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Abstract We introduce the notions of differential graded (DG) Poisson algebra and DG Poisson module. Let

A be any DG Poisson algebra. We construct the universal enveloping algebra of A explicitly, which is denoted

by Aue. We show that Aue has a natural DG algebra structure and it satisfies certain universal property. As a

consequence of the universal property, it is proved that the category of DG Poisson modules over A is isomorphic

to the category of DG modules over Aue. Furthermore, we prove that the notion of universal enveloping algebra

Aue is well-behaved under opposite algebra and tensor product of DG Poisson algebras. Practical examples

of DG Poisson algebras are given throughout the paper including those arising from differential geometry and

homological algebra.
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1 Introduction

The Poisson bracket was originally introduced by the famous French mathematician Siméon Denis Pois-

son in search for integrals of motion in Hamiltonian mechanics. For Poisson algebras, many important

generalizations have been obtained in both commutative and noncommutative settings recently: Poisson

orders [5], graded Poisson algebras [6, 9], noncommutative Leibniz-Poisson algebras [7], left-right non-

commutative Poisson algebras [8], Poisson PI algebras [23], double Poisson algebras [32], central simple

Poisson algebras [30], reduced Poisson algebras [17], dual Lie bialgebras of Poisson type [29], noncom-

mutative Poisson algebras [33], Novikov-Poisson algebras [34] and quiver Poisson algebras [36]. One of

the interesting aspects of Poisson algebras is the notion of Poisson universal enveloping algebra, which

was first introduced by Oh [26] in order to describe the category of Poisson modules. Since then, many

progresses have been made in various directions of studying Poisson universal enveloping algebras, such

as universal derivations and automorphism groups [31], Poisson-Ore extensions [19], Poisson Hopf alge-

bras [20], and deformation theory [35].

Our aim in this paper is to study Poisson algebras and their universal enveloping algebras in the

differential graded setting. Roughly speaking, a DG Poisson algebra is a differential graded commutative
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algebra together with a Poisson bracket satisfying certain compatible conditions. The Poisson bracket in

our definition is assumed to have arbitrary degree rather than zero, which seems to be more natural as it

appears in various examples like Schouten-Nijenhuis bracket in differential geometry and Gerstenhaber-

Lie bracket in homological algebra. There are many equivalent ways to define the universal enveloping

algebra of a DG Poisson algebra, among which we choose to use the explicit generators and relations;

see Definition 4.1 and Remark 4.4. Regarding the universal property, we succeed to generalize it to the

DG setting in Proposition 4.3, which induces an equivalence of two module categories as Theorem 5.2.

Moreover, by considering the opposite algebra and the tensor product of DG Poisson algebras, we can

view the universal enveloping algebra as a tensor functor from the category of DG Poisson algebras to

the category of DG-algebras, which is summarized in Theorem 5.5. Moreover, any commutative Poisson

algebra gives rise to a Lie-Rinehart pair associated to its Kähler differential [19, Subsection 5.2], which

might provide an alternative approach to the results in our paper once we add the DG structure.

Differential graded algebras arise naturally in algebra, representation theory and algebraic topology.

For example, Koszul complexes, endomorphism algebras, fibers of ring homomorphisms, singular chain

and cochain algebras of topological spaces, and bar resolutions all admit natural differential graded algebra

structures. Moreover, differential graded commutative algebra provides powerful techniques for proving

theorems about modules over commutative rings [1]. On the other hand, using deformation quantization

theory [10,14,16], Poisson brackets can be used as a tool to study noncommutative algebras. For example,

by considering the Poisson structure on the center of Weyl algebras, Belov and Kontsevich [3] proved that

the Jacobian conjecture is stably equivalent to the Dixmier conjecture. Therefore, as a generalization

of both structures, we expect more study of DG Poisson algebras for its own interests, and further

applications in a wide range of mathematical fields.

The paper is organized as follows. Some background materials are reviewed in Section 2. The definition

of DG Poisson algebra is given in Section 3, and the universal enveloping algebra of a DG Poisson algebra

is defined in Section 4. Basic properties of universal enveloping algebras are discussed in Section 5.

Several further examples of DG Poisson algebras are provided in Section 6. In Section 7, future projects

related to this paper are discussed.

2 Preliminaries

Throughout, we work over a base field k, and all vector spaces and linear maps are over k. In what

follows, an unadorned ⊗ means
⊗

k
and Hom means Homk. All gradings are referred to Z-gradings

with index occurs in upper superscript regarding cohomology. All elements and homomorphisms will

be homogeneous in the graded setting. We refer the readers to [11, 27] for the following well-known

definitions.

A graded (associative) algebra means a Z-graded algebra A =
⊕

i∈Z
Ai with k ⊆ A0 and AiAj ⊆ Ai+j

for all i, j ∈ Z. Moreover, A is said to be graded commutative if ab = (−1)|a||b|ba for all elements a, b ∈ A,

where |a|, |b| denote the degree of a, b in A.

A differential graded algebra (or DG-algebra, for short) is a graded algebra A together with a map

dA : A → A of degree 1 such that

(1) (differential) d2A = 0; and

(2) (graded Leibniz rule) dA(ab) = dA(a)b+ (−1)|a|adA(b) for all elements a, b ∈ A.

Note that the cohomology of a DG-algebra is always a graded algebra.

Let A be a DG-algebra. A left differential graded (DG) module over A is a graded left A-module

M =
⊕

i∈Z
M i together with a linear map dM : M → M of degree 1 such that

(1) d2M = 0; and

(2) dM (a ·m) = dA(a) ·m+ (−1)|a|a · dM (m) for all elements a ∈ A and m ∈ M , where · denotes the

A-module action on M .

Right DG A-modules and DG A-bimodules can be defined in the similar manner. The category of left

DG A-modules (resp. right DG A-modules) will be denoted by DGrMod-A (resp. A-DGrMod). For any
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M,N ∈ DGrMod-A, let HomA(M,N) be the set of all A-module morphisms f : M → N of degree 0 such

that fdM = dNf .

A differential graded (DG) Lie algebra is a graded vector space L =
⊕

i∈Z
Li together with a bilinear

Lie bracket [−,−] : L⊗ L → L of degree p and a differential d : L → L of degree 1 (d2 = 0) such that

(1) (antisymmetry) [a, b] = −(−1)(|a|+p)(|b|+p)[b, a];

(2) (Jacobi identity) [a, [b, c]] = [[a, b], c] + (−1)(|a|+p)(|b|+p)[b, [a, c]]; and

(3) d[a, b] = [d(a), b] + (−1)(|a|+p)[a, d(b)] for all elements a, b, c ∈ L.

It is worth pointing out that in the above definition, we assume that the Lie bracket has arbitrary

degree p rather than p = 0 as usual. It applies to many cases, for example, the Gerstenhaber Lie bracket

defined for the Hochschild cohomology for any associative algebra has degree −1 (p = −1 and d = 0).

Note that Jacobi identity of the Lie bracket may also be expressed in a more symmetrical form: For any

a, b, c ∈ L, we have

(−1)(|a|+p)(|c|+p)[a, [b, c]] + (−1)(|b|+p)(|a|+p)[b, [c, a]] + (−1)(|c|+p)(|b|+p)[c, [a, b]] = 0.

Let L be a DG Lie algebra with Lie bracket of degree p. A left differential graded (DG) Lie module

over L is a graded vector space M =
⊕

i∈Z
M i together with a differential dM : M → M of degree 1

(d2M = 0) and a bilinear map [−,−]M : L⊗M → M of degree p such that

(1) [[a, b]L,m]M = [a, [b,m]M ]M + (−1)(|a|+p)(|b|+p)[b, [a,m]M ]M ; and

(2) dM ([a,m]M ) = [dL(a),m]M + (−1)(|a|+p)[a, dM (m)]M for all elements a ∈ L and m ∈ M .

Right DG Lie L-modules and DG Lie L-bimodules can be defined in the similar manner. The category

of left DG Lie L-modules (resp. right DG Lie L-modules) will be denoted by DGrLie-L (resp. L-DGrLie).

For any M,N ∈ DGrLie-A, let HomL(M,N) be the set of all Lie L-module morphisms f : M → N of

degree 0 such that fdM = dNf .

3 DG Poisson algebras and modules

In literature, a Poisson algebra usually means a commutative algebra together with a Lie bracket which is

a biderivation [19, Definition 2.1]. The notion of DG Poisson algebra can be considered as a combination

of commutative algebras and Lie algebras in the differential graded setting. In the following definition,

we allow the Poisson bracket to have arbitrary degree p.

Definition 3.1. A differential graded Poisson algebra (or DG Poisson algebra, for short) is a quadruple

(A, ·, {−.−}, d), where A =
⊕

i∈Z
Ai is a graded vector space such that

(i) (A, ·, d) is a graded commutative DG-algebra with differential d : A → A of degree 1.

(ii) (A, {−,−}, d) is a DG Lie algebra with Poisson bracket {−,−} : A⊗A → A of degree p.

(iii) (Poisson identity) {a, b · c} = {a, b} · c+ (−1)(|a|+p)|b|b · {a, c} for all elements a, b, c ∈ A.

Remark 3.2. A noncommutative version of a DG Poisson algebra can be made without “graded

commutative” in Definition 3.1(i).

In the following, we will consider Poisson modules over a DG Poisson algebra A with Poisson bracket

of degree p. In order to make compatible with the degree of the Poisson bracket of A, we additionally

require that the bracket A⊗M → M in the Poisson module structure for any Poisson module M shares

the same degree p with the degree of the Poisson bracket of A.

Definition 3.3. A left differential graded (DG) Poisson module over A is a quadruple (M, ∗,

{−,−}M , dM ), where M =
⊕

i∈Z
M i is a graded vector space with differential dM : M → M of de-

gree 1 such that

(i) (M, ∗, dM ) ∈ DGrMod -A via A-module action ∗ : A⊗M → M of degree 0.

(ii) (M, {−.−}M , dM ) ∈ DGrLie -A via Lie A-module action {−.−}M : A⊗M → M of degree p.

(iii) {a, b ∗m}M = {a, b}A ∗m+ (−1)(|a|+p)|b|b ∗ {a,m}M , and

(iv) {a · b,m}M = a ∗ {b,m}M + (−1)|a||b|b ∗ {a,m}M for all elements a, b ∈ A and m ∈ M .
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Right DG Poisson A-modules and DG Poisson A-bimodules are defined in the similar manner. The

category of left DG Poisson A-modules (resp. right DG Poisson A-modules) will be denoted by DGrP-A

(resp. A-DGrP). For any M,N ∈ DGrP-A, let HomA(M,N) be the set of all morphisms f : M → N of

degree 0, which are both A-module and Lie A-module morphisms satisfying fdM = dNf .

Example 3.4. The following are some trivial examples of DG Poisson algebras.

(i) Let (A, ·, {−,−}, d) be a DG Poisson algebra with Poisson bracket of degree 0. Then the degree 0

piece (A0, ·, {−,−}) is an ordinary Poisson algebra. Conversely, any Poisson algebra can be considered

as a DG Poisson algebra concentrated in degree 0 with trivial differential.

(ii) Graded commutative DG-algebras are DG Poisson algebras with trivial Poisson bracket.

(iii) Graded Poisson algebras are DG Poisson algebras with trivial differential.

(iv) DG Lie algebras are DG Poisson algebras with trivial product added by a copy of the base field k.

Example 3.5. Let (V, dV ) be a differential graded vector space with differential dV : V → V of

degree 1. There are two natural ways to construct DG Poisson algebras from V . One is to take the

Hom complex of V , denoted by Hom(V, V ). It is easy to check that Hom(V, V ) is a noncommutative

DG-algebra with the product given by the composition, and the differential given by

d(f) = dV f − (−1)|f |fdV

for any f ∈ Hom(V, V ). Moreover, one sees that Hom(V, V ) becomes a DG Poisson algebra, where the

Poisson bracket is given by the graded commutator defined by

[f, g] := fg − (−1)|f ||g|gf

for any f, g ∈ Hom(V, V ).

The other way is to consider the graded symmetric algebra S(V ) over V such that

S(V ) := T (V )/(f ⊗ g − (−1)|f ||g|g ⊗ f),

where T (V ) is the tensor algebra over V , and f, g ∈ V . Therefore, S(V ) becomes a DG Poisson algebra

via (1) (differential) d(f) = dV f − (−1)|f |fdV , and (2) (Poisson bracket) {f, g} := [f, g] for any f, g ∈ V .

4 Universal enveloping algebras of DG Poisson algebras

The universal enveloping algebra of an ordinary Poisson algebra is given in [26]. Our aim is to generalize

the definition to the differential graded setting. Let A be a DG Poisson algebra with Poisson bracket

{−,−} of degree p.

Definition 4.1. Let

MA = {Ma : a ∈ A} and HA = {Ha : a ∈ A}

be two copies of the graded vector space A endowed with two linear isomorphisms M : A → MA sending

a to Ma and H : A → HA sending a to Ha. The universal enveloping algebra Aue of A is defined to be

the quotient algebra of the free algebra generated by MA and HA, subject to the following relations:

(i) Mab = MaMb,

(ii) H{a,b} = HaHb − (−1)(|a|+p)(|b|+p)HbHa,

(iii) Hab = MaHb + (−)|a||b|MbHa,

(iv) M{a,b} = HaMb − (−1)(|a|+p)|b|MbHa,

(v) M1 = 1

for all elements a, b ∈ A.

Lemma 4.2. The universal enveloping algebra Aue has a natural DG-algebra structure induced by A

such that

|Ma| = |a|, |Ha| = |a|+ p, d(Ma) = Md(a) and d(Ha) = Hd(a)

for any a ∈ A.
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Proof. It is clear that all the relations (i)–(v) in Definition 4.1 are homogeneous. Then, Aue is a graded

algebra. It remains to show that d preserves all the relations, which is routine to check, e.g., for (ii) we

have

d(H{a,b}) = Hd{a,b} = H{d(a),b} + (−1)(|a|+p)H{a,d(b)}

= Hd(a)Hb − (−1)(|d(a)|+p)(|b|+p)HbHd(a)

+ (−1)(|a|+p)(HaHd(b) − (−1)(|a|+p)(|d(b)|+p)Hd(b)Ha)

= (Hd(a)Hb + (−1)(|a|+p)HaHd(b))− (−1)(|a|+p)(|b|+p)(Hd(b)Ha + (−1)(|b|+p)HbHd(a))

= (d(Ha)Hb + (−1)|Ha|Had(Hb))− (−1)(|a|+p)(|b|+p)(d(Hb)Ha + (−1)|Hb|Hbd(Ha))

= d(HaHb − (−1)(|a|+p)(|b|+p)HbHa).

This completes the proof.

The universal enveloping algebra of an ordinary Poisson algebra can be described by certain universal

property; see [20, Subsection 1.2]. The same thing happens to any DG Poisson algebra A, which is

determined by the similar universal property. We say a triple (B, f, g) has property P with respect to

A (or P-triple, for short) if

(P1) B is a DG-algebra and f : A → B is a DG-algebra map of degree 0;

(P2) g : (A, {−,−}) → B is a DG Lie algebra map of degree p, where the Lie bracket on B is given by

the graded commutator;

(P3) f({a, b}) = g(a)f(b)− (−1)(|a|+p)|b|f(b)g(a), and

(P4) g(ab) = f(a)g(b) + (−1)|a||b|f(b)g(a), for all a, b ∈ A.

Note that in Definition 4.1, MA, HA induces two linear maps from A to Aue, where we abuse to keep

the same notation as M,H : A → Aue. It is clear that the triple (Aue,M,H) has property P, which is

universal in the following sense.

Proposition 4.3. For any P-triple (B, f, g), there exists a unique DG-algebra map φ : Aue → B of

degree 0 such that the following diagram:

A
M

H
//

f

g
��@

@@
@@

@@
Aue

∃!φ}}{
{

{
{

B

bi-commutes, i.e., f = φM and g = φH.

Proof. Suppose the map φ exists. We get

φ(Ma) = f(a) and φ(Ha) = g(a)

for all a ∈ A by using bi-commutativity f = φM and g = φH . In order to show that φ is well-defined on

Aue, we need to show that φ preserves all the relations (i)–(v) in Definition 4.1. (P1) implies that

φ(Mab) = f(ab) = f(a)f(b) = φ(Ma)φ(Mb)

for any a, b ∈ A and φ(M1) = f(1) = 1 = φ(1). So φ preserves (i) and (v). Similarly, φ preserves (ii)

because of (P2); (iii) is preserved by φ by (P4); and (P3) implies that (iv) is preserved by φ. Moreover,

it is clear that φ commutes with the differentials of Aue and B for f and g are DG maps. Finally, the

uniqueness of φ is obvious. This completes the proof.

Remark 4.4. The other way to define the universal enveloping algebra of an ordinary Poisson algebra

is through smash product [24, Definition 4.1.3] modulo certain relations; see [36, Section 2]. We can carry

the same idea for any DG Poisson algebra A. Consider (A, {−,−}) as a DG Lie algebra, and denote by

U(A) its universal enveloping algebra. It is important to point out that U(A) is a differential graded Hopf
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algebra with respect to the total grading coming from the grading of A, where elements in A ⊂ U(A)

are all primitive. It is routine to check that A becomes a differential graded U(A)-module algebra via

h · a := {h, a} for all elements h, a ∈ A. As a consequence, the universal enveloping algebra Aue is the

quotient algebra of the smash product A#U(A), subject to the relations

1#(ab)− a#b− (−1)|a||b|b#a

for all elements a, b ∈ A.

5 Some basic properties

Recalling Example 3.5, let V be a graded vector space with differential dV of degree 1. Denote by

Hom(V, V ) all the homogenous maps from V to itself, which has a natural differential given by

d(f) = dV f − (−1)|f |fdV

for any f ∈ Hom(V, V ). Moreover, one sees that Hom(V, V ) becomes a DG-algebra via composition of

maps such that

d(fg) = d(f)g + (−1)|f |fd(g)

for any f, g ∈ Hom(V, V ).

Now, let A be a DG Poisson algebra with Poisson bracket {−,−}A of degree p. By Definition 3.3, any

DG Poisson A-module structure on V requires two linear maps from A to Hom(V, V ), i.e., one A-module

action ∗ : A ⊗ V → V of degree 0 and another Lie A-module action {−.−}V : A ⊗ V → V of degree p

satisfying conditions described in Definition 3.3. The following lemma is straightforward.

Lemma 5.1. The DG vector space (V, dV ) belongs to DGrP-A if and only if there exits a P-triple

(Hom(V, V ), f, g) such that the A-module and Lie A-module actions on V are given by f and g corre-

spondingly.

We will see that the notion of universal enveloping algebra for DG Poisson algebra is proper in its

usual sense as there exists an equivalence of two module categories.

Theorem 5.2. The category of left (resp. right) DG Poisson modules over A is equivalent to the

category of left (resp. right) DG modules over Aue, i.e.,

DGrP -A ≡ DGrMod -Aue (resp. A-DGrP ≡ Aue-DGrMod).

Proof. Let M ∈ DGrP-A. By Lemma 5.1, it gives us a P-triple (Hom(M,M), f, g). Then by Propo-

sition 4.3, we get a unique DG-algebra map φ : Aue → Hom(M,M) of degree 0 making certain diagram

bi-commute. Hence, we can view M as a DG Aue-module via φ. Moreover, it is direct to show that φ

respects homomorphisms between any two DG Poisson A-modules. Hence, we have a functor Φ : DGrP-

A → DGrMod-Aue induced by φ. Finally, using the canonical triple (Aue,M,H), we see that any

M ∈ DGrMod-Aue can be viewed as a DG Poisson A-module by Lemma 5.1 again, which yields an

inverse functor of Φ.

In the following, we will use DGA to denote the category of all DG-algebras, and use DGPA[p] to

denote the category of all DG Poison algebras whose Poisson brackets are of degree p along with stan-

dard morphisms. It is well known that how to take opposite algebra and tensor product in DGA with

application of Koszul signs. In DGPA[p], the opposite DG Poisson algebra of A is denoted by Aop, where

Aop = A as DG-algebras and the Poisson bracket of Aop is given by

{a, b}Aop := (−1)(|a|+p)(|b|+p){b, a}A = −{a.b}A, for all a, b ∈ Aop.

Now, let B be another DG Poisson algebra with Poisson bracket {−,−}B of the same degree p. The tensor

product A ⊗ B in DGA is again a graded commutative DG-algebra, where the product of homogenous
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elements of degree d1 and d2 is twisted by (−1)d1d2 . Moreover, it is straightforward to check that A⊗B

becomes a DG Poisson algebra with Poisson bracket of degree p by setting

{a1 ⊗ b1, a2 ⊗ b2}A⊗B := (−1)(|a2|+p)|b1|{a1, a2}A ⊗ b1b2 + (−1)(|b1|+p)|a2|a1a2 ⊗ {b1, b2}B (5.1)

for any ai ∈ A and bi ∈ B, i = 1, 2.

Example 5.3. Let A be a DG Poisson algebra with Poisson bracket of degree p, and (M, ∗, {−,−}M ,

dM ) a left DG Poisson module over A. Then (Mop, ∗op, {−,−}Mop, dMop) is a right DG Poisson module

over the opposite DG Poisson algebra Aop, where (Mop, dMop ) = (M,dM ) as differential graded vector

spaces, and

m ∗op a := (−1)|a||m|a ∗m, {m, a}Mop := (−1)(|a|+p)(|m|+p){a,m}M ,

for any a ∈ A,m ∈ M . Moreover, let B be another DG Poisson algebra with Poisson bracket of same

degree p, and (N, ∗, {−,−}N , dN ) a left DG Poisson module over B. Then, the tensor product M ⊗ N

can be viewed as a left DG Poisson module over the DG Poisson tensor product A⊗B, where we use the

obvious DG A⊗B-module structure on M ⊗N , and set up

{a⊗ b,m⊗ n}M⊗N := (−1)(|m|+p)|b|{a,m}M ⊗ (b ∗ n) + (−)|m|(|b|+p)(a ∗m)⊗ {b, n}N ,

for any a ∈ A, b ∈ B,m ∈ M,n ∈ N .

Lemma 5.4. Let A,B be two DG Poisson algebras with Poisson brackets of degree p. Suppose there

are two P-triples (C, f, g) and (D, j, k) with respect to A,B correspondingly. Then, there is a tensor

P-triple

T := (C ⊗D, f ⊗ j, f ⊗ k + (−1)p|B|g ⊗ j)

with respect to A⊗B. We use (−1)p|B|g ⊗ j to mean that

((−1)p|B|g ⊗ j)(a⊗ b) = (−1)p|b|g(a)⊗ j(b)

for any a ∈ A, b ∈ B.

Proof. It is tedious to check that (P1)–(P4) all hold for the triple T defined above. We only check (P1)

and (P3) here, and leave the rest to the readers. (P1) First of all, we show that

f ⊗ j : A⊗B → C ⊗D

is a graded algebra map of degree 0. For any ai ∈ A, bi ∈ B, i = 1, 2, we have

(f ⊗ j)[(a1 ⊗ b1)(a2 ⊗ b2)] = (−1)|a2||b1|(f ⊗ j)(a1a2 ⊗ b1b2)

= (−1)|a2||b1|f(a1a2)⊗ j(b1b2)

= (−1)|f(a2)||j(b1)|f(a1)f(a2)⊗ j(b1)j(b2)

= (f(a1)⊗ j(b1))(f(a2)⊗ j(b2))

= (f ⊗ j)(a1 ⊗ b1)(f ⊗ j)(a2 ⊗ b2).

Then, we have to show that f ⊗ j commutes the differentials. We have, for any a ∈ A, b ∈ B,

(f ⊗ j)dA⊗B(a⊗ b) = (f ⊗ j)(dA(a)⊗ b+ (−1)|a|a⊗ dB(b))

= fdA(a)⊗ j(b) + (−1)|a|f(a)⊗ jdB(b)

= dCf(a)⊗ j(b) + (−1)|a|f(a)⊗ dDj(b)

= dC⊗D(f ⊗ j)(a⊗ b).

(P3) For the left-hand side of the identity, by (5.1), we have

(f ⊗ j)({a1 ⊗ b1, a2 ⊗ b2}A⊗B)
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= (−1)(|a2|+p)|b1|f({a1, a2}A)⊗ j(b1b2) + (−1)|a2|(|b1|+p)f(a1a2)⊗ j({b1, b2}B)

= (−1)(|a2|+p)|b1|(g(a1)f(a2)− (−1)(|a1|+p)|a2|f(a2)g(a1))⊗ j(b1)j(b2)

+ (−1)|a2|(|b1|+p)f(a1)f(a2)⊗ (k(b1)j(b2)− (−1)(|b1|+p)|b2|j(b2)k(b1))

= (−1)|a2||b1|+p|b1|g(a1)f(a2)⊗ j(b1)j(b2)− (−1)|a1||a2|+p|b1|+p|a2|+|a2||b1|f(a2)g(a1)⊗ j(b1)j(b2)

+ (−1)|a2||b1|+p|a2|f(a1)f(a2)⊗ k(b1)j(b2)− (−1)|b1||b2|+p|b2|+p|a2|+|a2||b1|f(a1)f(a2)⊗ j(b2)k(b1).

For the right-hand side of the identity, letting

χ = f ⊗ k + (−1)p|B|g ⊗ j,

we have

χ(a1 ⊗ b1)(f ⊗ j)(a2 ⊗ b2)− (−1)(|a1|+|b1|+p)(|a2|+|b2|)(f ⊗ j)(a2 ⊗ b2)χ(a1 ⊗ b1)

= (f(a1)⊗ k(b1) + (−1)p|b1|g(a1)⊗ j(b1))(f(a2)⊗ j(b2))− (−1)(|a1|+|b1|+p)(|a2|+|b2|)(f(a2)⊗ j(b2))

× (f(a1)⊗ k(b1) + (−1)p|b1|g(a1)⊗ j(b1))

= (−1)|f(a2)||k(b1)|f(a1)f(a2)⊗ k(b1)j(b2) + (−1)p|b1|+|f(a2)||j(b1)|g(a1)f(a2)⊗ j(b1)j(b2)

− (−1)(|a1|+|b1|+p)(|a2|+|b2|)+|f(a1)||j(b2)|f(a2)f(a1)⊗ j(b2)k(b1)

− (−1)(|a1|+|b1|+p)(|a2|+|b2|)+p|b1|+|g(a1)||j(b2)|f(a2)g(a1)⊗ j(b2)j(b1).

Note that

f(a2)f(a1) = (−1)|f(a1)||f(a2)|f(a1)f(a2), j(b2)j(b1) = (−1)|j(b1)||j(b2)|j(b1)j(b2),

and f, j have degree 0, g, k have degree p. Replacing these things in the last equality, we will see that

(P3) holds.

Theorem 5.5. Let A,B be two DG Poisson algebras with Poisson brackets of the same degree p. Then

we have

(i) (Aop)ue ∼= (Aue)op.

(ii) (A⊗B)ue ∼= Aue ⊗Bue.

(iii) (A⊗Aop)ue ∼= Aue ⊗ (Aue)op.

Moreover, ue : DGPA[p] → DGA is a tensor functor.

Proof. We only prove (ii) here. We can get (i) from the same fashion, and (iii) is a corollary of (i)

and (ii). First of all, note that we have two canonical P-triples

(Aue,MA, HA) and (Bue,MB, HB).

By Lemma 5.4, there is a tensor P-triple,

T := (Aue ⊗Bue,MA ⊗MB,MA ⊗HB + (−1)p|B|HA ⊗MB)

with respect to A ⊗ B. It suffices to show that T has the universal property stated in Proposition 4.3.

Then the uniqueness argument will imply (ii). Now, suppose (D, f, g) is any P-triple. We will proceed

by completing the following diagram:

A
iA

{{xx
xx

xx
xx

x
fA,gA

��@
@@

@@
@@

MA,HA // Aue

∃!φA}}{
{

{
{

iAue

%%LLLLLLLLLL

A⊗B
f,g // D Aue ⊗Bue.

∃!φoo_ _ _ _ _ _ _ _

B

fB ,gB

??~~~~~~~iB

ccFFFFFFFFF

MB ,HB

// Bue

∃!φB

aaC
C

C
C iBue

99rrrrrrrrrr
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By the natural inclusion iA : A → A⊗B, it is clear that the triple (D, fA, gA) has property P with respect

to A. Then there exists a unique DG-algebra map φA : Aue → D of degree 0 such that fA = φAMA and

gA = φAHA. Similarly, there exists a unique DG-algebra map φB : Bue → D of degree 0 such that

fB = φBMB and gB = φBHB .

Once we establish the following lemma, by the universal property of the tensor product, we will have

a unique DG-algebra map φ : Aue ⊗ Bue → D of degree 0 making the above diagram bi-commutative.

Finally, the uniqueness of φ is clear by tracking the diagram.

Lemma 5.6. In the above diagram, for any x ∈ Aue and y ∈ Bue, we have

φA(x)φB(y) = (−1)|x||y|φB(y)φA(x).

Proof. By abuse of language, we use the same notation M and H to denote the two linear maps from

A and B to Aue and Bue correspondingly. Note that it suffices to consider x = Ma, Ha and y = Mb, Hb

for any a ∈ A, b ∈ B. We only check for x = Ma and y = Mb here, and leave the rest to the readers. We

have

φA(Ma)φB(Mb) = fA(a)fB(b) = f(a⊗ 1)f(1⊗ b) = f(a⊗ b)

= (−1)|a||b|f(1⊗ b)f(a⊗ 1) = (−1)|a||b|φB(Mb)φA(Ma).

The proof is complete.

6 Further examples of DG Poisson algebras

In this section, examples of DG Poisson algebras are provided arising from Lie theory, differential geom-

etry, homological algebra and deformation theory. See more examples in [4, 9].

6.1 Graded symmetric algebras of DG Lie algebras

Let (L, dL, [−,−]L) be a DG Lie algebra. As in Example 3.5, we use S(L) to denote the graded symmetric

algebra over L, i.e.,

S(L) := T (L)/(a⊗ b− (−1)|a||b|b⊗ a),

for any a, b ∈ L. The differential dL of L can be extended to the graded symmetric algebra S(L) such that

S(L) becomes a graded commutative DG-algebra. Here, we consider the total grading on S(L) coming

from the grading of L. Moreover, the Lie bracket on L also can be extended to a Poisson bracket on S(L)

by Jacobi identity such that

{a, b}S(L) := [a, b]L,

for any a, b ∈ L. Hence, the graded symmetric algebra S(L) over any DG Lie algebra L has a natural

DG Poisson algebra structure.

Next, note that we can view L as a left DG Lie L-module via the Lie bracket [−,−]L. The graded

semi-product L⋊ L is constructed in the following way: (1) L⋊ L = L⊕ L as graded vector spaces, (2)

Lie bracket [−,−]L⋊L is 0 on the Lie subalgebra L + 0 and equals [−,−]L from the pair of components

0 + L and L + 0 to L + 0, (3) the differential on L ⋊ L is given by dL component-wisely. We denote by

U(L ⋊ L) the graded universal enveloping algebra of L ⋊ L, which is a DG-algebra. Therefore, we have

the following isomorphism:

S(L)ue ∼= U(L⋊ L).

The isomorphism Φ : S(L)ue → U(L ⋊ L) can be constructed explicitly by Definition 4.1 such that

Φ(ML) = L + 0 and Φ(HL) = 0 + L in L ⋊ L. Moreover, S(L) has a differential graded Hopf structure

which is compatible with the Poisson bracket. See [19, Proposition 6.3] for the trivial case when L is only

a Lie algebra without DG structure.
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6.2 Gerstenhaber algebras

Consider DG Poisson algebras with trivial differential. In general, most of such examples appear to be in

the context of Gerstenhaber algebra, which by definition is a graded commutative algebra G =
⊕

i∈Z
Gi

together with a Lie bracket [−,−] : G⊗G → G of degree −1 satisfying the following:

(1) (antisymmetry) [a, b] = −(−1)(|a|−1)(|b|−1)[b, a],

(2) (Poisson identity) [a, bc] = [a, b]c+ (−1)(|a|−1)|b|b[a, c],

(3) (Jacobi identity) [a, [b, c]] = [[a, b], c] + (−1)(|a|−1)(|b|−1)[b, [a, c]] for any a, b, c ∈ G.

For example, in homological algebra, Hochschild cohomology of any associated algebra together with

the Gerstenhaber Lie bracket [12]; in differential geometry, the alternating multivector fields on a smooth

manifold together with the Schouten-Nijenhuis bracket extending the Lie bracket of vector fields [25],

are all Gertenhaber algebras. Moreover, given an arbitrary Lie-Rinehart algebra (R,L) [28], consider

the graded exterior R-algebra Λ∗
RL over L. The Lie bracket [−.−] of L induces a Gerstenhaber algebra

structure on Λ∗
RL explicitly given by, for any

u = α1 ∧ · · · ∧ αl ∈ Λl
RL and v = αl+1 ∧ · · · ∧ αn ∈ Λn−l

R L,

where α1, . . . , αn ∈ L, then

[u, v] = (−1)|u|
∑

j6l<k

(−1)(j+k)[αj , αk] ∧ α1 ∧ · · · α̂j · · · α̂k · · · ∧ αn.

Suppose A is a DG Poisson algebra with Poisson bracket of degree −1. Then, it is clear that the

cohomology ring HA is a Gerstenhaber algebra whose Lie bracket is induced by the Poisson bracket

on the cohomology. In the other hand, let G =
⊕

i∈Z
Gi be a Gerstenhaber algebra with a Lie bracket

[−,−] of degree −1. Suppose there is some element α ∈ G2 satisfying [α, α] = 0. Hence we can define

a map d : G → G of degree 1 such that d := [α,−]. If chark 6= 2, one sees that d2 = 0, hence we

have a differential d on G. Moreover, it is straightforward to check that, for any a, b ∈ G, we have (1)

d(ab) = d(a)b + (−1)|a|ad(b), and (2) d[a, b] = [d(a), b] + (−1)|a|−1[a, d(b)]. Therefore, G together with

d = [α,−] is a DG Poisson algebra.

6.3 Deformations of graded commutative DG-algebras

Let A =
⊕

i>Z
Ai be a graded commutative DG-algebra together with differential d of degree 1. Consider

a graded deformation of A over the ring k[[~]], which contains a bimodule map

⋆ : A[[~]]⊗A[[~]] → A[[~]]

making A[[~]] into a DG-algebra where deg ~ = 0. We can write the product of two elements a, b ∈ A as

a ⋆ b = ab+B1(a, b)~+B2(a, b)~
2 + · · ·+Bi(a, b)~

i + · · · ,

for bilinear maps Bi : A⊗A → A of degree 0. Suppose A[[~]] is not graded commutative. Then there is

some smallest integer m > 1 such that Bm(a, b) 6= (−1)|a||b|Bm(b, a) for some a, b ∈ A. As a consequence,

we can define a Poisson bracket associated to that deformation: for a, b ∈ A, we have

{a, b} := {~−m(a ⋆ b− (−1)|a||b|b ⋆ a)}~=0 = Bm(a, b)− (−1)|a||b|Bm(b, a).

It is routine to check that this degree 0 bilinear map {−,−} : A ⊗ A → A makes A into a DG Poisson

algebra.

7 Closing discussions

We close this paper by proposing some questions to be considered in the future projects:
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(1) In [33], a noncommutative Poisson structure on an associative algebra A was defined to be any

cohomology class π ∈ H2(A,A) in the second Hochschild cohomology group of A satisfying [π, π] = 0,

where [−,−] is the Gerstenhaber bracket on H
•(A,A). Can we define noncommutative DG Poisson

algebras using the same idea?

(2) Let A be a DG Poisson algebra. One sees easily that there exists a natural graded Poisson algebra

map fA : H(A)ue → H(Aue), where H means taking the cohomology ring. We ask when is fA an

isomorphism? Moreover, we ask if f : A → B is a quasi-isomorphism of DG Poisson algebras, does f

always induce a quasi-isomorphism between Aue and Bue?

(3) The classical Beilinson-Ginzburg-Soergel Koszul duality, see [2], states a derived equivalence be-

tween a Koszul algebra and its Koszul dual. Later, it is generalized to the DG setting by Lu et al. [18]

using A∞-algebras, see also [13, 15, 21, 22]. Can we establish Koszul duality for certain DG Poisson

algebras in terms of the derived equivalence of their DG Poisson modules?
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