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ABSTRACT

——

In this paper, a class of so-called semi-blind deconvolution (SBD for short) problems is pro-
posed. The linear SBD problem of finite-length sequence is studied. Several theorems are given
to show the conditions for a numbzr of usual SBD problems, which are lincar solvable and have
unique solution. An algorithm for linear SBD is developsd and the results of computer simulations
are shown. Some conclusions of this papsr are applicable to the problem of signal reconstruction
from spectral magnitude and partial sample pointse

I. INTrRODUCTION

In many cases, a signal may be regarded as the output z of a system y with an in-
put . A problem of solving ¥ and y from 2z is called an inverse problem which is
often encountered in many physical and engineering areas, e.g. in optics, astronomy, seismic
prospecting, image restoration, reconstruction from .projection, communication, automatic
control, and speech signal processing. An inverse problem is called deconvolution problem
if y is a linear time-invariant concentrated system, since in this case, z is the convolution
of x with y, i.e. z =2x%Yy. For a usual deconvolution problem, not only z but also
one of x, ¥ is known, the problem can be solved by commonly used inverse filter under
the noiseless situation or by the least square inverse filter™, iterative algorithm®* under the
noise situation. For a class of so-called blind deconvolution (BD for short) problems™,

only z is known. It is quite difficult to get the solutions without making any assumption
on x and/or y,

In some application areas, besides the known z, a part of x and/or y may be ob-
tained by some other means too. For example, for seismic signal s = w £, it is possible
to pick out a part of wavelet @ on seismogram around the less interfered horizons with
large intervals, and a part of reflection coefficients £ on the data of sonic logs or the
deconvolved seismogram by prediction deconvolution. Similar situations may also be en-
countered in other areas such as speech signal processing'®’, To distinguish such a class of
problems of solving the whole x, y by knowing z and partial , y fromthose of usual
and blind deconvolution, we call them semi-blind decovolution (SBD) problems. Since
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some assumptions must be imposed on x, y for BD, SBD is more objective than BD
and has wide potential applications.

Generally, x, y cannot be uniquely specified only from z even under the noiseless si-
tuation. One of the key problems for SBD is that by knowing how much of x,y and
by which method the whole x, ¥ can be uniquely specified from z.

As a first-stage investigation, this paper only considers the SBD on finite-length se-
quences, i.e.

{x(”)/x(”’)= 0, V”ﬁ [1, N,], and x(l)aé(], I(NJ)?& 0},

{y(n)/y(n) =0, Vag¢ [1, N;], and ¥(1) % 0, y(N,) # 0}, (1)
thus,

{z(n)/2(n) =0, ¥n¢ [1, N, + N; — 1], and 2(1) 5= 0,2(N; + N; — 1) 5= 0},
where

min(Ng,n)

z(n) = x(n) % y(n) = > x(a+1—8yk), »

k=max(l,n+1=N;)

=1,2,++,Ny+ N, — 1, (2)?

From (2), it follows that to specify x(n), y(n) from z(n) is a problem of solv
ing a simultancous 2nd-order nonlinear equations of multivariables, (For the detail dis-
cussion of the nonlinear problem, see Ref. [8].) Butif a part of x(n), ¥(n) are known,
in (2) some Ist-order linear equations will appear. If the number of these linear equa-
tions is equal to or larger than the number of unknown points, then, the original problem
is reduced into the one of solving a simultaneous linear equations. In this paper, we focus
our attention to how many sample points of x(n), ¥(#) arc needed to be known so as
to reduce the original problem of (2) into a linear problem, and to how and under what
conditions the linear problem can be uniquely solved.

First, we turn a number of usual problems inte six canonical types. Thus, several
theorems are given to show the conditions for them being linearly solvable and with unique
solution. Finally, an algorithm for linear SBD is developed and the results of ‘computer
simulations are shown.

Moreover, it is worth mentioning that if we let y(#) = x(—n), then 2(n) = x(n)
% x(—n) is the autocorrelation sequence of x(#). So it is not difficult to see that the
problem of reconstructing signal from some of its samples and spectral magnitude discussed
in Refs. [6, 7] is only one of the special cases of the problems discussed in this paper.

II. A Numser or Usuar Prosrems-anp Tarir Canonicar Tyres
1. Lemmas
Lemma 1. Given x(n), ¥(n) can be uniquely specified from z(n),

This lemma can easily obtained from (2).

Lemma 2. Given x(n), n=1,2,- ki < Ny, ¥(n), n = 1,2, -+, min [k,,]N,]

1) Due to the symmetry property of convolution, if x(r), y(#) are interchanged, all the conclusions in
this paper are still true.
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Note. 1. If x(n), y(n) are interchanged, a class of similar problems are obtained.

Since the symmetry

2. mly m2, m, k1, k2, k1’, k2’ are all positive integers, and each denotes the length of its
3. max[m.,ml + m2, I]<<min[N1, N2], otherwise the problem is already solved by Lemma 1, the
4. “®7 denotes the known point, “0™ denotes the unkown point.

can be uniquely specified from z(n),

Proof. From (2), it follows that
z(1) 0 .
x(2) =(1)

*(k) -

creee 0 y(1) z(1)

@ =(2)
: o |7 | ]
-ee o x2(1) ¥(k1) z(ks)

. (3)
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property of convolution, we only need to consider the problems in Table 1.

correspondent segment.
further consideration is need not.

And remember that x(1)

Corollary 1.

The lemma is proved.

= 0.

Similar to Lemma 2, we also have

Lemma 3. Given x(n), n=N,— ki, -++, Ni, k2<N,,

N, — ki1, -y Ny can be uniquely specified from z(n),

Q.E.D.

When ky = N,, the whole x(n), y(n) can be uniquely specificd.

y(n),

n = max[0,

Corollary 2. When k; = N,, the whole x(n), y(n) can be uniquely specified.
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2. A Number of Usual Problems and Their Canonical Types

In this section, we discuss a pumber of wusual SBD problems with the feature
that the known part of x(#), y(#) is a segment of the whole signal or is the sparsely
resampled signal of x(n), y(n) (see the second row of Table 1), From the above lem-
mas these problems are turned into six canonical types as shown in the first row of Ta-
ble 1. For example, for case 1 (column 1, row 2), it follows from Lemma 2 that by
knowing the first m, points of x(2), the first m, points of ¥(n) can be specified. And
similarly, the last m, points of y(#) can be specified by knowing the last m, points of
x(n). Consequently, case 1 is turned into canonical type I

I1I. Tue ConprtioNs oN LiNEAR SoLvABILITY AND UNIQUENESS
1. The Derived Simultancous Linear Equations aqnd the Derived Matrix

Definition 1. Under the condition that z(n) and partial sample points of x(2),
y(n) are known, all the equations which are reduced into linear equations are collected to
form (4) L

- AX =73, (4)
where X is an unknown vector consisting of all unknown sample points, if N, is the
number of the unknown points, then Xis an N,-dimensional vector. bis an /-dimensional
constant vector which is derived from the known points of 2(n), x(#) and y(n), ! is
the number of the linear equations. A is an ! X N,-dimensional matrix with its elements.
being the known sample points of x(n), y(n). We call Eq. (4) matrix 4 and constant
vector & the derived simultaneous lincar equations, the derived matrix and the derived con-
stant vector, respectively, under the known condition.

The different orders of the variables in X and of the equations in (4) will result in.
the different matrix 4. For convenience, in this paper, the equations in (4) are ordered
according to the index of z(n), and the variables in X are ordered in such a way that
firstly the unknown points of x(#) are ordered according to its original index, then
continuously, those of y(#) are ordered according to its original index.

For example, for canonical type I, when N, =N, =N, m, + m, = [(N, + N; +
2)/3], where [c] denotes the integral part of ¢ (see Theorem 1 below), and m, = N—
(my 4+ my),my =N — (my; + m;). The derived simultanecous linear equations under such
a special condition are given by (5).

y(1) 0 0
»(2) (D 0
0
y(N — my — my) y(N —mi — m, — 1) s y(1)
y(my) y(my — 1) e y(Im, +m +1=N)
Y(2N — 2my — m,) y(IN — 2Zm, — ;i — 1) weenes _y(N —m+1)
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y(N) y(N —1) eweee y(my +my + 1)
1} .
y(N) y(N —1)
0 sve ess uee 0 y(N)
x(1) 0  sesses
x(2) x(1)
0
(N —m—m) x(N—m—m—1) - (1)
x(my) x(my = 1)  eeeens =(2my + m, + 1 — N)I
;-(_Z-Nv: 2my — my) x(IN — 2my — my—1) seeees o N—m 4+ 1)
x(N) A(N=1) e x(my + my + 1)
0 .
. x(N) x*(N —-1)
0 - aee 0 =(N)
x(my 4 1) 6(1)
x(m; + 2) &(2)
b(N — m, ~ m;)
2(N — m,) b(m,)
y(m +1) = &(my + 1) s >

b(2my + 2m, + 1 — N)

(N — my — 1) b(my 4 my — 1)
y(N — m,) b(my + my)

where

i |

() for 1</<N—m—m, b(7)=2+m)— >,

i=i+1

()y(m+j+1—i);

"

(ii) for N—m —m < j < my, b(j) = 2(j + ml)—{ ST x(Dy(m +i+1—4)

i=j+1
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i +my+m;=N ’
S L OyOm i 1= i)+ y(em i+ 1 — D1}
i=1
(Git) for 1< << m+ 2m—N, b(m +7)=2z(02N—2m—1+})

N—myt+i—1

_-{ SV x() - yON —2my + j— i)

i =N—rmy+l

hiid |

+ > [«(yQN —2m +j—i)

i=N-=Imy+j

4 y()x(2N — 2my + § — §)] };

Gv) for m=ji>m+2m—N, b(m +j) = 202N —2m; — 1 + )

N=mg+i—1

— > k(YN = 2my 4 j— i),

imN—m+l

Similarly, we %an write out the derived matrix 4 and vector & under a more general
condition, but it is too intricate and complicated. Fortunately, 4, & canbe easily obtained
by a computer program. An algorithm for doing this is given in Appendix 1.

2. The Conditions on Linear Solvability and Uniqueness
Theorem 1. For canonical type I
(1) If my 4+ my = min[N,, N,], then x(n), y(n) can be uniguely specified.

(2) If 3(mi+ m) =N+ Nay, or (my+ my) = [(Ny + Ny +2)/3], and on its
derived simultancous linear equation, Rank [A4:5] = N,, where Rank[+] denotes the rank
of a matrix, N, = N; + N; — 2l is the number of unknown points, | = my + my; is the
number of equations.

Then x(n), y(n) can be uniquely specified by solving the simultancous linar
equations. .

Proof. (1) It is easily provcd_. from the lemmas in Sec. II, 1.

(2) N, + N, — 1 equations as (6) are given by (2). For convenicnce, it is as-
sumed that N; > N; which does not lose generality, where x(m, + 1), -+, 2(N,—
m;), and ¥(m + 1), +++, y(N; — m;) are unknown points, its number is N, = N,+
N; — 2(my 4+ my),

z(1) = =(1)y(1),
2(2) = =(1)y(2) + 2(2)y(1),

2(V2) = 2(1)y (V) + 2(2)y(Na — 1) + oo + x(N)y (1),
2Ny + 1) = 2(2)y(N2) + 2(3)y(Ny — 1) == oooeee + 2 (N + Dy(1),
- : (6)
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2(N,) = 2(N, — N+ Dy(N;) + (N, — N, + 2)y(N, — 1) + -,
+ 2(N,)y(1),
2(Ny+ 1) =x(N, — N, + 2)y(N;) + x(N; — N, + 3)y(N; — 1) + -+
+ 2(Ny)y(2),

z2(N; + N, —2) = 2(N, — 1)y(N;) + =(N,)y(N, — 1),
z(Na+ N, — 1) = x(N,)y(N,).

After analysis, it can be discovered that the above equations consist of the
following three groups.

(i) The m, equations from =z(1) to z(m;) and the m, equations from =z(N,+
N;—m;) to z(N; + N; — 1) are all reduced into the constant identities.

(it) The m, equations from z(m, + 1) to z(2m,) and the m; equations from
2(N, + N, — 2m;) to 2(N;+ N, — my; — 1) are all reduced into the linear equations.

(iii) The (N, + N; — 1) — 2(m, + m;) equations from z(2m,+ 1) to =z(N,-+
N; — 2m; — 1) are still the 2nd-order nonlinear equations.

By (ii) the number of linear equations is (m; + m;), to make these equations
uniquely solvable, it is required that (m, + m;) =N, = N, + N; — 2(m, + m,),

Thus, 3(m + m) =N, + N, or m; + m; = (N, + N;)/3,

Because my + m, can only be integral, we have m;, 4+ m; = [(N, + N; + 2)/3],

Furthermore, it is known from (2) that the simultaneous linear equations are
surely consistent, i. e.

Rank[4|%] = Rank[A4],
To ensure the unique solution, it is required that
Rank[A4|2] = N, =N, + N, — 2(m; + m;).. Q.E.D.

The above procedure for finding linear equations is somewhat complicated, but it
may be replaced by a concise way (see Fig. 1).

Fig. 1 illustrates the procedure of x(n) % y(n) for canonical type I, where, for
each equation, the two overlapped ® points correspond to a constant item, the two
overlapped points with one © and one 0 to a lst-order item, and the two overlapped 0
points to a 2nd-order item. After ¥(n) is convolved into y(—n), it is shifted point by
point from the left to the right, each shifted position corresponds to an equation. The
leftest one is z(1) = x(1)y(1), the rightest one is 2(N, + N, — 1) = =(N)y(N,).
Consequently, Figs. 1 (a) and 1 (e) correspond to the part (i) of the above proof,
Figs. 1(b) and 1(d) to the part (ii), and Fig. 1(c) to the part (iii).

Similarly, we can prove the following theorems.

Theorem 2. For canonical type 11, if m = [(N,+ N;+ 2)/3]1, and on its de-
rived simultancous linear equations Rank[A4:5] = N,, ‘where N, = N, + N, — 2l is the
number of the unknown points, | = m is the number of equations,
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Then x(n), y(n) can be uniquely specified by solving the simultancous linear equa-
tions.

Theorem 3. For canonical tpye 1, if m =N, + [(N,+ 1)/2], and on its de-
rived simultancous lincar equations Rank [A|8] = N, = N, + N; — m, (in this case, the
number of equations is | = my — N;).

" Then x(n), y(n) can be uniquely specified by solving the simultancous linear equa-
tions, '

- Theorem 4. For canonical type 1V, if the inequalities m + 1 > max[N; — kisN,—
— k], 1 >k, m >k hold simultaneously, and if

(1) 3/ 4+ 2m = 2N, + N, when I — mé]{l-—l{;éNl—-N;,

(2) 314+ 2m =N, + 2N, + (ky — k), when ky — ki =1—m and k—k1 > N, —
Nz’

(3) 3m + 21 = 2N, + Ny — (ky — k}), when ky — ki<l — m and ky—k: < N,— N,

(4) 3m+ 21 2N1+ ZNQ, Wﬁf.’l &L‘_'k;QJ'_'m 'ﬂﬂd éluk’;}Nl_‘N;,
and on its derived simultancous linear equations Rank[A|8] = N, = N,+N; — (I — m),
then x(n),y(n) can be uniquely specified by solving the simultancous linear equations.

Theorem 5. For canonical type V, if

(1) 3my + my =N, + N, for V(a) and 3my =+ m > N, + N, for V(b), when N,>
m + My

(2) 4my + 2my = N, + 2N, for V(a) ard 4m; + 2my = N, + 2N, for V(b), when
.Nz % my + Mas
and on its derived simultaneous linear equations Rank[A|b6] = N,= N,+ N, —2m, —
my, then x(n), y(n) can be uniquely specified by solving the simultaneous linear equations.

Theorem 6. For canonical type VI

(1) If at least one of the four points x(1), x(Ny), ¥(1), y(Ni) is unknown, then

x(n) y(n) can be uniquely specified recursively.

(2) If =(1), =(N), y(1), y(N;) are all known, and on its derived simultaneous
dincar equations Rank[A|b] = N, = (N, + N; — 2)/2, then x(n), y(n) can be unique-
dy specified by solving the simultancous linear equations.

Proof. (1) Here, we only consider the case where (1) is an unknown point, it
is similar to other cases.

Since 2(1), y(1) are known and 2(1) = x(1)y(1), we get (1) = z(1)/y(1). In
turn, from z(2) = x(2)y(1) + #(2)x(1) and x(1), =x(2), y(1), we get ¥(2) =
(=(2) -‘—x(Z)y(l))/x(l), -+« recursively, x(n), ¥(n) can be specified.

(2) As shown in Fig. 2, for each position at which (® points and 0 points are
just overlapping the correspondent equations in (2) are reduced into linear ones.

On the one hand, the number of the unknown points is N, = (N,—1)/2 +
{N; —1)/2 = (N, 4+ N, —2)/2. (where N, is surely an integer, " for x(n), the
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number of the unknown points cannot be simultaneously even or odd, which leads N,
to be odd, similarly N, to be odd, therefore, Ny + N, — 2 is even.)

On the other hand, the number of the linear equations in (2) is
[(Ny+ N; —1) —1]/2 = (N, + N; — 2)/2 which equals N,,

And we also have Rank[A|2] = N,. Consequently, x(n), y(n) can be unique-
ly specified by solving the simultaneous linear equations. Q. E. D.

For canonical type VI(b), similarly, x(n), y(») may also be specified by
combining the recursive way and the way of solving the derived simultaneous linear
equations,

IV. ALGORITHM AND SIMULATIONS
1. Algorithm

Step 1. According to the lemmas in Section II, 1, recurisively turn the problem
into one of six canonical types.

Step 2. Use the algorithm in Appendix 1 to obtain the derived Matrix A4 and the
derived constant vector &, thus the derived simultaneous linear equations 4X = 5.

Step 3. Solve this simultaneous equations in one of the following two ways.

(a) Among all the equations in AX = b, take out N, equations and solve them
by one of usual methods for solving simultaneous linear equations.

(b) Enhance the anti-interference ability, make the full use of all the equations.
and obtain the solution by least square method, i.e. X = (ATA4) 475,

Except the directly solving method mentioned above, an iterative method may also
be used. The solution of the direct method may be taken as the initial for iteration.
In the noise situation, by direct method, due to the recursion in Step 1, it is possible-
to make the errors unevenly distributed, which may possibly be lessened by iterative.
method. Further investigation is needed along this direction.

2. Simulations

Simulation 1. x(a) is given as Fig. 3(b), N, =25. y(n) is given as Fig. 3(c¢),
N, =30. The convolution z(#) of x(n), y(n) by (2) is given as Fig. 3(a), its
length is Ny+N,—1 = 54. Now, assume] that we know the whole 2(n) and the par-
tial sample points of x(n), y(n) which are circled by the dotted lines in Figs. 3 (b)
and (c). It is not difficult to see that the problem can be turned into the one of ca--
nonical type I. From Theorem 1, the problem is linear solvable if m, 4+ m, = [(N, +
N, +2)/31 =1[(25+ 30+ 2)/3]1 =19. Now, given that m, = 12 for y(n), my=
7 for x(n), x(n), y(n) are obtained by the algorithm in Section IV, 1. Figs. 3(d)
and (e) are the results by usual method (i.e. Step 3(a)), Figs. 3(f) and (g) are the
results by least square method (i.e. step 3(b)).

Simulation 2. x(n), given as Fig. 4(b) with N, = 21, is a mixture phase signal,
y(n), given as Fig. 4(c) with N; = 25, is a2 minimum phase signal. The convolution
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(a)
The waveform of (1)

,H.WMH ]” |l||| - W
(b) (3]
Reconstructed
by usual method
@ (e)
Reconstructed by
least square method T
] (®)
The waveform of x (n) The wavéform of ¥ (n)

Fig. 3. L near semi-blind deconvolution (simulation 1).

z(n) = x(n) % y(n) is given as Fig. 4(a), its length is N, + N, — 1 = 54. Now, as-
sume that we know the whole z(n) and the partial sample points of x(n), y(n) which
are circled by the dotted lines in Figs. 4(b) and (c). It is not difficult to see that the
problem can also be turned into the one of canonical type I. From Theorem 1, the
problem is linear solvable if m;, + m; > [(21 + 25 + 2)/3] = 16. Now, m; =8 for
y(n), my =8 for x(n), x(n), y(n) are obtained by the algorithm in Sec. IV, 2. Figs.
4(d) and (e) are the results by a usual method (i.e. Step 3 (a)), Figs. 4(f) and (g)
are the results by least square method (i.e. Step 3(b)).

V. Summary

A class of deconvolution problem called SBD has heen proposed in this paper.
The linear SBD problem of finite length sequence has been investigated. Firstly, we have



1330 .
SCIENTIA SINICA (Series A) Vol. XXX

(@)

The waveform of* Z(7}

|l '
Original
(b) (<)
Reconstructed by [
usual method |
@ ()
Reconstructed by
‘least square mtheod’
0] &)

The waveform of  x (n) The waveform of ¥ (n}

Fig. 4. Lincar semi-blind deconvalution. (simulation. 2). .

turned a number of usual problems into six canonical types, then several theorems
have been given to show the conditions for the six types being linear solvable and with
unique solution. Lastly, an algorithm for lincarISBD is . .presented. The results of
computer simulation have verified these theorems and the effectivenees of . the algorithm.

Besides the six canonical types discussed in this paper, SBD in other problems may
also be made in the same way, i.e. the algorithms similar to those in Sec..IV, 1 anz
Appendix 1 may be developed. However, as the situation is quite complicated, further
investigation is needed. ’

Finally, it deserves to be pointed out that some conclusions of this paper are ap-
plicable to not only the deconvolution problem but also to the problem of the signa}
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reconstruction from its .partial samples and spectral magnitude. For example, (i) the
problems corresponding to canonical type I is just the problem discussed in Refs. [6,
71 if y(n) = x(—n), my = my=m, Ny=N,=N. Let us put this condition into
Theorem 1. The condition part of Theorem 1 is reduced to the onec of 3m =N or
m>>[(N + 2)/3], then, Theorem 1 is just the same as Theorem 1 in Ref. [7]. The
problem investigated in [6,7] may be considered as a special case of the problems inves-
tigated in this paper. (ii) In -Theorem 6, let y(n) = x(—n), then for finite time-dura-
tion discrete signal, from its spectral magnitude, the signal can be uniquely reconstruct-
ed from the sparsely resampled signal. This is a new result different from those of
[6, 7], and may possibly be used for data compression in storing and transmitting
the mixture phase signals.

Aﬁpendix 1
The Algorithm for the Derived Matrix A and the
Derived Constant Vector B

Only the algorithm for canonical type I is given here. The algorithms for other
canonical types as well as a general algorithm may be developed in the same way.

Initialization. 1) Array X(n), n=1,2,+++, N, and Y(n),n=1, 2, +-+, N,
are prepared to store the sample points of x(n), ¥(n) respectively, and put the known
points of x(n), y(n) at the corresponding positions of the two arrays. Another
array Z(n), n=1,2, «++, L; is used to store all the samples of z(n), where L, =
N+ N, — 1 is the length of z(n).

2) Create two integer array IX(n), n =1, 2, «++, N, and IY(n), n=1, 2,
+++, N, respectively, e.g. if the sample point at X(i) (or Y (7)) is known, then set
IX(§) =1 (or 1Y(s) = 1), otherwise set IX(i) =0 (or IY(i) = 0),

3) An L, X N-dimensional matrix 4 and an array B(N,) are prepared for storage
of the derived matrix 4 and the derived constant vector % respectively, where N, is the
number of the unknown points.

4) Set up an indication variable IFG, it is automatically set that IFG =1 if the
unmber of equations is equal to or larger than that of the unkown points; otherwise,

IFG =0,

Step 1. Set iy =1, i, =1, input my, m,,

Step 2. Loop 1. k=1,2,+-+, Lz,
If % > N, then kk = N, else kk = &,
If > N; then #;, — i, + 1,

Loop 2. i=14dy, -+, kk
If IX(#) =0 and Y(k+ 1 — ) =10 then go to Loop 1.
If 1X(5) = 0then A(d3,i — m,) = Y(ki+1 —1i), go toLoop 2.
If 1Y(k+1—134) =0 then A(ig, N, —2m — m+k + 1—i)
= X(7), go to Loop 2.
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Z(R) ——X(OY(k+1—i)+ Z(k).
B(iy) = Z(k), ix<iy+ 1.
Step 3. If (44— 1) = (N, + N; — 1) then IFG = 1, otherwise IFG = 0,
Step 4. Return, END.

After the algorithm stops, the first i, row of Matrix A constitutes the derived matr-
ix and the first 7z elements of Array B constitue the derived constant vector.
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