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Abstract Nitrogen, phosphorus and potassium content are the three most important nutritional parameters
for growing oilseed rape. We investigated visible and near infrared (Vis/NIR) spectroscopy combined with
chemometrics for the fast and nondestructive determination of nutritional information in oilseed rape leaves. A
total of 154 leaf samples were collected, with 104 randomly selected as the calibration set, and the remaining 50
samples used as the validation set. The performance of eight different preprocessing methods was compared in
partial least squares (PLS) models. Some effective wavelengths selected by a successive projections algorithm
(SPA) were also used to develop linear SPA-PLS, nonlinear back propagation neural network (BPNN), and
nonlinear least squares-support vector machine (LS-SVM) models to determine nutritional information. The
best prediction models were DOSC-PLS for nitrogen with 7=0.9743 and RMSEP=0.1459, DOSC-SPA-BPNN
for phosphorus with r=0.7054 and RMSEP=0.0594, and DOSC-SPA-BPNN for potassium with r=0.9380 and
RMSEP=0.1788. The prediction precision for nitrogen and potassium determinations was acceptable for further
practical applications, whereas further studies are needed to improve the prediction precision for phosphorus.
The results indicated that Vis/NIR spectroscopy is feasible for nondestructive determination of nutritional in-
formation in oilseed rape leaves. It also provided an alternative technique for detecting other growth information
about oilseed rape leaves.
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1 Introduction

Oilseed rape (Brassica napus L.) is the third most important oilseed crop worldwide. Oilseed rape is
widely planted in many areas, and rape oil accounts for about 35% of all edible oil consumed in China
[1]. Rapeseed is one of the major sources of edible oils for humans and residual feed for domesticated an-
imals [2, 3]. Obtaining growth information about oilseed rape is beneficial to improve rapeseed yield and
quality. Nitrogen, phosphorus and potassium are the most important nutritional factors effecting oilseed
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rape growth. Nutritional information affecting growth may be useful to ensure optimal fertilization, as
plants would grow well with favorable yield under adequate fertilization. Surplus fertilization causes
wasted resources and environmental pollution. Traditional methods for gaining such nutritional infor-
mation are quite complex. Examples include the Kjeldahl and Dumas combustion methods for nitrogen
detection [4], Mo-Sb colorimetry for phosphorus detection [5] and flame photometry for potassium de-
tection [6]. Such methods are costly, time consuming, laborious and unsuitable for rapid detection.
Furthermore, these methods are also destructive determination methods unsuitable for field monitoring
during the various growing stages of oilseed rape. Hence, a fast nondestructive method is necessary to
determine the nutritional information of oilseed rape.

Visible and near infrared (Vis/NIR) spectroscopy has been widely applied in agriculture, food, medicine
and other industrial fields requiring fast, nondestructive, low cost and reliable detection methods for both
quantitative and qualitative analysis [7]. For oilseed rape growth detection, NIR spectroscopy has been
applied to detect chlorophyll in rape leaves [8], nitrogen content of oilseed rape leaf and canopy [9-17], leaf
area index [18], amino acid presence [19] and acetolactate synthase (ALS) activity and protein content in
oilseed rape leaves [20, 21]. Many reports were focused on the determination of nitrogen content using all
wavelengths across the spectrum [9-17]; however, a variable selection process was proposed for nitrogen
detection. Furthermore, none considered the fast and nondestructive determination of phosphorus and
potassium in oilseed rape using Vis/NIR spectroscopy.

The objectives of the current study were: 1) to study the feasibility of using Vis/NIR spectroscopy
(400-1000 nm) to determine nutritional information (nitrogen, phosphorus and potassium) in oilseed
rape leaves; 2) to evaluate the performance of different spectral data preprocessing methods, includ-
ing Savitzky-Golay (SG) smoothing, standard normal variate, multiplicative scatter correction, first-
derivative, second-derivative, de-trending and direct orthogonal signal correction (DOSC); and 3) to
achieve the best calibration model after comparing the linear partial least squares (PLS), nonlinear back
propagation neural network (BPNN) and least squares-support vector machine (LS-SVM) models, using
effective wavelengths selected by successive projections algorithm (SPA).

2 Materials and methods

2.1 Sample collection and spectral acquisition

Oilseed rape (B. napus, cv. ZS758) is a leading cultivar and was used in this experiment. Field trials were
conducted at the farm of Zhejiang University, Hangzhou, China (30° 10’N, 120° 12’E). In a rotational
cropping system after the harvest of rice (Oryza sativa L.), rapeseeds were sown in early October, 2007.
Approximately one month later, the rape seedlings were transplanted to a silt-loam soil, with initial
parameters of 0.18% total nitrogen and 1.96% organic matter at a density of 97500 plants/ha. A total of
31 plots (1 reference plot with normal fertilizer, 30 experimental plots) were prepared, and each plot was
2.0 m long and 1.3 m wide. The experiment was prepared in a quadratic orthogonal regression design for
fertilizing nitrogen, phosphorus and potassium in the soil. Different amounts of fertilizers were applied in
the plot soil to obtain representative leaf samples for a stable and robust calibration model. Herein, the
experimental levels refer to the upper and lower levels of applied fertilizers. Table 1 shows the quadratic
orthogonal regression design for fertilizing nitrogen, phosphorus and potassium in the soil.

The oilseed rape leaves were collected on two occasions during the seedling stage. For the first sampling
(January 15, 2008), two plants from each plot were collected and the functional leaves of each plant were
considered as one leaf sample. A total of 62 leaf samples were collected during the first time. For the
second sampling (March 21, 2008), three plants from each experimental plot (3x30) and two plants of
the reference plot (2x1) were collected, and the functional leaves of each plant were considered as one
leaf sample. A total of 92 leaf samples were collected. A single leaf sample actually included several
leaves. A total of 154 leaf samples were collected for further analysis. There was no standard method to
separate calibration and validation sets. A random selection method with a 2:1 ratio for calibration and
validation samples was applied in this experiment. Thus, 104 leaf samples were randomly selected as the
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Table 1 Quadratic orthogonal regression design for fertilizing nitrogen, phosphorus and potassium in the soil

Plot No. Nitrogen Phosphorus Potassium
1 12 1 1
2 1 1 -1
3 1 -1 1
4 1 -1 -1
5 —1b 1 1
6 -1 1 -1
7 -1 -1 1
8 -1 -1 -1
9 —1.21541° 0 0
10 1.215414 0 0
11 0° —1.21541 0
12 0 1.21541 0
13 0 0 —1.21541
14 0 0 1.21541
15 0 0 0

Note. a: 1 means the upper level for fertilizer; b: —1 means lower level for fertilizer; c¢: —1.21541 means the minimum

level for fertilizer; d: 1.21541 means maximum level for fertilizer; e: 0 means normal level for fertilizer.

calibration set, and the remaining 50 samples were used as the validation set. No single sample was used
for both calibration and validation.

2.2 Spectral acquisition

A handheld FieldSpecPro FR-Spectroradiometer (325-1075 nm)/A110070 (Analytical Spectral Devices,
Boulder, CO USA) was used for the scanning of rapeseed leaf samples. The light source consisted of a
Lowell pro-lam interior light source assembly /128930 with Lowell pro-lam 14.5V Bulb/128690 tungsten
halogen bulb that could be used in both the visible and NIR regions. The field-of-view (FOV) of the
spectroradiometer was 25°. The spectroradiometer was placed at a height of approximately 100 mm and
an angle of 45° away from the center of sample. The light source was placed at a height of approximately
250 mm, 45° angle away from the sample. Reflectance spectra from 325 to 1075 nm were measured with
an average of 30 scans used for each spectrum. Three spectra were collected for each sample and the
average spectrum of these three measurements within the 400-1000 nm wavelength region was used in
later analysis. There were 601 wavelength variables from 400-1000 nm with 1 nm intervals for further
spectral analysis.

2.3 Nutritional information determination

The reference method for nitrogen content was the Dumas combustion method using Rapid N Cube
(Elementar Analysensysteme, Hanau, Germany). Samples were weighed by a four decimal point balance,
Sartorius BS224S (Sartorius AG, Goettingen, Germany). After complete combustion, reduction, purifica-
tion and detection, the nitrogen content of oilseed rape leaves was obtained through the Rapid N Software
V 3.4.0 (Elementar Analysensysteme, Hunau, Germany). The reference method for phosphorus content
was the Mo-Sb colorimetry method, using an AQ2 Automated Discrete Analyzer (Seal Analytical, UK).
The reference method for potassium content was the flame photometer FP-640 (Shanghai Precision &
Scientific Instrument Co. Ltd, Shanghai, China). Phosphorus and potassium content were determined
by the Hangzhou Centre of Inspection and Testing for Agricultural Products, Ministry of Agriculture,
China.

2.4 Spectral preprocessing and variable selection

Preprocessing methods were applied to remove the spectral baseline shift, noise and light scatter influence
to achieve better performance [22]. For comparison, various preprocessing methods were investigated,
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including SG smoothing, standard normal variate (SNV), multiplicative scatter correction (MSC), first-
derivative (1-Der), second-derivative (2-Der), de-trending and DOSC. SG smoothing, SNV and MSC
could be used for de-noising, light scatter correction and light path length correction [23, 24]. Deriva-
tives were applied to correct the baseline shift [22]. De-trending attempted to remove nonlinear trends
in spectral data [25]. DOSC was a transform of OSC, which could reduce the main variance sources
such as temperature effects, time influences and instrumental differences in spectral data [26, 27]. The
performance was determined by the prediction results in the calibration stage. DOSC was performed by
Matlab v. 7.0 (The Math Works, Natick, MA, USA). Other preprocessing methods were implemented
by “The Unscrambler V 9.8” (CAMO AS, Oslo, Norway).

The aforementioned preprocessing methods did not reduce the dimension of input variables (spectral
data). Hence, some variable selection methods were necessary to reduce the dimension and complexity,
such as SPA. SPA is a newly developed informative variable selection method, which could obtain several
relevant variables with least collinearity and redundancies. Herein, the selected relevant variables, named
effective wavelengths, were extracted for further applications. Details of the SPA algorithm can be found
in the literature [28, 29]. SPA was implemented by Matlab software.

2.5 Calibration models

During calibration, linear and nonlinear calibration methods could be used to handle the relationship
between spectral data (X-variables) and chemical responses (Y -variables). PLS analysis was generally
used for linear calibrations [30]. BPNN and LS-SVM were investigated for nonlinear calibrations.

For PLS models, the input X-variables (spectral data) were extracted into new eigenvectors (latent
variables, LVs) to present the most relevant information of the original spectra. During the calibration
stage, a full cross-validation process was used to ensure a stable and robust PLS model. The prediction
performance was evaluated by the samples in the validation set.

The basic error BPNN is one of the most popular neural network topologies. The model structure of
BPNN models was input layer-hidden layer-output layer. The selected effective wavelengths by SPA were
used as the input layer. The nutritional parameters were considered as the output layer. The network
output expresses the similarity that an object corresponds with a training pattern. Along with every
process of a training pattern and adjustment of the weight factors, the difference between the desired and
calculated network output value, defined as the network output error, will gradually become less and less
until it meets the desired value. The sigmoid function was used as the transfer function. The sigmoid
function is a simpler transfer function and could give a quick feedback result during the computation
process. It is also the standard used transfer function for BPNN models. Details for the BPNN algorithm
can be found in the literature [31].

LS-SVM employed a set of linear equations using support vectors instead of quadratic programming
problems to reduce the complexity of optimization processes. The details of LS-SVM can be found in
previous studies [21, 32, 33]. In LS-SVM models, the input variables were settled by effective wavelengths
selected by SPA. The radials basis function (RBF) kernel was recommended as the kernel function because
it can reduce the computational complexity, handle nonlinear correlations and give a good performance
under general smoothness assumptions. The model parameters of gamma(7y) and sigma? (o) were settled
by a two-step grid search technique with leave-one-out cross-validation. The free LS-SVM toolbox (LS-
SVM V1.5, Suykens, Leuven, Belgium) was applied to develop LS-SVM models. The LS-SVM algorithm
could be performed by Matlab.

The prediction capability was mainly assessed by the following indices: correlation coefficients of cali-
bration (R) and validation (), root mean squares error (RMSE) of calibration (RMSEC) and validation
(RMSEP). The RMSE was calculated as follows:

n N )2
RMSE — Zi:l (yz yz)
n

?

where n is the number of samples, and y; and g; are the reference and predicted values of the ith sample,
respectively.
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Figure 1 The (a) raw reflectance spectra, and preprocessed reflectance spectra of oilseed rape leaves by (b) SG, (c) SNV,
(d) MSC, (e) 1-Der, (f) 2-Der, (g) De-trending and (h) DOSC.

3 Results and discussion

3.1 Spectral features of oilseed rape leaves

The raw and preprocessed reflectance spectra of oilseed rape leaves are shown in Figure 1. The raw
reflectance spectra of oilseed rape leaves are shown in Figure 1(a), and reflectance values were elevated
at around 550 nm and 750-1000 nm. Spectra preprocessed by SG, SNV and MSC in Figure 1(b)—(d)
retained the main features of the raw spectra (Figure 1(a)). The spectral curve in DOSC spectra (Figure
1(h)) enhanced the variation in the 750-1000 nm region, which may have been caused by different contents
of nutritional parameters.

3.2 Statistical values of nutritional information

Statistics of nutritional information in oilseed rape leaves are shown in Table 2. The values of nitrogen,
phosphorus and potassium content in the calibration set covered a larger range than those in the validation
set, which was helpful to develop stable and general models.

3.3 PLS models

Different PLS models were developed using the aforementioned preprocessing methods. The cross-
validation process was applied to avoid the over-fitting problem and to evaluate model performance
during the calibration stage. Different latent variables were selected for the optimal PLS models. The
samples in the validation set were used to assess the prediction performance of the developed models.
According to the aforementioned evaluation standards, such as r and RMSEP, the optimal preprocessing
method could be achieved. The prediction results in calibration and validation sets by PLS models are
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Table 2 Statistical values of nitrogen, phosphorus and potassium content in the calibration and validation sets

Nutritional Sample  Minimum value  Maximum value Mean value Standard deviation
parameters Data set number of nutritional of nutritional of nutritional of nutritional
content (%) content (%) content (%) content

Nitrogen Calibration 104 2.961 6.777 5.033 0.705
Validation 50 3.524 6.197 5.013 0.634
All 154 2.961 6.777 5.027 0.698
Phosphorus Calibration 104 0.500 1.600 0.698 0.138
Validation 50 0.550 0.890 0.682 0.082
All 154 0.50 1.600 0.693 0.123
Potassium Calibration 104 0.790 3.280 1.869 0.562
Validation 50 0.860 2.880 1.843 0.517
All 154 0.790 3.280 1.861 0.546

shown in Table 3. As stated in Table 3, the optimal performance in the validation set was achieved
by DOSC spectra with r=0.9743 and RMSEP=0.1459 for nitrogen, r=0.6971 and RMSEP=0.0632 for
phosphorus, and 7=0.9316 and RMSEP=0.865 for potassium.

The result for nitrogen and potassium was acceptable, considering the prediction performance within
validation set. However, the results for phosphorus were insufficient for practical applications. The basis
for acceptable precision was made from experiential conclusions. If prediction results had a correlation
coefficient higher than 0.8, prediction precision was deemed acceptable and sufficient for further practical
applications. If the correlation coefficient was lower than 0.8, more work was deemed necessary to
improve the prediction performance for quantitative analysis. Furthermore, 601 variables were employed
as inputs in the PLS models, and there may have been collinearity and redundancy among these variables.
To develop a more parsimonious model, a relevant variable selection procedure should be performed, and
the successive projections algorithm is recommended for this purpose.

3.4 Effective wavelength selection by SPA

To allow a comprehensive comparison, the spectra obtained from the optimal two preprocessing methods
were used for SPA calculation. Hence, the spectra after MSC and DOSC were used for nitrogen, those after
1-Der and DOSC were used for phosphorus, and those after 1-Der and DOSC were used for potassium.

During the SPA, the maximum number of selected variables was set at 30, and cross-validation was
applied in the selection process. Different wavelengths were selected by SPA (shown in Table 4). As
shown in Table 4, selected effective wavelengths were ranked in the order of importance. For example,
638 nm was the most important variable within all selected effective wavelengths for MSC spectra. These
effective wavelengths were applied as inputs of the BPNN and LS-SVM models, with these models then
employed to determine the nutritional information.

3.5 PLS, BPNN and LS-SVM models

After the SPA process, the selected effective wavelengths were used as input variables to develop the PLS,
BPNN and LS-SVM models.

In the SPA-PLS models, cross-validation was also applied and different LVs were extracted for a robust
performance. The prediction results for nitrogen, phosphorus and potassium in calibration and validation
sets are shown in Table 5. The optimal prediction results were obtained by DOSC-SPA-PLS for nitrogen
(r=0.9436 and RMSEP=0.1477), phosphorus (r=0.6940 and RMSEP=0.0635) and potassium (r=0.9307
and RMSEP=0.1875). The results indicated that DOSC is a powerful preprocessing method for improving
prediction performance in PLS models.

In the SPA-BPNN models, the transfer function was a sigmoid function. Three-layer BPNN models
were achieved for nitrogen, phosphorus and potassium content determination. The nodes of the input
layer, the hidden layers and the output layer were of the structure 15-8-1 for nitrogen, 4-3-1 for phosphorus,
and 6-4-1 for potassium. The dynamic parameter was set as 0.6 which was determined after several trials
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Table 3 Prediction results for nitrogen, phosphorus and potassium by PLS using different preprocessing methods

Nutritional Preprocessing LVs Calibration Validation

R RMSEC r RMSEP

Nitrogen Raw 8 0.9083 0.3008 0.7372 0.4422

SG 8 0.9022 0.3101 0.7348 0.4434

SNV 6 0.9133 0.2928 0.7516 0.4290

MSC 6 0.9134 0.2927 0.7536 0.4272

De-trending 9 0.9339 0.2571 0.7259 0.4698

1-Der 6 0.9094 0.2990 0.7455 0.4400

2-Der 6 0.8604 0.3665 0.6534 0.5043

DOSC 1 0.9786 0.1480 0.9743 0.1459

Phosphorus Raw 1 0.2955 0.1311 0.2219 0.0843

SG 1 0.2957 0.1311 0.2225 0.0843

SNV 3 0.3940 0.1261 0.1953 0.0902

MSC 3 0.3940 0.1261 0.1953 0.0902

De-trending 1 0.3180 0.1301 0.2159 0.0828

1-Der 3 0.4860 0.1199 0.4091 0.0866

2-Der 1 0.3348 0.1293 0.2716 0.0820

DOSC 1 0.7784 0.0861 0.6971 0.0632

Potassium Raw 5 0.6315 0.4339 0.6808 0.3760

SG 5 0.6309 0.4341 0.6887 0.3721

SNV 14 0.8771 0.2688 0.6777 0.4020

MSC 14 0.8767 0.2692 0.6834 0.3975

De-trending 2 0.5791 0.4562 0.6676 0.3819

1-Der 3 0.6648 0.4180 0.7212 0.3546

2-Der 9 0.8838 0.2618 0.6673 0.4246

DOSC 1 0.9221 0.2165 0.9316 0.1865

Table 4 Selected effective wavelengths (EWs) by SPA

Nutritional Preprocessing No. Selected EWs (nm)

Nitrogen MSC 15 638, 414, 465, 431, 970, 954, 959, 74T, 424, 514, 915, 450, 673, 940, 935
DOSC 1 958

Phosphorus 1-Der 4 502, 952, 955, 783
DOSC 1 958

Potassium 1-Der 6 579, 950, 481, 405, 453, 462
DOSC 1 627

in the region of 0.6-0.9. The least training speed and the parameter of sigmoid were set as default values
of 0.1 and 0.9, respectively. The residual error was set at 0.00001. The times of training was set as
3000. The prediction results for nitrogen, phosphorus and potassium in calibration and validation sets
are shown in Table 5. The optimal prediction results were obtained by DOSC-SPA-BPNN for nitrogen
(r=0.9682 and RMSEP=0.3716), phosphorus (r=0.7054 and RMSEP=0.0594) and potassium (r=0.9380
and RMSEP=0.1788). These results indicated that the DOSC-SPA process was better than those of
MSC-SPA and 1-Der-SPA, which was consistent with those obtained from the SPA-PLS models.

In the SPA-LS-SVM models, the kernel function was RBF kernel. The model parameters (v, o2) were
determined by a two-step grid search and cross-validation process. The search region of (v, 02) was set as
(10~%-10*) for nitrogen, (10~3-10?) for phosphorus, and (1073-10%) for potassium. After computation,
the optimal combination of (v, 02) was achieved for different nutritional parameters. The prediction
result for nitrogen, phosphorus and potassium in calibration and validation sets are shown in Table
5. The optimal prediction results were obtained by DOSC-SPA-LS-SVM for nitrogen (r=0.9737 and
RMSEP=0.1472), phosphorus (r=0.6745 and RMSEP=0.0606) and potassium (r=0.9351 and RMSEP=
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Table 5 Prediction results for nitrogen, phosphorus and potassium by PLS, BPNN and LS-SVM models using effective
wavelengths (EWSs) selected by SPA

Nutritional Preprocessing Models LVs/EWs/(v,02) Calibration Validation

R RMSEC r RMSEP

Nitrogen MSC SPA-PLS 9/15/- 0.9400 0.2453 0.7247 0.4879
SPA-BPNN -/15/- 0.9401 0.3288 0.7219 0.5327

SPA-LS-SVM  -/15/(9.9x10%,4.9x10%)  0.9434 0.2382 0.7450 0.4621

DOSC SPA-PLS 1/1/- 0.9787 0.1475 0.9736 0.1477

SPA-BPNN -/1/- 0.9593 0.3884 0.9682 0.3716

SPA-LS-SVM -/1/(50.3, 78.8) 0.9795 0.1447 0.9737 0.1472

Phosphorus 1-Der SPA-PLS 2/4/- 0.4084 0.1253 0.4026 0.0849
SPA-BPNN -/4/- 0.4330 0.1239 0.4263 0.0860

SPA-LS-SVM -/4/(0.4,11.4) 0.4796 0.1219 0.4445 0.0752

DOSC SPA-PLS 1/1/- 0.7788 0.0861 0.6940 0.0635

SPA-BPNN -/1/- 0.7255 0.0962 0.7054 0.0594

SPA-LS-SVM -/1/7.4x103, 433.4 0.8417 0.0741 0.6745 0.0606

Potassium 1-Der SPA-PLS 3/6/- 0.6984 0.4005 0.6432 0.4023
SPA-BPNN -/6/- 0.7581 0.3777 0.6362 0.4433

SPA-LS-SVM -/6/(10.1,189.8) 0.7449  0.3762  0.6512  0.3964

DOSC SPA-PLS 1/1/- 0.9223 0.2162 0.9307 0.1875

SPA-BPNN -/1/- 0.9237 0.2149 0.9380 0.1788

SPA-LS-SVM -/1/(8.3,27.8) 0.9242 0.2139 0.9351 0.1818

Table 6 The optimal models for nitrogen, phosphorus and potassium from different wavelength regions

Nutritional Models No. of wavelengths Calibration Validation
R RMSEC r RMSEP

Nitrogen DOSC-PLS 601 0.9786 0.1480 0.9743 0.1459
MSC-SPA-LS-SVM 15 0.9434 0.2382 0.7450 0.4621
DOSC-SPA-LS-SVM 1 0.9795 0.1447 0.9737 0.1472
Phosphorus DOSC-PLS 601 0.7784 0.0861 0.6971 0.0632
1-Der-SPA-LS-SVM 4 0.4796 0.1219 0.4445 0.0752
DOSC-SPA-BPNN 1 0.7255 0.0962 0.7054 0.0594
Potassium DOSC-PLS 601 0.9221 0.2165 0.9316 0.1865
1-Der-SPA-LS-SVM 6 0.7449 0.3762 0.6512 0.3964
DOSC-SPA-BPNN 1 0.9237 0.2149 0.9380 0.1788

0.1818). The results indicated that DOSC-SPA was better than MSC-SPA and 1-Der-SPA, which was
consistent with the results obtained by the SPA-PLS and SPA-LS-SVM models.

Comparing all PLS, BPNN and LS-SVM models using EWs selected by SPA, the best prediction results
were DOSC-SPA-LS-SVM for nitrogen and DOSC-SPA-BPNN for both phosphorus and potassium. The
BPNN and LS-SVM models achieved a better performance than PLS models, a reason for which may
have been that BPNN and LS-SVM made good use of the latent nonlinear information in the selected
effective wavelengths. In contrast, PLS only developed the linear relationship between the selected
effective wavelengths and nutritional information. DOSC outperformed MSC and 1-Der, a reason for
which may have been that DOSC took the Y-variable into consideration in the calibration set during
preprocessing.

3.6 Model comparison

Comparing all the developed models by PLS, BPNN and LS-SVM using a different number of input vari-
ables, the best models were obtained by DOSC-PLS using 601 variables for nitrogen, DOSC-SPA-BPNN
using 1 EW for phosphorus, and DOSC-SPA-BPNN using 1 EW for potassium (shown in Table 6). The
best prediction results were r=0.9743 and RMSEP=0.1459 for nitrogen, r=0.7054 and RMSEP=0.0594
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Figure 4 The best prediction results for potassium by the DOSC-SPA-BPNN model.

for phosphorus, and r=0.9380 and RMSEP=0.1788 for potassium. Good prediction results for nitrogen
and phosphorus content in this study may have been due to the spectral preprocessing method (DOSC)
and informative variable selection method (SPA) used for the multivariate calibration models. DOSC
and SPA enhanced the most relevant information and effective wavelengths in the spectral data, which
made the calibration model more powerful and robust. The scatter plots in the validation set with best
prediction results are shown in Figures 2, 3 and 4 for nitrogen, phosphorus and potassium, respectively.
The results for nitrogen and potassium were adequate for further practical applications, whereas more
studies should be done to improve the prediction precision for phosphorus.

4 Conclusions

Vis/NIR spectroscopy combined with chemometrics was applied for the nondestructive determination
of nutritional information (nitrogen, phosphorus and potassium content) in oilseed rape leaves. The
performance of different preprocessing methods were compared in PLS models. Effective wavelengths
selected by SPA were used to develop SPA-PLS, SPA-BPNN and SPA-LS-SVM models and determine
nutritional information. The best prediction model was DOSC-PLS for nitrogen with r=0.9743 and
RMSEP=0.1459, DOSC-SPA-BPNN for phosphorus with r=0.7054 and RMSEP=0.0594, and DOSC-
SPA-BPNN for potassium with 7=0.9380 and RMSEP=0.1788. The prediction precision for nitrogen
and potassium was acceptable for further practical applications, whereas that for phosphorus was in-
sufficient and further work is necessary. The results indicated that Vis/NIR spectroscopy is feasible for
the nondestructive determination of nutritional information in oilseed rape leaves. It also provided an
alternative technique for detecting other growth information about oilseed rape leaves.
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