Vol. 40 No. 8 SCIENCE IN CHINA (Series A) August 1997

Homotopy formulas and 5-equati0n on local
q- convex domains in Stein manifolds ”

ZHONG Tongde (£h[E %)

(Institute of Mathematics, Xiamen University, Xiamen 361005, China)

Received January 2, 1997

Abstract The homotopy formulas of (r, s) differential forms and the solution of 3-equation of type (r, s) on
local g-convex domains in Stein manifolds are obtained. The homotopy formulas on local g-convex domains have im-
portant applications in uniform estimates of J-equation and holomorphic extension of CR-manifolds.
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As is well known, Stein manifold is an important manifold, where there exist many non-con-
stant holomorphic functions. C”is a Stein manifold. It is natural that one wants to study complex

analysis on Stein manifoldst!) {2—4]

. In this paper by using Hermitian metric and Chern connection
we obtain the homotopy formulas and the solution of d-equation on local g-convex domains in
Stein manifolds. Local g-convex domain is an extension of piecewise smooth pseudoconvex do-
main, so the homotopy formula obtained in this paper has its general meaning, which has impor-
tant applications in uniform estimates of d-equation and holomorphic extension of CR-manifolds.
Moreover in this paper we discuss (, s) differential forms on Stein manifold, which is different
from (o, s) differential forms. In this case one cannot use Euclidean metric as in the case of C
since Euclidean metric is not an invariant under holomorphic transformation on Stein manifold. In
order to overcome this difficulty, we have introduced Hermitian metric and Chern connection!?!
and constructed various integral kernels with respect to (7, s) differential forms under invariant

metric on Stein manifolds, and thus obtained the above results.

Assume X to be an n-dimensional Stein manifold. Here we still use the definitions and nota-
tions in references [1—5].

Let DCCX be a C'V intersection. (Up, p1, ", pn) is a frame for D. Let ¢ be a Leray
map for the frame (Up, py, ", pn). Then we set

dox (2, L, A) = i(ao>l~s%(—z’—§))7+ (1= 2(X)) g (z, &, A) (1)
Z, [

for KEP'(N) and (2, £,A)E DX Sk X Aok . Note that 1 — E(AO) =0 for A in the neighbor-
hood Apk \ Aok of Ag, and therefore ¢ is of class C?.

Now for all K€ P'(N), we define Bochner-Martinelli kernel:
B(z,0) = (- D"YQ2n)"¢ (2, (5, DS) A ((V'5,DS))" /1 S 13" (2)
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for all (z, £, A1) € D X Sk X Aok, and define Koppelman-Leray-Norguet kernel as
RE(z,8,4) = (= D"/ (2r)"¢* (2, £) {gox> D S) N ({&'¢ok, DS))" ", (3)
And for all (2, £,A) € DX Sg X Ak, we define
LE(z,8,2) = (- D)"Y/ (20)"¢* (2, ) {¢x, D S) N ({&¢x, DS))", (4)

where V” =5z_§, A= (5z'§ +d,), ¢ is a holomorphic function, v is a suitable integer such that
B(z,¢8), Rt (2, &, 4), LE(=, ¢, A) are of continuous formst! ™!

Set
dR% (=, ¢, 1) 1 =Q%(=, ¢, 1), (5)
2. B(z,0) 1 =P(=, 7). (6)
Assume f to be a continuous (7, s)-form on D. For all K€ P’ (N), we set

Bof(x) = | _ f(5) A B(=.0), =€ D, 7

REF(2) = | FCE) A RE(=,8,1), = € D, (8)
(£,2)€ S, x4,

Lkf(=) = | O A LE(z, £,2), =€ D, (9)
(£, 2)€ 8, x4,

Qhs(x) = | £ A Qk(=,8,0), =€ D, (10)
(L A)E S xay,

Ppf(z) = LEDf(p APz t), z€D. (11)

Then, for every continuous (7, s)-form f on D, 0<r, s<(n such that 3 f is also continuous on
D. We have the following classical Koppelman-Leray-Norguet formulal®;

(1) f =32.Bpf - Bpd f+ >, (L& f+d.REf~ Rk f)

KEP(N)
+ (=17 D Qbf + Pof). (12)
KEPIN
In particular, if C(T(X X X))=D?=0, then Q% =0 and P=0. We have
(-=1)""f = 3.Bpf - Bpd,f+ >, (L&f+ 3. REf — RLI f). (13)
KEP(N)

1 A Leray map for local g-convex domains

Let DCC X be a domain and p a real C'® function on D. Then we denote by L,({) the
Levi form p at € D, and by F,(*, ) the Levi polynomial of p at €D, i.e.
n 92‘0( C) _

L - S Iesl. D, : € C",
(8)t ,-.kzjlafj thjtk S t €
<~ 20(0) P p(Y)
F"(z’g)_zg ag; (Cj—zj)_jzlac,ack(c’_z’")(gk‘zk')'ceD’zex'

Moreover,

ReF,(z,8) = p(§) = p(2) + L,(§)(§ — ) + o([dist(=, {) ).

Denote by MO( n, ¢) the complex manifold of all n X n-matrices which define an orthogonal
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projection from C" to some g-dimensional subspace of C”.

Definition 1. A local g-convex domain, 0<{q<<n —1, is a C® intersection DCC X for
which one can find a C'? frame (Up, 015 =**» pn ) satislying the following two conditions.

(I)UK=1ky, .k €P(N) and US:=12€ Up:p (2) =" =p (2)}, then
(dpe, (2) —dpe (2)) A+ Aldpe (2) —dpy (2))70 for all z€ Uy

(0l) There exists a C*” map Q:A;..ny—>MO(n,n~q - 1) and constants a, A >0 such
that ReF, (2, £)Zp(§) —p(2) +al {— 2|2~ A1QA) (g~ 2) |2 forall A€ Ay and 2, ¢
e Uf), Where PA . :Alp] 4+ e ANPN

Now we construct the Leray map ¢. Since p1, =, py are of class C? and defined in the
neighborhood of Up, we can find C* functions ¥ (v =1, -, N;k,j=1,,n) on Up such
that for all L& Up,

2*p,(%)

(O =Sy,

<___

Set
A = Al + o Anal
for AEAIN Then

a 2
<2|z| (14)

» _ 30,(0)

2 ki _ PV ) .
k.j=1(aA(C) aCkaCj s
forall LE Up, t€C™ and A€ A,..y. Set

Pl ) =23 "‘“)q, Za (O — 25 - =) (15)

for (2,5, A)EC™X Up X Ay..n- Then it follows from (14) and condition ( i ) in Definition 1
that

Ref‘“p‘(z, £) = o) — pa(2) + ‘%[dist(z, ODPF-A1 QAL -=2)1? (16)
forall (z,£,A)€ UpX UpXAp..n- Set

V(z,§A) = F, (2, ) + A1 Q)¢ - 2) I? (17)
forall (z,%,A)E XX Up X A;..n. Then it follows from (16) that
Re‘I’(z,C,A)ém(C)—pA(z)+—;—[dist(z,§)]2 (18)

forall (2, £, A)E Up X Up X Ay..n. In particular, if (2, £, A)E DX Sk X Ax, KEP'(N),
then ¢(z, £, A)F#0.

From definition of ¥(z, ¢, ) it follows that ¥(z, £, 1) is a CV-function for (z, &, A)
€ D X Sg X Ak and has the following properties:

(i) ¥(z,¢, 1) is holomorphic in z € D, (19)
(i) w(z,4,42) #0for (z,¢,A) € D X Sk X Ak, (20)

(i) ¥(z,2,4) =0, forall z € D. (21)
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Therefore, by Corollary 4.9.4 of ref.[1] we can find a T (X)-valued C'V-map S* (z, {, A)
defined for (2, &, A) € D X Sg X Ak such that the following conditions are satisfied:

(1) S* (2,4, A)ET, (X) for (2,£,A)ED X Sk X Ak,
(2) $™(z,¢,2) is holomophic in z€ D,
3) (2, 0)¥(z,E,4)= (S"(2,¢,4),S(z, §,/\)> for (z, ¢, A)&€ DX Sg X Ag.

By (20) ¥(z, ¢, A)F#0, if (2,&, X)E D X Sk X Ax we have
o(z,8)8"(=,¢,1) ST (%, 80)
(8" (z,£,2),8(, £,2))  ¥(z,62)
Therefore, (S*(z,¢,4),1) is a Leray section for (D, S, ¢). If Stein manifold is C", then
P . n
sn ) =280 - S - ) A GG TR (29)

k=1
Set

(22)

‘/’K(Z)C’A):_S‘I:—((_—;’Cgl/\—/‘)_))(zygsA)erstAK, KGP/(N) (24)

Then ¢k (2, {, 1) is a Leray map for the frame ( Up, p;, ***, px ) -

Definition 2. A map f defined on Stein manifold X will be called %-holomorphic if for
each point £ € X there exist holomorphic coordinates h, -, h, in the neighborhood of & such
that f is holomorphic with respect to hy, "'+, hy .

Evidently in C% since Q(A) is an orthogonal projection, it follows that for every fixed (¢,
A)E€ Up X Ay...y map (23) and function ¥(z, £, A) and for every K€ P (N) and all fixed (¢,
A) € Sk X Ak, map ¢x(z, £, A) is (¢ + 1)-holomorphic in z € C”. Similarly we havel®!

Lemma 1. ([ ) For every fixed ({,A)€ Up X Ay...n, the map S* (z, £, A) and the
Sfunction W(z, ¥, A) are (q+1)-holomorphic in z€ X.

(1) For each KEP'(N) and all fixed (¢, )€ Sk X Ak, the map ¢x(z, ¢, A) is (g+
1) -holomorphic in z€ D.

2 Homotopy formulas and the solution of 5-equation on local g-convex domains

Let T¥ = Bp + Z R§ and let LY = Bp + 2 L%,

K€ P'(N) K€ P(N)

Theorem 1. For n — q<s<n, and each continuous (r,s)-form fon D, such that 3 f
is also continuous on D, then

(_ 1)r+sf — 52T¢f_ T¢5§f‘+ (__ 1)r+s+l z Q}lé + PDf; (25)
KEP(N)
in particular, if C(T(X X X))=D?=0, then Q% =0,P =0, we have
(- )™ f =3,T — T3, f. (26)

Proof. In view of the Koppelman-Leray-Norguet formulas (12) and (13) it is necessary to
prove that for all K€ P (N), L% £=0.
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Fix K€ P (N) and denote by ¢k, -, ¢} the components of the map ¢ . Since by Lemma
1Cii ), map ¢x(=z, &, A) is (g + 1)-holomorphic in 2z, and since r=>n — ¢q, one has
Tk, 6 A) A A Az, 6 A) Adzy A Adz, =0
for all 1<<j,, >, j,<<n. According to the definition of L{, f (see ref.[4])
(¢xs DSy N ({&¢g, DS))"!

n

= (= D"V = D D=1 e ANk | A (du, + ((H'9H) A w),),

j=1
where u is assumed to be the local coordinate of S( =z, {), and the local coordinate of ¢ is also
denoted by ¢, by definition, Lk f=0.

Now we replace the integrals over the manifolds Sk in the homotopy formula (26) by inte-
grals over certain submanifolds I'x of D.

2.1  The manifolds FK[S]

For K=(ky, ",k )E P(N) if ky, -+, b, are different in pairs, we set
Ul = it e Uf):pkl(C) = . = pkl(C)f;
otherwise, we set U5 = . By condition ( i ) in Definition 1 each U is a closed C® submani-
fold of Up. We denote by px, K€ P(N). The function on U is defined by

e(8) = o (§). (L€ UBsv =1,,1). (27)
Now, for all K& P(N), we define
'k = 1€ US:p(9) <ok () <<O0forj =1, ,N}. (28)

Then it is easy to see that all 'y are C®’ submanifolds of D with piecewise C® boundary, and
that

D=r,U-UTIy (29)
Ik = Sk U I'ky U - U I'ews, K € P(N). (30)

N
Lemma 2. JI', = Sk - ZFK,-, K € P(N).
i=1

Lemma3. >, (-1D)'(Ixx Ag) =D xAg+ D, (-1)'E'Sg x b — >, Tk X
KEP(N) KEP(N) KEP(N)
Ax.
2.2 The function ®(z, ¢, 1) and the map 7(z, §, A)

Set
O = /11‘01 + e+ AN[ON,A € Al"'N!
D(z,8,1) = ¥(z,8,1) ~20,(8),(2,8,2) € X X Up X Ay..n. (31)
Then it follows from (18) that Re®(z, {,A) =— 0, () — o1 (2) + %[dist(z, £)1% for all (z,
(LA)EX X UpXA,..y, where a >0 is a constant from condition ( ii ) in Definition 1. In par-
ticular, ®(z, &, A)#0 if (2, £, A)EDXD X Ay...y, and we can define C**) map as
[ & o S*(Z, C’i)
260 = A o B (- Ay T (32)
MR Dz, §,2)
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Note that

7(z,8,1) = —§—(-E’—§—)—3, if1/2< <1, (33)

| S(z, §) |g

S*(z, £ )
7(z,8,2) = —————, {0 A< 1/4, (34)

®(z,8,4)
n(z,§,A) = %(%&%AT) if Ao = 0. (35)
Furthermore, we notice that, by (24), (31) and (1), for all K& P"(N) we have the relation:
77(2',§9A) = (/)OK(zaCaA)y lf(gyA)GSKXAOK (36)

From Lemma 1 one immediately obtains the following lemma.

Lemma 4. For fized ({,A) X Up X A,..n, the function ®(z, ¢, A) is (g +1)-holomor-
phic in z€ X, and the map 17(2, ¢, A) is (g +1)-holomorphic in z€ D.

2.3 The kernels G(z, &, A) and H(z, &, 1)

Forall (2, £, A) € D X D X Ag..n with 27 ¢ we introduce the continuous differential
forms:

G(z, ¢, 1) =:!“é7n.‘)—ngoy(z, Oz, 3) ADp A (&=, ¢ 1), DS)H™Y, (37)
H(z, £, 2) =n—!(—;?),,¢v<z, £)((N'n(z, £,2), D S))". (38)
Lemma 5. IfC(T(XXX))=D*=0, then ( for proof see Lemma 2.2 in ref.[6])
dG = H. (39)
By (33) and the definition of Bochner-Martinelli kernel (2) there is
G Ipxpxa, = B. (40)

By (36) and the definition of Koppelman-Leray-Norguet kernel (3) it follows that for all
KE&EP'(N),
G [DXSKXA()K = (_ 1)IK|RK. (41)

We omit the simple proof of the following lemma.

Lemma 6.  Denote by [G(z, ¢, A) Jaega=w and [H(=z,¢, A) Jaega = 1 the parts of the forms
G(z,¢, 1) and H(z, ¢, A), respectively, which are of degree k in A. Then the following

statements hold :
(i) The singularity at == { of the form [G(z, &, A) laega=r is of order <2n —2k 1.

(#l ) The singularities at z = § of the first-order derivatives with respect to z of the coeffi-
cients of |G (2, ¢, A)]deg,\:k are of order <2n —2k.

({ii ) The singularity at z= ¢ of the form [H(z, ¢, A)aega=sis of order <2n -2k +1.

Lemma 7.

(1) IffEC) (D), n—q+1<s5<n, thenj O A G(z,8,2) =0.

(5, A)ET <48,
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(i) IfFFEC .- ,(D), then é‘zf(; ver Af(g) ANG(z,8,1) =0 forall zEDand K
€P'(N).

Proof. Denote by [G(z, &, )]/ the part of G(z, £, ) which is of degree r with re-
spect to z and degree s with respect to z. If fE€C? (D), K€ P'(N), then
[ roNeeo =  fO NG LD, €D
[o*a, a

K KX
On the orther hand, when A, =0, by Lemma 4 7(z, §, 1) is (¢ +1)-holomorphic in z, but by
assumption s=2n — ¢ + 1, therefore, [G(=z, ¢, A)])~; =0, (z,{ 1) € D X I’y X Ak, and

(i) holds.

Similarly, when A9 =0, (=2, §, A) is (g + 1)-holomorphic in z; therefore 3.[G(z, ¢,
MN,c1 =0, (2,8,4) € DX TIx X Ak, and (i) holds.

2.4 Operator H
Let fE€EB? (D), 0<KB<{1. Then, for all K€ P'(N), we define
Hf(2) = |, £(O) A H(z,5,2), =€ D. (42)

LAYE T XA
It follows from Lemma 6( {i ) that these integrals converge and the so-defined differential forms
Hyf are continuous on D. We set

Hf = >, (- 1)'K'Hgf (43)

K€ P'(N)

for f€ Bf ,(D),0<p3< 1.

Now let f€ B (D), 0<<p<1,0<r,s<n . Since H(z, §, A) is of degree 27 and con-
tains the monomials of degree r in z, and since dimgI'x X Agx =2n + 1 such that H(z, {, 1)
only contains monomials of degree 27 +1 —r — s(0<<r, s<tn) in ({, 1), only monomials of
H(z, ¢, A) of bidegree (r,s—1) (0=<r, s<\n) in z contribute to integral (42). This implies
that Hgf =0, if s=0or2n+1—-r-s<|K|=dimaglok.

Hence for f€ Bf (D), 0<<p<1, 0<r, s<<n, we have
Hf= Z (_1)\K\HK_}(’

KIS 1o (44)

Hf =0,if s =0; HF € C, (D), if 1< s < n.
Theorem 2. Assume DT C X to be a local g-convex domain (0<<q<<n — 1) in Stein
manifold, C(T(XXX))=D?=0. Let n — q<s<n,0<8<1. Then, for all f€ Bf (D)

such that 3 f€ B, (D), we have homotopy formula :

f=3Hf+Hi fonD. (45)
In particular, if 3f=0 on D, then
f= 52Hf; (46)
that is,
wi=Hf = >, (= 1) % Hgf (47)

K& P'(N)
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is a continuous solution of du = fon D.

Proof.  First we consider the case of closed domain D. Let g€ C% (D), 0<r, s<n.
Then by (39)
de (g ANG)=dg ANG-3.(g NG)+(-1)"g A H,
and it follows from Stokes’ formula (which can be applied in view of Lemma 6) that

J g/\G=J 5;g/\G+§zJ g NG+ (—1)"Hgg
AT XA,) r xa r K

OK K OK KXA(

for all K€ P'(N). By Lemma 3 this implies that
AG+ S| ANG- > A G
JDXAog Z SKXA()Kg KQZ’(N) FKXAKg

K& P(N)
- S o] TG e G (- )
K€ P (N) PKXA()K PKXA()K
Taking into account (40) and (41) as well as the definitions of T¥ and H, this can be written as

T‘/‘—ZJ g NG

KeP (N Ipxa,

- Z (— 1)K’(J‘FKXA()K§;g A G * §ZJFKXA1)Kg A G

K& P'(N)

+(~1)"*Hg. (48)

Now we consider a form f€ C% (D), n — ¢<<s<{n such that df is also continuous on D. Set-

ting g =3 f and taking into account Lemma 7( | ), we obtain

T¢§§f: Z (—1)”{‘52‘[‘ §§f/\ G+(_1)r+s+lH5Ef.
K€ P'(N) Tpxao,
Setting g = f in (48), applying 3, to the resulting relation and taking into account Lemma 7
(ii ), we obtain
AT = S (-DFL[ G fAGH(-DTIHS
K€ P'(N) L4,
This implies that
3T — TYa,f = (- 1) (3, Hf + Ha, f),
and hence by (26) of Theorem 1 we have
f=3dHf + Hgtfon D. (49)
Finally for the general case of local g-convex domain DCC X, it may be proved by utilizing
the preceeding result for closed local ¢-convex domain DC C X and the limiting process'®! .
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