

Based on the correlation analysis (Table 1), we established a 
statistical model to estimate SOCP. The model integrated 
linear and nonlinear responses of SOCP to climate and soil 
parameters (Eqn. 3).  

0 021 0 42 0 10140.5 98.8 39.6

 4.1 27.7

. MT . MP . CL
PSOC e e e

PH

− × − × − ×= × − × − ×

− × −
 

 (R2=0.58, n=76), (3). 

where MT is the mean annual temperature (°C). MP refers 
to annual total water input that is a sum of mean annual pre-
cipitation and irrigation (100 mm). CL and PH represent the 
soil clay (<0.002 mm) fraction (%) and pH value, respec-
tively. Datasets from the sites outside China were used to 
determine model coefficients.  

The statistical model (Eqn. 3) was validated against in-
dependent data from 19 LTEs in China (Figure 1 and Ap-
pendix A). The root mean square error (RMSE) [47], the 
mean absolute error (MAE) [47], model efficiency (EF) 
[21], index of agreement (IA) [48] and linear regression 
analysis [49] were used to evaluate model performance. 

Model validation indicated that site specific SOCP could 
be quantified from local climate and soil parameters. The  

Table 1  Correlation coefficients between SOCP and MT, MP, CL and PH 

Correlation rMT rMP rCL rPH 

Bivariate −0.62*** NS NS −0.22* 

Partial −0.65*** 0.26** 0.31*** −0.20* 

*, **, *** Significant at P<0.1, P<0.05 and P<0.01, respectively. NS: 
Not statistically significant. 

 

Figure 4  Modeled vs. observed SOCP. Dashed line is 1:1. 

regression of modeled against observed SOCP yields an R2 
of 0.74, with a slope of 0.82 and an intercept of 5.2 t ha−1 
(Figure 4). Values of RMSE, MAE, EF and IA are 7.0 t ha−1, 
5.7 t ha−1, 0.71 and 0.92, respectively, suggesting that the 
model performs well. 

2.3  Model sensitivity analysis 

Sensitivity analysis was conducted to better understand the 
response of the SOCP model to the drivers. To perform 
model sensitivity analysis, we ran the SOCP model (Eqn. 3) 
by changing the value of one driver while holding the re-
maining factors constant. For instance, the response of the 
SOCP model to mean annual temperature was iteratively 
simulated within the MT range of 2.1°C–28.3°C while MP 
was set to be 7.5 (100 mm), CL to be 23.2 (%) and PH to be 
6.6 (Figure 5A). These values of MT, MP, CL and PH are 
based on 76 LTEs from outside China (Table 2).  

Model sensitivity analysis suggested that SOCP decreases 
with increasing MT at a relatively constant rate (Figure 5A). 
By contrast, SOCP ascends exponentially with increasing MP, 
but levels off when MP is higher than 1000 mm (Figure 5B). 
Figure 5A and 5B suggested that cropland in cold humid 
regions possess relatively higher SOCP than warm dry re-
gions, and that SOCP in the areas of MP>1000 mm would 
not be affected by water supply. SOCP increases exponen-
tially with increasing CL, and levels off when CL is higher 
than 30% (Figure 5C). It appears that SOCP decreases line-
arly with increasing soil pH (Figure 5D). Figure 5C and 5D 
suggest that soils with high clay content and/or low pH 
could potentially hold more carbon than those with low clay 
content and high pH. SOCP in soils with >30% clay content 
may not be regulated by soil particles. 

2.4  Estimated SOCP in Henan Province 

Based on the spatial database, we estimated SOCP of the  
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Figure 5  Model sensitivity to climate and soil parameters. A, B, C, D show the SOCP sensitivity to temperature, precipitation, soil clay fraction and pH, 
respectively. 

Table 2  Statistical character of climate and soil parameters 

Statistics MT /°C MP /100mm CL /% PH 

Minimum 2.1 3.6 0.6 4.9 

Mean 12.4 7.5 23.2 6.6 

Maximum 28.3 16.0 72.0 8.4 

 
top soil (0–20 cm) in Henan Province using the SOCP mod-
el (Eqn. 3), and SOC density in the 1990s (SOCB) was 
computed in a similar manner to Eqn. (1). Figure 6A and 6B 
show the spatial distribution (10 km×10 km resolution) of 
SOCB and SOCP in Henan Province, respectively, suggest-
ing that cropland in the southern region holds larger 
amounts of SOC than the northern region of this province. 
A considerable difference between SOCP and SOCB (ΔSOC = 
SOCP−SOCB) exists in the eastern and central regions of the 
province (Figure 6C). 

The SOC density in Henan Province averaged 20.0 t ha-1 
in the 1990s, with a range between 4 and 28 t ha−1 in 90% of 
the grids (Figure 7A). When the SOC sequestration poten-
tial is achieved, the SOCP density would reach 20–44 t ha−1 
in 90% of the grids, with an average of 31.8 t ha−1 (Figure 
7B), approximately 60% higher than the SOC level of the 
1990s. The additional carbon sink was thus estimated to be 
11.8 t C ha-1. From the estimates in Figure 6C, the cropland 
in Henan Province could sequester an additional 103.4 Tg C 
in the top 0–20 cm soil depth when the SOC sequestration 
potential is achieved. 

3  Discussion 

3.1  Uncertainties and limitation 

Uncertainties in modeling originate from three sources of 

error: model error, parameter error and input error [50]. 
Theoretically, SOC density at the carbon saturation level (as 
‘saturation k’ shown in Figure 1A) should be the sequestra-
tion potential, which remains constant with time, carbon 
input level and management practices. However, carbon 
input in some of the LTEs might not have been maximized. 
Thus, the SOC levels in these LTEs had not achieved a sat-
uration level but rather stable levels ‘i’ or ‘j’ (Figure 1A). 
As a result, the site specific SOCP might be underestimated. 
In such a case, predicted SOCP using the model (Eqn. 3) 
may represent the local maximum SOC sequestration level 
rather than SOCP at carbon saturation. 

The LTEs are distributed across a vast cropland area 
(Figure 2, Appendix A), which should be representative of 
global agroecosystems. However, data quality in the LTEs 
may not be in good agreement as a result of investigator 
bias, experimental conditions, or different methodologies, 
which would result in inconsistent data quality [51]. We 
employed several standards and criteria to make data suit-
able for model development, including the condition that 
only LTE sites with high C input and an experimental dura-
tion of longer than 10 years were selected. Soil data were 
cross checked using the FAO soil database and Chinese Soil 
Database, and SOC data were standardized to a 0–20 cm 
depth. These practices may have improved the data quality 
to some extent, and thus the model reliability. 

Uncertainties in the estimated SOCP in Henan Province 
may come from three aspects. First, the interpolation of 
site-specific climate and soil data within a region may not 
properly represent the spatial variations of complex envi-
ronments [52,53], and therefore result in uncertainties of the 
estimated SOCP. Second, due to a lack of available data, we 
did not include annual irrigation in the annual water input 
(MT in Eqn. 3) when SOCP was estimated, which may have  
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Figure 6  Spatial distribution of SOC density in Henan Province. (A) SOCB; (B) SOCP; (C) SOCP-SOCB. 

 

 

Figure 7  Frequency distribution of SOCB and SOCP in Henan Province. (A) SOCB frequency; (B) SOCP frequency. SD: Standard deviation. n is the  
number of grids. 
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Table 3  Time needed for achieving carbon sequestration potential in Henan Province* 

Management practices Methods of upscaling Sequestration rate /kg C ha−1 yr−1 Source 
Predicted sequestration 

duration /yr. 
Recommended management 

Practices 
Upscaling filed observations to 

China 
200–300 Lal [12] 59–39 

Straw return 
Nitrogen fertilizer 

Upscaling filed observations to 
Henan Province 

610 
209 

Lu et al. [13] 19 
56 

50% CR Process-level model 130 Yan et al. [14] 91 

100% CR  319  37 

50% NT  120  98 

100% NT  240  49 

50% NT+50% CR  182  65 

100% NT+100% CR  401  29 
*100% NT: 100% croplands adopt no tillage; 100% CR: 100% straw return; sequestration duration was calculated. 

 
resulted in an underestimation of SOCP. For example, the 
estimated SOCP in some grids was lower than SOC in the 
1990s (Figure 6C), which appears contradictory to the SOCP 
definition. As far as the model sensitivity to water input is 
concerned (Figure 5B), the estimates of SOCP in these grids 
are expected to be higher than current estimates. Third, the 
low-resolution of land use images may lead to a misinter-
pretation of forest or grassland as cropland. Cropland area 
in the grids with negative values (Figure 6C) accounts for 
66% of the grid area, which would inevitably introduce er-
rors into the estimates. 

Because very few LTEs with large amounts of carbon 
input could be found in rice paddies, the present SOCP 
model (Eqn. 3) is dedicated to upland soils. Using this mod-
el to estimate SOCP in rice paddies may result in bias. It is 
expected that the present SOCP model will be modified 
when the data in rice paddies are available.  

3.2  Duration of carbon sequestration 

It is well recognized that improved management practices 
promote soil carbon sequestration, and thus increase soil 
carbon storage [2,7,12,13]. When the SOCP is quantified, 
we may be in a position to predict the duration of carbon 
sequestration. Several investigations have suggested that the 
SOC sequestration rates could be 120–610 kg C ha−1 yr−1 
under different management practices [12–14]. Based on 
these sequestration rates, the duration of carbon sequestra-
tion is predicted to be 19–98 years before the SOCP (Figure 
6B) is achieved in Henan Province (Table 3), which is in 
accordance with Yan et al. [14] and West et al. [23]. Actual 
sequestration duration may even be longer than the pre-
dicted value, because soil carbon sequestration rates could 
become smaller and smaller as SOC levels approach the 
saturation level [22]. 

4  Conclusions 

With an understanding of soil carbon saturation, a statistical 
model using the data from global long-term experiments 

was developed to quantify SOC sequestration potential in 
upland soils. Model validation suggested that the SOC se-
questration potential could be properly estimated from tem-
perature, precipitation, irrigation, soil clay fraction and pH. 
Model estimates in Henan Province showed that carbon 
density at the saturation state would reach an average of 32 t 
C ha−1 in the top 0–20 cm soil depth. Using SOC density in 
the 1990s as a reference, cropland in this province could 
sequester an additional 100 Tg C, which could be achieved 
in 19–98 years when agricultural management is improved. 
Because carbon input in some of the global long-term ex-
periments might not have been maximized over the length 
of the experiments, the carbon density may not have 
reached saturation. Consequently, the predicted carbon se-
questration potential predicted by the model may be lower 
than that at carbon saturation state.  
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Appendix A: Description of global long-term experiments 
Location Latitude Longitude MT/°C MP/100 mm CL/% PH Duration Crops C input type References 

Australia 31º06´S 150º56´E 17.5 6.76 50.0 8.4 29 cereal residue [1–3] 

Australia 34º58´S 138º38´E 16.8 6.04 18.0 6.2 70 wheat, oats organic C [1–3] 

Australia 27º07´S 148º40´E 20.3 5.60 18.0 6.5 20 
sorghum, sunflower, 
wheat, barley, oats 

stubble [4–6] 

Australia 28º38´S 148º40´E 20.5 4.77 59.0 7.2 23 
sorghum, sunflower, 
wheat, barley, oats 

stubble [4–6] 

Australia 28º24´S 150º17´E 19.9 5.80 34.0 7.4 25 
sorghum, sunflower, 
wheat, barley, oats 

stubble [4–6] 

Australia 27º15´S 151º24´E 18.5 5.97 40.0 7.4 35 
sorghum, sunflower, 
wheat, barley, oats 

stubble [4–6] 

Australia 26º52´S 150º55´E 19.4 6.15 49.0 7.4 45 
sorghum, sunflower, 
wheat, barley, oats 

stubble [4–6] 

Australia 27º12´S 151º12´E 19.0 6.12 72.0 8.1 70 
sorghum, sunflower, 
wheat, barley, oats 

stubble [4–6] 

Australia 35º05´S 147º20´E 16.0 5.50 29.0 4.9 21 wheat residue (stubble) [7,8] 

Australia 31º06´S 150º56´E 17.5 6.76 44.3 6.9 34 wheat residue [9–13] 
Belarus Re-

public 
53º31´N 28º07´E 5.5 6.96 5.0 5.4 14 potato, oats FYM [14,15] 

Belgium 50º24´N 4º43´E 9.1 7.67 13.5 6.6 32 sugar Beet, cereals FYM [3,16,17] 

Brazil 30º51´S 51º38´W 19.4 14.40 22.0 5.3 18 oat, maize, cowpea residue [18–20] 

Canada 53º07´N 114º28´W 2.1 5.47 12.0 5.9 69 wheat, oat, barley manure [21,22] 

Canada 50º17´N 107º48´W 3.5 3.58 42.0 7.0 12 wheat residue [23–25] 

Canada 50º18´N 107º49´W 3.5 3.58 10.0 5.8 12 wheat residue [24] 

Canada 49º42´N 112º47´W 5.0 4.02 30.0 7.0 37 wheat FYM [14,26,27] 

Canada 42º13´N 82º44´W 8.9 8.76 37.0 5.7 45 corn, soybean residue [28,29] 

China 40º13´N 116º14´E 11.0 6.00 20.0 8.8 13 wheat, maize FYM [30–34] 

China 38º56´N 100º27´E 7.0 5.37 15.0 8.4 22 wheat, maize FYM [35–37] 

China 37º46´N 115º44´E 12.6 5.18 10.0 8.1 24 wheat, maize green manure [38–41] 

China 47º27´N 126º56´E 1.5 5.30 20.0 6.8 18 
wheat, maize, 

soybean 
FYM [42,43] 

China 45º40´N 126º35´E 3.5 5.33 9.3 7.2 22 
wheat, maize, 

soybean 
FYM [44,45] 

China 35º04´N 113º10´E 14.5 10.05 9.0 8.7 14 wheat, maize organic compost [46,47] 

China 34º48´N 113º40´E 14.0 6.34 10.0 8.3 14 wheat, maize FYM [48,49] 

China 26º31´N 112º22´E 18.0 13.37 20.5 5.7 13 wheat, maize FYM [50,51] 

China 26º45´N 111º53´E 18.0 12.55 35.7 5.7 14 wheat, maize FYM [52–54] 

China 34º16´N 117º11´E 14.0 12.67 6.0 8.3 20 wheat, maize FYM [55–57] 

China 41º19´N 124º30´E 4.5 5.50 31.0 7.6 22 maize, soybean FYM [58–61] 

China 35º12´N 107º40´E 9.2 5.86 24.0 8.4 18 crops unclear FYM [62] 

China 34º18´N 108º01´E 13.0 9.98 16.8 8.6 12 wheat, maize FYM [63] 

China 36º54´N 116º36´E 13.1 5.91 10.0 7.8 14 wheat, maize FYM [64] 

China 37º54´N 113º06´E 7.3 5.20 10.0 7.9 12 maize FYM, stover [65,66] 

China 44º17´N 87º56´E 6.6 3.60 10.0 8.5 13 wheat residue [67,68] 

China 39º18´N 111º06´E 8.8 4.60 10.0 8.1 12 potato FYM [69] 

China 26º42´N 105º18´E 13.6 12.67 25.0 7.6 11 wheat, maize FYM [70] 

China 26º48´N 104º12´E 11.2 9.51 32.5 7.7 11 potato, maize FYM [70] 
Czech Re-

public 
50º05´N 14º20´E 8.1 4.50 31.3 6.9 51 sugar beet, barley FYM [2,3,71–73] 

Czech Re-
public 

50º05´N 14º20´E 8.8 5.49 22.3 6.6 46 crops unclear FYM [2,74,75] 

Denmark 55º28´N 09º07´E 7.7 8.62 12.0 6.5 73 cereals FYM [76,77] 

Denmark 55º28´N 09º07´E 7.7 8.69 4.0 6.5 102 cereals FYM [3,77] 

Estonia 58º23´N 26º40´E 4.8 5.82 10.0 6.3 10 potato, wheat, barley FYM [78,79] 

France 54º28´N 2º18´W 11.0 6.40 25.3 8.2 121 wheat, maize FYM [3,80–82] 

Germany 51º24´N 11º53´E 8.7 4.84 21.0 6.6 93 
Sugar beet, barley, pota-

toes, wheat 
FYM [2,3,72,83,84] 

Germany 51º31´N 12º00´E 9.2 4.94 12.0 6.0 12 
potato, wheat, maize, 

barley, sugar beet 
FYM [85,86] 

Germany 51º31´N 12º00´E 9.2 4.94 8.0 6.3 120 rye FYM [85–87] 

Germany 48º22´N 13º12´E 8.7 8.86 16.4 6.9 41 wheat, maize residue [88] 

(To be continued on the next page) 
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(Continued) 

Location Latitude Longitude MT/°C MP/100 mm CL/% PH Duration Crops C input type References 

Germany 52º28´N 13º18´E 8.7 4.96 2.7 5.0 62 wheat, potato FYM [3,89] 

Germany 52º30´N 14º8´E 8.4 5.11 5.0 5.6 38 
sugar beet, wheat, barley, 

rye 
FYM [90–95] 

Hungary 47º19´N 19º00´E 10.3 9.31 31.0 5.8 44 crops unclear FYM [96,97] 

India 20º42´N 77º02´E 25.5 9.75 52.4 8.1 14 sorghum, wheat FYM [98,99] 

India 23º30´N 85º15´E 23.1 16.00 25.3 5.3 30 soybean, wheat FYM [98–100] 

India 23º12´N 79º57´E 25.0 14.03 58.9 7.6 28 soybean, wheat, maize FYM [101,102] 

India 29º36´N 79º40´E 16.0 10.19 5.8 6.2 33 soybean, wheat FYM [103–109] 

India 28º38´N 77º09´E 25.5 10.10 14.0 8.3 34 cowpea, maize, wheat FYM [110–115] 

Italy 45º21´N 11º58´E 12.8 8.50 52.0 7.9 37 
maize, wheat, tomato, 

sugar beet 
FYM [116,117] 

Italy 45º21´N 11º58´E 12.8 8.50 0.6 8.1 37 
maize, wheat, tomato, 

sugar beet 
FYM [116,117] 

Italy 45º21´N 11º58´E 12.8 8.50 15.0 7.8 39 maize, wheat FYM [116,117] 

Italy 45º21´N 11º58´E 12.4 8.50 29.2 7.8 27 
maize, sugar beet, soy-

bean 
residue [116,118] 

Italy 44º33´N 11º21´E 13.0 7.00 28.0 6.9 34 wheat, maize, sugar beet FYM [119] 

Italy 43º40´N 10º19´E 20.0 9.07 13.9 7.7 26 sunflower, wheat, maize residue [120,121] 

Kenya 01º15´S 36º46´E 19.5 9.81 40.0 5.9 25 maize FYM, residue [14,122,123] 

Kenya 0º47´S 37º40´E 24.3 7.30 30.8 6.6 13 
sorghum, cowpea, maize, 

pigeon pea 
FYM [122,124] 

Netherlands 52º51´N 5º18´E 9.0 8.00 20.0 7.0 65 barley 
FYM/municipal 

solid waste 
[125–128] 

Norway 59º40´N 10º46´E 5.3 9.40 25.0 5.5 48 cereals FYM [129,130] 

Norway 60º47´N 11º11´E 4.5 6.00 14.0 6.1 74 
oats, potatoes, wheat, 

barley 
FYM [37,131,132] 

Russia 55º30´N 37º36´E 4.9 5.38 19.0 6.2 28 potatoes, wheat, barley FYM [15,133] 

Sweden 55º42´N 13º43´E 7.3 7.64 13.5 5.6 18 barley, wheat, potatoes FYM [134,135] 

Sweden 54º24´N 13º14´E 8.1 5.90 15.0 5.8 37 crops unclear FYM [14,136] 

Sweden 60º´N 17º´E 6.7 5.55 37.0 6.6 37 cereals, fodder beet FYM [3,96,137] 

Sweden 54º24´N 13º14´E 8.1 5.90 17.0 7.5 34 wheat, oat, sugar beet FYM [138,139] 

Sweden 55º49´N 13º30´E 7.1 7.77 13.0 6.2 34 wheat, oat, sugar beet FYM [138] 

Sweden 55º38´N 13º25´E 7.2 6.57 8.0 6.6 34 wheat, oat, sugar beet FYM [138] 

Sweden 55º53´N 12º52´E 8.0 5.69 15.0 7.2 38 wheat, oat, sugar beet FYM [138,140] 

Switzerland 47º30´N 7º33´E 9.5 7.85 20.0 6.4 21 potato, wheat, barley FYM [14,141] 

Switzerland 47º29´N 8º54´E 8.4 11.83 16.0 6.0 19 wheat, maize residue [16,142,143] 

Thailand 16º29´N 102º50´E 27.6 11.84 6.9 5.4 27 cassava cassava stalk [14,144] 

Thailand 14º48´N 100º48´E 28.3 12.60 11.4 5.1 27 maize rice straw [14,144] 

Thailand 14º52´N 101º39´E 27.0 10.80 11.4 7.0 28 cassava cassava stalk [14,144] 

UK 51º49´N 0º21W´ 9.2 7.04 23.0 8.0 141 barley FYM, residue [3,145] 
UK 51º49´N 0º21W´ 9.1 7.28 18.0 7.5 150 wheat FYM, residue [3,145–147] 

Ukraine 46º49´N 36º40´E 6.7 3.89 39.0 7.6 33 
corn, wheat, sugar beet, 

barley 
FYM [14 15] 

USA 38º32´N 121º47´W 16.0 4.50 21.0 7.0 12 
tomato, safflower, corn, 

oats, pea, bean 
FYM, residue [148] 

USA 45º43´N 118º38´W 11.0 4.22 18.0 6.0 70 wheat FYM [149–152] 
USA 40º06´N 88º12´W 11.1 9.39 27.0 5.8 122 corn, oats FYM [153,154] 
USA 38º57´N 93º20´W 12.4 9.16 18.0 5.6 110 corn, oat FYM [153,155] 
USA 36º07´N 97º04´W 15.6 8.65 20.0 6.2 110 wheat FYM [156–158] & 1) 
USA 44º43´N 93º04´W 7.0 8.20 25.0 6.4 14 corn residue [159] 
USA 33º56´N 83º22´W 16.3 12.45 22.0 7.0 16 sorghum, soybeans, corn residue [160,161] 
USA 43º18´N 89º21´W 7.6 7.91 29.0 6.8 32 corn residue [162–166] 
USA 43º20´N 84º07´W 8.7 7.88 26.5 6.8 20 corn, sugar beet FYM, residue [167,168] 
USA 42º40´N 85º28´W 8.6 7.82 7.5 6.5 30 grain FYM [168,169] 
USA 41º12´N 96º24´W 10.2 8.16 30.0 7.1 26 corn FYM [153,170] 
USA 42º24´N 85º24´W 9.2 9.20 14.0 6.2 12 corn, soybean, wheat FYM [171–174] & 2) 
USA 41º14´N 103º00´W 9.0 4.40 15.0 6.3 31 wheat residue [175–178] 

 

                  
1) NUE Web. Magruder Plots: Long-Term Application of N, P, K, Lime and Manure, 1892-2005. At: http://nue.okstate.edu/Long_Term_Experi-  

ments/Magruder_Plots_Yield_Summary.htm 
2) KBS LTER Site. Long-term Ecological Research in Row Crop Agriculture. At: http://lter.kbs.msu.edu/ 
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