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Abstract Based on the phase-space path integral for a system with a regular or singular Lagrangian
the generalized canonical Ward identities under the global symmetry transformation in extended phase space
are deduced respectively, thus the relations among Green functions can be found. The connection between
canonical symmetries and conservation laws at the quantum level is established. It is pointed out that this
connection in classical theories, in general, is no longer always preserved in quantum theories. The advantage
of our formulation is that we do not need to carry out the integration over the canonical momenta in
phase-space generating functional as usually performed. A precise discussion of quantization for a nonlinear
sigma model with Hopl and Chern-Simons terms is reexamined. The property of fractional spin at quantum

level has been clarified.

Keywords: path-integral quantization, constrained Hamiltonian system, Ward identity, symmetry and
conservation laws.

The connection between global symmetries and conservation laws are usually referred to
as Noether’s first theorem, and Noether’s second theorem or Noether identities refers to
a local symmetry of a system in classical theory. Noether identity corresponds to the Ward
(or Ward-Takahashi) identity in quantum theory. Noether theorems and Ward identities
are formulated in terms of Lagrange’s variables in configuration space!’. In ref. [2] the
canonical symmetry for a system with singular Lagrangian in classical theory has
been established. The Ward identities play an important role in modern quantum field
theories, and these identities have been generalized to the supersymmetry” and
superstring and other problems. All these derivations for Ward identities in the functional
integration method are usually discussed by using configuration space generating function-
al, which is valid for the case where the phase-space path integral can be simplified by
carrying out explicit integration over canonical momenta; then the phase-space generating
functional can be represented in the form of a functional integral only over the coordinates
(or field variables) of the expression containing a certain Lagrangian (or effective
Lagrangian) in configuration space. In the case where the “mass” depends on coordinates'!
or on coordinates and momenta!'”, one obtained effective Lagrangian in configuration-space
path integral which shows singularities with a J-function. Generally, for a constrained
Hamiltonian system, it i1s very difficult or even impossible to carry out the integration over
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canonical momenta. Phase-space path integral is much more fundamental than the
configuration-space path integral”. Therefore, the study of canonical symmetry of the sys-
tem in the phase space has more important sense. In ref. [8] the canonical Ward identities
for a local symmetry of a system in phase space have been derived. In the persent paper,
the global symmetry in phase space for a quantum system will be further investigated.

In this paper, the quantal global symmetry in phase space for a system with a regular
and singular Lagrangian will be discussed respectively. In sec. !, the generalized canonical
Ward identities for global symmetry are deduced, and the relations among Green function
can be obtained immediately. In sec. 2, Noether theorem at the quantum level has been
established, and for a certain case the global symmetries of the system imply corresponding
conservation laws in quantum theories. In general, the connection between global canonical
symmetries and conservation laws in classical theories is no longer preserved in quantum
theories. In sec. 3, the nonlinear sigma model with Hopf and Chern-Simons terms is
reexamined”, and a precise treatment of the quantization for those models is given. The
property of fractional spin at the quantum level has been explained.

1 Global canonical symmetries and Ward identities

Let us first consider a physical field defined by the field variable ¢(x) and the motion
of the field described by a regular Lagrangian /" (¢, ¢,). Our metric conventions are
g,=diag(+, —, —, —). The canonical Hamiltonian H ={d’x 7 .= [ d’x(np — ) is a function-
al of independent canonical variables ¢(x) and 7n(x), where n(x)=0%/dp(x) is a canonical
momentum conjugate o ¢(x). We adopt the path integral quantization for the system, the
phase-space generating functional of Green functions in the form of a functional integral

is!®
ZlJ, K= J DI exp {i l:!" + Jd“x(.lqo + Kn)]}, (1

)”’IJd"X .y'"=Jd‘x{n¢ — ) 2)

where

is a canonical action of the system. Here we have also introduced the exterior sources K
with respect to the field canonical momenta n which does not alter the calculation of Green
functions. Path integrals in phase space are more fundamental than configuration-space
path integral; the latter is fit for a Hamiltonian quadratic in the canonical momenta, where-
as the former is fit for arbitrary Hamiltonian density.

Let F(¢p, m) be a functional of canonical variables ¢(x) and =(x). One can define the
following functional integral:

Z.[J, K] :J Do InF(p, T) eXp {i [f‘" + fd“x(.hp + Kn):}}, 3)
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for the case J=K=0, the expection value of the operator ;7((;), n) on the ground state of

the field is just given by equation (3).
Consider an infinitesimal global transformation in extended phase space:
x"=x"+Ax"=x"+¢, 1"(x, @, 1),

@' (x")=@(x) +Ap(x) =@(x) +£,L°(x, @, T), 4)
n'(x") =n(x) + An(x) =n(x) +&,q(x, @, 1),

where &, (a=1, 2,---, r) are infinitesimal arbitrary parameters, t", £° and n° are some
functions of x, ¢(x) and n(x). For example. the conformal and internal transformation of
the fields are a special case of transformation (4). Under transformation (4), the vari-

ation of canonical action (2) is given by

Y Y
<5I"=Jd4,x’f;n { _()T{"' &=, ")+ i):!-- (n°—mn,t")
o on

+0,[(rip— 7.y 7] + D[n(&"~ rp,“r""ﬂ}’ ©
where D=d/dt and
oI" _ . OH, oI _ . OH,
Sp g dp on P Tom ©)

It is supposed that the Jacobian of transformation (4) is equal to unity. If the function-
al I and canonical action are invariant under transformation (4), because the functional

integral (3) is invariant under transformation (4), we have

ZJ|J, K= {“ﬂ(p"/‘-’nF((p, n)(l +ig, '(d“x{.f({”— ¢ ) +Kn —n 1)

o

+0,[(Jo+ Kn) t) }) exp {i [P’ + fd"x(Jqo + Kn)]}

. @ i (5 4 e 5
=([+1J:ajd‘x{J(§ -1 EJP(S—J)+K(q -1 ﬁng)

o o
-M’I[TW(J o TRk ﬂ}) o 271 K @

n - —id/oK

Conscquently, we obtain the following results: if F (@, ) and I” are invariant under
transformation (4), then the functional integral (3) satisfies

o o
4 ] a__ L pa
Jd _Y{J(a, A )-H((q ™0, 3K )

0 5
al 147 v 0 _
+GH|}; (J oJ K oK )]} ® -~ i8al Zg[J, K]=0. )

ws = iafak
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So if I” is invariant under transformation (4), but F is a variance one, we can proceed the

same way to obtain

oSV OF (b0 n 0 OF [, . & s D
— | = —1"y —— |+ — (=170 — | |+ —y
fd"‘{ i [5<p (5 R (SJ) on (” T L R Sy,

o O o el 7O o | =

n - —id/6K

We take F=1 in expression (9), from (1), (3) and (9), we obtain a result that the
generating functional Z[J, K] of Green function should satisfy the following identities:

0 0 0 0 .
4 a__ T a_ T "} Jur d —_—
Jd x{J(c T aﬂ—o_J)wLK(n T (,,,—O.K)ﬂ,,[r (J_{U +h—0‘K)}}W W ZIK]=0. (10)

i oK
Expressions (8), (9) and (10) are called canonical Ward identities for global symmetry
transformation in phase space. Functionally differentiating (10) with respect to J(x)
many times and setting exterior sources equal to J=K=0, we can obtain some
relationships among the Green functions in which one does not need to carry out the
integration over the canonical momenta in generating functional (1).

The system described by the singular Lagrangian (¢, d,¢) is subject to some inherent
phase space constraint and is called a constrained Hamiltonian system. Let A, (k=1, 2,
-+, K) be first-class constraints, and 0, (i=1,2, -, I) be second-class constraints. The gauge
conditions connecting the first-class constraints are Q,(k=1,2, -, K). The phase-space gen-
erating functional of a system with a singular Lagrangian is"

Z[J, K] :j DI, DC,IC,exp {i [I§H+Jd“x(.f¢ - K:rr):|}, (11)
where
fg;r=Jd4x k7 =Jd“x(.:‘/’f’ + L L), (12)
L= A A2+ 4,0, (13)
Z, =Jd*y[a(x) [A(x), 2,(0)}C() + % C(x){0.(x), 0,0} C;.(y):| (14)

and A,=(4, 4, 4), 4, can be determined by using the consistency requirement of constraint

and gauge conditions. Let us denote ¢ =(¢, 4,, C,, C,). Thus, expression (11) can be simpli-

m?

Z[J, K] =J Do exp {i [I;“W+ Jd‘x(‘}(p + Kn :|} (11a)

For a system with a singular Lagrangian, one can still proceed in the same way to obtain
canonical Ward identities under the global symmetry transformation in phase space for

fied as
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such a system, but in this case one must use [f; instead of I”" in expressions (1), (5) and
(7).

2 Global canonical symmetries and quantal conservation laws

The global canonical symmetries in connection with the conservation laws in classical
theories have been discussed in a previous work'!”. Here this problem at ‘the quantum
level will be further studied. Let us first consider a system with regular Lagrangian. It is
supposed that the canonical action (2) is invariant under the global transformation (4).
Now we localize transformation (4) and consider the following local transforamation con-

nected with transformation (4):

XP=x"+Ax"=x"+e (x)T"(x, @, ),
P'(X) = @(x) +Ap(x) = p(x) +&,(x) E(x, @, 1), (15)
m'(x") = n(x) + An(x) = n(x) +e,(x)n°(x, ¢, 7),

where ¢,(x) (e=1, 2, ---, r) are infinitesimal arbitrary functions and their values and deriva-
tives will vanish on the boundary of time-space domain. Under transformation (15) the

variation of canonical action (2) is given by
Y Y
31r= J d“.vs:a(.r){ % € =0, + 2L 7=, )+ 0, (xip— 7 )]
+D[n(l" — ¢, )] } + jdﬁc{[(R(P—-'/P”;)T“"}ﬁ,ﬁn(X) A(S w,,lf”“)Dsﬂ(x)}- (16)
Because the canonical action I” is invariant under the global transformation (4), the first
integral in expression (16) is equal to zero.

Suppose that the Jacobian of transformation (15) is equal to unity. The generating
functional (1) is invariant under transformation (15). We perform the integration by parts
of the right-hand side of the remaining part in (16) and use the boundary condition of £(x),
after which we substitute the result into (1) and functionally differentiate it with respect
to ¢(x). We obtain

J DIl [(np— 7 )" +D[n(E"—¢,, )] — M?} exp {i[!" + Jd“x(]qo + Kx)]} =0, (17
where
M*=J("— ¢, )+ K" —m, ™) (18)
Functionally differentiating (17) with respect to J(x) n times, one obtains

Y 7n({0,[(np—7# )t] + D[ — ¢, )]+ M7} p(x))p(x,) p(x,)

-i Z(p(xl) (x ) e(x;, ) e(x,)NO(x — X)) exp{i [f"-kjd“x(lqo + KR)J} =0, (19
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where
N'=EC"—¢ 1" (20)

Let J=K=0 in eq. (19). One gets"
O T*{0,[(rp— 7 )]+ D[n(E" = ¢, T*)] fp(x,) ()| 0>
=i ) 0| T*[p(x) p(x, )p(x;, ) (x,)IN[0>(x = x,). (21)

Fixing t and letting
ot —=— 00

m+ 2 *

Loty by =00, t 0
and using the reduction formula'¥, we find that expression (21) can be reduced to
Cout, m|{d,[(mp— 7 )t +D[n(&" =, )]} In—m, in)=0. (22)
Since m and n are arbitrary,
O l(mep— 7 )]+ D[n(E° — ¢, )] =0. (23)

We now take a cylinder in 4-dimensional space, of which the axis is directed along t
axis and the upper and lower bottoms V|, and V, are two space-like hypersurfaces t=t, and
t=t, respectively. If we assume that the fields have a configuration which vanishes rapidly
at spatial infinity, using Gauss theorem we obtain quantal conserved quantities:

Q}I:J dX[(E =@, ) =7 77 (0=1,2, -, ). (24)
)

Consequently, we obtain: for a system with a regular Lagrangian, if the canonical action
of this system is invariant under the global transformation in an extended phase space and
the Jacobian of the corresponding transformation is equal to unity, then there are some
conserved quantities (24) for such a system. These results can be considered a realization
of the classical canonical Noether theorem at quantum level. This result holds true for the

anomalies-free theories.

For a system with a singular Lagrangian, the phase-space generating function of Green
function can be written as expression (11). -

If the effective canonical action I/ is invariant under the global transformation (4) and
the Jacobian of the corresponding transformation (15) is equal to unity then one can stiil
proceed in the same way to obtain a result that there are also some quantal conserved
quantities for a system with a singular Lagrangian:

Q§=J dX[(E =, =7 )] (6=1,2, 1), (25

where 7 is an effective Hamiltonian density connecting with the effective Lagrangian
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density #%. This result corresponds to canonical Noether theorem in classical theory”. In
general, because #; is different from the canonical Hamiltonian 27, the conserved quantities
(25) are different from (24). For a system with a singular Lagrangian, the existence of con-
served quantities (25) at quantum level one needs not only to require that the canonical ac-
tion be invariant under the global transformation in extended phase space, but also to re-
quire that the constrained conditions be also invariant under corresponding transformation;
thus, one can be sure that the effective canonical action is invariant under such
transformation. From (25) one can easily see that the connection between the symmetries
and conservation laws in classical theories in general no longer preserve in quantum theo-
ries. In the classsical theories of constrained Hamiltonian systems Dirac conjectured that
all the first-class constraints (primary and secondary) are generators of gauge
transformations. If this conjecture holds true, the classical canonical equations must be de-
rived from the extended Hamiltonian H,, and the conserved quantities are also determined
by H, but not determined by the total Hamiltonian H,. From time to time there have been

211 In the quantum theories of constrained Hamiltonian

objections to Dirac’s conjecture
system, we have shown that the quantal canonical equations of motion are derived from the
effective Hamiltonian 7. Consequently, the quantal conserved quantities are determined
by # . whether Dirac’s conjecture holds true or not. Thus, the conserved quantities (25)

at the quantum leval differ from the classical ones.

The advantage of our derivation for the conserved quantities at the quantum level is
that one does not need to carry out explicit integration over the momenta in phase-space
generating functional. In general cases to carry out those integrations is very difficult or
even impossible.

3 Nonlinear sigma model with a Hopf and Chern-Simons terms

Numerous recent investigations of (2+1)-dimensional gauge theories with Chern-
Simons terms in the Lagrangian have revealed the occurrence of fractional spin and

Bl It has important sense to explain the quantum Hall effect and high-T,

statistics® '
superconductivity. The (2+1)-dimensional nonlinear sigma model with Hopf and
Chern-Simons terms was discussed in ref. [9]. Perhaps it is not precise in several points.
It is worthwhile to study further. First, the canonical angular-momentum is calculated by using
classical Noether theorem whether the result is valid at the quantum level. Secondly, the
radiation gauge condition is inconsistent with the equation of motion of the system; third-
ly, the Faddeev-Popov determinant in an appropriate gauge needs further study. Now
we shall adopt the path-integral quantization for this model to explain the existence of

fractional spin rigorously at the quantum level.

The Lagrangian of the nonlinear o-model with Hopf and Chern-Simons terms is given
by
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Y= j (0,n")*— i A ™™ nd,n"0,n"+0e"™A,0,A,, (26)
where (n“)’=1 (a=1, 2, 3). The Lagrangian equation for vector field is
Cp“(’:f‘_Aizjh, (2?)
where
I vd abe a I
Jr= o "™ e™n“d,n"o;n". (28)

The canonical moment conjugating to fields n® and A* are denoted by =, and =,
respectively. The constraints in phase space for this model are!"

A, =n,%0, (29)

A, =20(£"0,A,— J,) 0, (30)
0,=mn,—04,%0, (31)
0,=n,+0A4,%0, (32)
0,=(n*)*—1=0, (33)
0,=n"n,~0. (34)

The constraints A, and A, are first class, and the constraints 0,, 0,, 0, and 0, are second
class. According to the theory of canonical quantization of constrained Hamiltonian sys-
tem, for each first-class constraint a corresponding gauge condition should be chosen. In
ref. [9] the radiation gauge condition had been taken as d,4,=0, A,=0. However, this
gauge condition cannot hold true simultaneously for this model, because the gauge condi-
tion must not only fix the gauge, and be preserved by the dynamical evolution of the system,
but also be consistent with the equation of the motion. From the equation of motion
(27) one finds

1
A= 3] £,,0J" (35)
or
l(x)_ € i szy G(x, y)a'J*(y), (36)
where
LIG(x, y) =8P(x—y). (37

Thus, we see that A4,~=0 cannot be consistent with eq. (36). Owing to the consistent
requirement of Coulomb gauge 2,=7,4,%0, 0,4,=0, implying another gauge constraint:

2,=VA,~¢,0' V0. (38)

Thus, one must use £2,~0 instead of 4,~0 in the radiation gauge.
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It is easy to see that det ({A,, £,}) is independent of field variables. Thus, we can
omit this factor from the generating functional. Through the calculation of det ({0, 0,}),

we find out
0, =80C (x)(n“(x))’C(x). (39)

Thus, the phase-space generating functional of Green function for this model is

ZlJ,, J,, K, K] =J‘ In I, VA" Vr, exp {ijd‘x{.:z;ﬁ +J,n+J,A"+ K'n,+ K"nﬂ)}, (40)

where
L= LA L (41)
L= A AL QH A0, (42)
Sr=m R, A=, (43)
7 =L iny-2 - (76 A 0" n%) — - (0,n)— 067( 4,0, 4+ 4,0 Ay)
<2V 8 I 2 5T

+ % e'e™[An“0,n"d,n“+24A,n"0,n"(n" + -—Q{L " e And, n)). (44)
T T

The effective canonical action is invariant under the spatial rotation transformation, and the
Jacobian of the transformation of vactor field A*(x) and scalar field n“(x) under the space
rotation is equal to unity, and =0 in the space rotation, and the term 2, does not in-
volve the time derivative of field variables. There is no contribution to cononical

momenta.

From expression (25) we obtain quantal conserved quantities under the rotation in (x,

x) plan':

M'"='[d3x:'r()c*i —x/ g +D‘j)(p, @o=(A" n"), (45)
0x; ox,
where DY depending on the field belongs to the category of the representation of Lorentz
group (vector representation, or spinor representation, etc.). From expression (45) we obtain
a result that the conserved angular-momentum at the quantum level is identical to the can-
onical one J'” which contains the orbital angular-momentum and spin angular-momentum
of vector field. In the presence of a vortex it has been pointed out that the boundary term
gives rise to the fractional spin term'”. Here we make a precise investigation for the
fractional spin. A similar problem about the angular momentum deriving from classical
Noether theorem also appears in refs. [12] and [I13]. One can still proceed in the same

way to study those problems at the quantum level.
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