www.scichina.com

math.scichina.com

半群的广义 Clifford 定理

任学明① 岑嘉评② 郭聿琦③

- ① 西安建筑科技大学理学院, 西安 710055
- ② 香港大学数学系, 香港
- ③ 西南大学数学与统计学院, 重庆 400715

E-mail: xmren@xauat.edu.cn, kpshum@maths.hku.hk, yqguo259@swu.edu.cn

收稿日期: 2008-07-01; 接受日期: 2009-01-19

国家自然科学基金 (批准号: 10671151, 10871161, 10971160) 和陕西省自然科学基金 (批准号: SJ08A06) 资助项目

摘要 令 U 为 U-半富足半群的投射元集合. 每个 $\tilde{\mathcal{H}}$ -类含投射元的 U-富足半群称为 U-超富足半群. 这种半群是完全正则半群和超富足半群在 U-半富足半群类中的一个共同推广. 1941 年, Clifford 证明了半群 S 为完全正则半群, 当且仅当 S 为完全单半群的半格. 40 多年后, Fountain 将这一结果推广到了超富足半群上. 本文关于 U-超富足半群得到了广义 Clifford 定理. 这一结果分别以 Clifford 和 Fountain 的上述结果为其推论.

关键词 Clifford 定理 完全正则半群 超富足半群 U-富足半群 U-超富足半群 MSC(2000) 主题分类 20M10, 20M17

1 引言

令 E(S) 为半群 S 的幂等元集合, U 为 E(S) 的一个非空子集. 由 Lawson 的文献 [1] 引入的半群 S 上的关系 $\widetilde{\mathcal{L}}$ 和 $\widetilde{\mathcal{R}}$. 分别定义如下:

$$(a,b) \in \widetilde{\mathcal{L}},$$
 当且仅当 $(\forall e \in U)$ $ae = a \Longleftrightarrow be = b,$ $(a,b) \in \widetilde{\mathcal{R}},$ 当且仅当 $(\forall e \in U)$ $ea = a \Longleftrightarrow eb = b.$

易知, $\widetilde{\mathcal{L}}$ 和 $\widetilde{\mathcal{R}}$ 均为 S 上的等价关系. 它们的交 $\widetilde{\mathcal{L}} \cap \widetilde{\mathcal{R}}$ 用 $\widetilde{\mathcal{H}}$ 来表示, 它们的连 $\widetilde{\mathcal{L}} \vee \widetilde{\mathcal{R}}$ 用 $\widetilde{\mathcal{D}}$ 来表示

为了便于将正则半群推广到富足半群, Fountain 在文献 [2] 中采用了以下的广义 Green 关系:

$$\mathcal{L}^* = \{(a,b) \in S \times S : (\forall x, y \in S^1) ax = ay \Leftrightarrow bx = by\},$$

$$\mathcal{R}^* = \{(a,b) \in S \times S : (\forall x, y \in S^1) xa = ya \Leftrightarrow xb = yb\}.$$

容易看出, $\mathcal{L} \subseteq \mathcal{L}^* \subseteq \widetilde{\mathcal{L}}$ 以及 $\mathcal{R} \subseteq \mathcal{R}^* \subseteq \widetilde{\mathcal{R}}$. 据 Fountain 的文献 [2], 半群 S 称为富足的, 如果 S 的每一 \mathcal{L}^* -类和每一 \mathcal{R}^* -类都含有幂等元. 特别地, 正则半群都是富足半群. 为了富足半群的进一步推广, 考虑每一 $\widetilde{\mathcal{L}}$ -类和每一 $\widetilde{\mathcal{R}}$ -类都含有 U 中元素的半群 S, 称这种半群 S

引用格式: 任学明, 岑嘉评, 郭聿琦. 半群的广义 Clifford 定理. 中国科学 A, 2009, 39(10): 1211-1215 Ren X M, Cen J P, Guo Y Q. A generalized Clifford theorem of semigroups. Sci China Ser A, 2010, 53, DOI: 10.1007/s11425-009-0150-3 为 U-半富足半群,集合 U 称为 S 的投射集, U 中的元素称为 S 的投射元 (见文献 [3]). 文献 [1] 注意到, 半群 S 上的等价关系 $\tilde{\mathcal{L}}$ 未必是右同余, $\tilde{\mathcal{R}}$ 也未必是左同余. 因而, 称 U-半富足 半群 S 为 U-富足的,如果 S 满足同余条件,即 $\tilde{\mathcal{L}}$ 为 S 上的右同余, $\tilde{\mathcal{R}}$ 为 S 上的左同余. 近 些年来, U-半富足半群及其子类被广泛研究 (见文献 [1, 3–9]).

本文将研究每一 $\tilde{\mathcal{H}}$ -类都含投射元的 U-富足半群, 称其为 U-超富足半群. 这种半群为完全正则半群和超富足半群在 U-半富足半群类中的一个共同推广 (见文献 [10–12]). 早在 1941年,Clifford 证明了半群 S 为完全正则的,当且仅当 S 为完全单半群的半格. 后来,Fountain将 Clifford 的这一重要结果推广到了超富足半群. 这里,我们将在 U-富足半群类中,关于U-超富足半群得到广义 Clifford 定理. 这一结果分别以 Clifford 和 Fountain的上述结果作为其推论.

文中未提到的术语和记号,参见文献 [2, 7, 12, 13].

$\mathbf{2}$ 预备和关系 $\widetilde{\mathcal{J}}$

令 S 为 U-半富足半群, U 为 E(S) 的非空子集. 首先列举 U-半富足半群的一些基本性质.

引理 **2.1**^[3] 令 S 为 U-半富足半群, 且 $e, f \in U$. 则 $e\widetilde{\mathcal{L}}f \Leftrightarrow e\mathcal{L}f$ 及 $e\widetilde{\mathcal{R}}f \Leftrightarrow e\mathcal{R}f$. 下面引理的证明是显然的.

引理 2.2 (i) $(x,e) \in \widetilde{\mathcal{L}}$, 其中 $e \in U$, 当且仅当关于任意 $f \in U$, $xf = x \Leftrightarrow ef = e$. 特别地, xe = x.

(ii) $(x,e) \in \widetilde{\mathcal{R}}$, 其中 $e \in U$, 当且仅当关于任意 $f \in U$, $fx = x \Leftrightarrow fe = e$. 特别地, ex = x. 易知, U-半富足半群 S 的子半群未必是 U-半富足的. 因此, U-半富足半群 S 的子半群 T 称为 S 的 V-半富足子半群, 如果 T 为 V- 半富足半群且投射集 $V = U \cap T$. 我们用 $\widetilde{\mathcal{L}}(S)$ 和 $\widetilde{\mathcal{L}}(T)$ 分别表示 S 和 T 上的关系 $\widetilde{\mathcal{L}}$. 含元素 a 的半群 S 的 $\widetilde{\mathcal{L}}$ -类记作 $\widetilde{\mathcal{L}}_a$ 或者 $\widetilde{\mathcal{L}}_a(S)$. 此外, 用相应的符号表示其它关系的类.

引理 2.3 令 T 为 U-半富足半群 S 的 V-半富足子半群, 其中 $V = U \cap T$. 则下述两条成立:

- (i) $\widetilde{\mathcal{L}}(S) \cap (T \times T) \subseteq \widetilde{\mathcal{L}}(T)$.
- (ii) $\widetilde{\mathcal{R}}(S) \cap (T \times T) \subseteq \widetilde{\mathcal{R}}(T)$.

证明 由定义立得.

据 Lawson 的文献 [1], 半群 S 的右理想 I 称为 S 的 U-允许右理想, 如果关于任意 $a \in I$, 有 $\tilde{R}_a \subseteq I$. 类似地, 半群 S 的左理想 I 称为 S 的 U-允许左理想, 如果关于任意 $a \in I$, 有 $\tilde{L}_a \subseteq I$. 若 $a \in S$, 则 S 的含元素 a 的主 U-允许左理想定义为 S 的含元素 a 的所有 U-允许左理想的交, 简记为 $\tilde{L}(a)$. 对偶地, 可定义 S 的含元素 a 的主 U-允许右理想, 并记为 $\tilde{R}(a)$.

沿用上述记法, 称半群 S 的理想 I 为 S 的 U-允许理想, 如果 I 既为 S 的 U-允许右理想, 又为 S 的 U-允许左理想. 易证, S 的任何 U-允许理想的交要么为 S 的 U-允许理想, 要么为空集. 因此, 我们定义 S 的含元素 S 的方记数,

现在定义半群 S 上的关系 $\tilde{\mathcal{J}}$.

定义 2.4 令 S 为半群, U 为 E(S) 的非空子集. 则 S 上的关系 \widetilde{J} 定义为:

 $(a,b) \in \widetilde{\mathcal{J}}$ 当且仅当 $\widetilde{J}(a) = \widetilde{J}(b)$ $(a,b \in S)$.

下述引理给出了 $\widetilde{J}(a)$ 的另一个刻画.

引理 2.5 令 $a \in S$. 则 $b \in \widetilde{J}(a)$, 当且仅当存在 $a_0, a_1, \ldots, a_n \in S, x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in S^1$, 使得关于 $i = 1, 2, \ldots, n$, 有 $a = a_0, b = a_n$, 且 $(a_i, x_i a_{i-1} y_i) \in \widetilde{\mathcal{D}}$.

证明 令 B 为半群 S 中所有满足所给条件的元素 b 的集合. 假设 $b \in B$. 那么存在 $a_0, a_1, \ldots, a_n \in S, x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \in S^1$,使得关于 $i = 1, 2, \ldots, n$,有 $a = a_0, b = a_n$,且 $(a_i, x_i a_{i-1} y_i) \in \widetilde{\mathcal{D}}$. 若 $a_{i-1} \in \widetilde{J}(a)$,则因 $\widetilde{J}(a)$ 为理想,得 $x_i a_{i-1} y_i \in \widetilde{J}(a)$. 由 $(a_i, x_i a_{i-1} y_i) \in \widetilde{\mathcal{D}}$,知存在 $z_1, z_2, \ldots, z_m \in S$ 使得 $(x_i a_{i-1} y_i, z_1) \in \widetilde{\mathcal{L}}, (z_1, z_2) \in \widetilde{\mathcal{R}}, \ldots, (z_m, a_i) \in \widetilde{\mathcal{R}}$. 又由 $\widetilde{J}(a)$ 为 S 的 U-允许理想和 $x_i a_{i-1} y_i \in \widetilde{J}(a)$,得 $z_1 \in \widetilde{J}(a)$. 类似地,得到 $z_2, \ldots, z_m, a_i \in \widetilde{\mathcal{J}}(a)$. 换句话,我们证明了 $a_{i-1} \in \widetilde{J}(a)$ 蕴涵 $a_i \in \widetilde{J}(a)$. 因 $a_0 = a \in \widetilde{J}(a)$,则关于 $i = 1, 2, \ldots, n$, $a_i \in \widetilde{J}(a)$. 特别地, $b = a_n \in \widetilde{J}(a)$. 因此 $B \subseteq \widetilde{J}(a)$. 易知,若 $b \in B$,则 关于任意 $x, y \in S^1$, $xby \in B$.而且,有 $\widetilde{L}_b \subseteq B$ 及 $\widetilde{R}_b \subseteq B$.这样,B 为 S 的一个 U-允许理想. 又显然, $a \in B$.因此,据定义, $\widetilde{J}(a) \subseteq B$.这证明了 $\widetilde{J}(a) = B$.

下文中, 假设 S 为 U-富足半群, 其中 U 为 E(S) 的非空子集. 我们考虑下面的半群类.

定义 2.6 U-富足半群 S 称为 U-超富足半群, 如果 S 的每一 $\tilde{\mathcal{H}}$ -类含 U 中的元素.

定义 2.7 半群 S 称为 $\tilde{\mathcal{J}}$ -单半群, 如果 $\tilde{\mathcal{J}}$ 为 S 上的泛关系. U-富足半群 S 称为完全 $\tilde{\mathcal{J}}$ -单半群, 如果 S 为 U-超富足的, 且为 $\tilde{\mathcal{J}}$ -单的.

引理 2.8 若 S 为 U-超富足半群, 且 $a \in S$, 则 $\widetilde{J}(a) = SeS$, 其中 $e \in \widetilde{H}_a \cap U$.

证明 据引理 2.5, $e \in \widetilde{J}(a)$. 又由 $\widetilde{J}(a)$ 的定义,得 $SeS \subseteq \widetilde{J}(a)$. 故只需证理想 SeS 为 S 的一个含元素 a 的 U-允许理想. 显然,由 $a = ae \in SeS$,知 SeS 包含元素 a. 任取 $b = uev \in SeS$,其中 $u, v \in S$,且取 $f \in \widetilde{H}_{ue} \cap U$. 则由 $ue\widetilde{\mathcal{L}}f$,知 $ue \cdot e = ue$ 蕴涵 fe = f. 因 $\widetilde{\mathcal{L}}$ 为 S 上的右同余,有 $b\widetilde{\mathcal{L}}fv$. 取 $g \in \widetilde{H}_{fv} \cap U$,由 $f \cdot fv = fv$ 和 $fv\widetilde{\mathcal{R}}g$,得 fg = g. 从而, $g = fg = feg \in SeS$. 注意到 $fv\widetilde{\mathcal{L}}g$,我们有 $b\widetilde{\mathcal{L}}g$. 取 $h \in \widetilde{H}_b \cap U$. 则 $g\widetilde{\mathcal{L}}h$. 据引理 2.1,有 $g\mathcal{L}h$. 因此, $h = hg = hfeg \in SeS$. 若 $x \in \widetilde{L}_b$,则显然 $x\widetilde{\mathcal{L}}h$. 据引理 2.2,得 x = xh. 由 $h \in SeS$,从而 $x \in SeS$ 及 $\widetilde{L}_b \subseteq SeS$. 类似地,若 $y \in \widetilde{R}_b$,则有 $y = hy \in SeS$. 因此, $\widetilde{R}_b \subseteq SeS$. 这样,SeS 为 S 的含元素 a 的 U-允许理想. 因此, $SeS = \widetilde{J}(a)$.

引理 2.9 在任意 U-超富足半群 $S \perp$, $\widetilde{\mathcal{J}} = \widetilde{\mathcal{D}}$.

引理 **2.10** 令 S 为 U-超富足半群. 则 \tilde{J} 为 S 上的半格同余.

证明 若 $a \in S$, 则存在幂等元 $e \in U$ 使得 $a\widetilde{\mathcal{L}}e$ 且 $a\widetilde{\mathcal{R}}e$. 据引理 2.2, a = ae = ea. 因 $\widetilde{\mathcal{L}}$ 和 $\widetilde{\mathcal{R}}$ 分别为 S 上的右同余和左同余, 所以 $a^2\widetilde{\mathcal{L}}ea = a$ 和 $a^2\widetilde{\mathcal{R}}ae = a$. 因此, $a\widetilde{\mathcal{H}}a^2$. 从而,

 $\widetilde{J}(a) = \widetilde{J}(a^2)$. 若 $a, b \in S$, 则 $\widetilde{J}(ab) = \widetilde{J}(abab)$. 据引理 2.5, $abab \in \widetilde{J}(ba)$, 从而, $\widetilde{J}(ab) \subseteq \widetilde{J}(ba)$. 对称地, 有 $\widetilde{J}(ba) \subseteq \widetilde{J}(ab)$. 因此, $\widetilde{J}(ab) = \widetilde{J}(ba)$.

现取 $e \in \widetilde{H}_a \cap U$ 及 $f \in \widetilde{H}_b \cap U$. 据引理 2.8, $\widetilde{J}(a) = SeS$ 及 $\widetilde{J}(b) = SfS$. 取 $d \in \widetilde{J}(a) \cap \widetilde{J}(b)$, 则存在 $x, y, s, t \in S$ 使得 d = xey = sft. 因此, $d^2 = xeysft \in SeysfS \subseteq \widetilde{J}(eysf) = \widetilde{J}(feys) \subseteq \widetilde{J}(fe) = \widetilde{J}(ef)$, 亦即, $d^2 \in \widetilde{J}(ef)$. 但 $d\widetilde{\mathcal{H}}d^2$, 从而, $d \in \widetilde{J}(ef)$. 因 $a\widetilde{\mathcal{L}}e$ 和 $\widetilde{\mathcal{L}}$ 为 S 上的右同余, 得 $ab\widetilde{\mathcal{L}}eb$. 类似地, 有 $eb\widetilde{\mathcal{R}}ef$. 由此得 $ab\widetilde{\mathcal{D}}ef$. 据引理 2.9, $d \in \widetilde{J}(ab)$. 这证明了 $\widetilde{J}(a) \cap \widetilde{J}(b) \subseteq \widetilde{J}(ab)$. 显然, $\widetilde{J}(ab) \subseteq \widetilde{J}(a) \cap \widetilde{J}(b)$. 因此, $\widetilde{J}(a) \cap \widetilde{J}(b) = \widetilde{J}(ab)$.

容易看出, S 的所有主 U-允许理想 $\widetilde{J}(a)$ 的集合在集合交运算下形成一个半格 Y, 所以, 我们考虑从 S 到半格 Y 上的映射 $\varphi: a \mapsto \widetilde{J}(a)$. 易证映射 φ 为从 S 到 Y 上的半群同态, 从而 \widetilde{J} 为 S 上的半格同余. 这完成了证明.

3 主要结果

据文献 [7] 中的引理 2.3, 我们先来观察半群 S 上的关系 $\widetilde{\mathcal{L}}$ 和 $\widetilde{\mathcal{R}}$.

- (i) 若 S 为富足半群且 U=E(S), 则在 S 上 $\widetilde{\mathcal{L}}=\mathcal{L}^*$ 及 $\widetilde{\mathcal{R}}=\mathcal{R}^*$. 从而, 在 S 上 $\widetilde{\mathcal{H}}=\mathcal{H}^*$ 及 $\widetilde{\mathcal{J}}=\mathcal{J}^*$. 在此情形下, $\widetilde{\mathcal{L}}$ 和 $\widetilde{\mathcal{R}}$ 分别为 S 上的右同余和左同余. 这样, S 为 E(S)-富足半群.
- (ii) 若 S 为正则半群且 U = E(S), 则在 $S \perp \widetilde{\mathcal{L}} = \mathcal{L}$ 及 $\widetilde{\mathcal{R}} = \mathcal{R}$. 从而, 在 $S \perp \widetilde{\mathcal{H}} = \mathcal{H}$ 及 $\widetilde{\mathcal{J}} = \mathcal{J}$. 在此情形下, $\widetilde{\mathcal{L}}$ 和 $\widetilde{\mathcal{R}}$ 分别为 S 上的右同余和左同余. 因此, S 为 E(S)-富足半群.
- 定理 3.1 半群 S 为 U-超富足半群, 当且仅当 S 为完全 $\tilde{\mathcal{J}}$ -单半群 S_{α} ($\alpha \in Y$) 的半格 Y, 且关于 $\alpha, \beta \in Y$ 满足下述两条:
 - (i) 关于每一 $a \in S_{\alpha}$, $\widetilde{L}_a(S) = \widetilde{L}_a(S_{\alpha})$ 及 $\widetilde{R}_a(S) = \widetilde{R}_a(S_{\alpha})$.
- (ii) 关于任意 $a,b \in S_{\alpha}$ 和 $x \in S_{\beta}$, $(a,b) \in \widetilde{\mathcal{L}}(S_{\alpha})$ 蕴涵 $(ax,bx) \in \widetilde{\mathcal{L}}(S_{\alpha\beta})$, 及 $(a,b) \in \widetilde{\mathcal{R}}(S_{\alpha})$ 蕴涵 $(xa,xb) \in \widetilde{\mathcal{R}}(S_{\alpha\beta})$.

证明 充分性. 若 S 为上述半群 S_{α} 的半格 Y, 则由条件 (i) 知, 关于每一 $\alpha \in Y$, S 的 每一 $\widetilde{\mathcal{H}}$ -类恰好是 S_{α} 的 $\widetilde{\mathcal{H}}$ -类. 由条件 (ii) 易知 S 满足同余条件. 因 S_{α} 的每一 $\widetilde{\mathcal{H}}$ -类包含投射集 U 中的元, 从而 S 一定为 U-超富足半群.

必要性. 据引理 2.10, 易知 U-超富足半群 S 为半群 S_{α} ($\alpha \in Y$) 的半格 Y, 其中 S_{α} ($\alpha \in Y$) 为 S 的 $\tilde{\mathcal{J}}$ -类.

令 $\alpha \in Y$. 假设 a, b 为 S 的 $\widetilde{\mathcal{J}}$ -类 S_{α} 的元素且满足 $(a, b) \in \widetilde{\mathcal{L}}(S_{\alpha})$. 取 $e \in \widetilde{H}_{a}(S) \cap U$ 及 $f \in \widetilde{H}_{b}(S) \cap U$. 易知, $e, f \in S_{\alpha}$ 且由引理 2.3, S_{α} 为 V-超富足半群, 其中投射集 $V = U \cap S_{\alpha}$. 据引理 2.3, 知 $(a, e) \in \widetilde{\mathcal{L}}(S)$ 蕴涵 $(a, e) \in \widetilde{\mathcal{L}}(S_{\alpha})$ 及 $(b, f) \in \widetilde{\mathcal{L}}(S)$ 蕴涵 $(b, f) \in \widetilde{\mathcal{L}}(S_{\alpha})$. 因此, $(e, f) \in \widetilde{\mathcal{L}}(S_{\alpha})$. 从而, 据引理 2.1, 有 $(e, f) \in \mathcal{L}(S_{\alpha})$, 即, ef = e, fe = f. 这导致了 $(e, f) \in \mathcal{L}(S) \subseteq \widetilde{\mathcal{L}}(S)$ 以及 $(a, b) \in \widetilde{\mathcal{L}}(S)$. 这证明了 $\widetilde{\mathcal{L}}(S_{\alpha}) \subseteq \widetilde{\mathcal{L}}(S) \cap (S_{\alpha} \times S_{\alpha})$. 又由引理 2.3, 得 $\widetilde{\mathcal{L}}(S) \cap (S_{\alpha} \times S_{\alpha}) \subseteq \widetilde{\mathcal{L}}(S_{\alpha})$. 从而, 关于任意 $a \in S_{\alpha}$, 有 $\widetilde{\mathcal{L}}_{a}(S) = \widetilde{\mathcal{L}}_{a}(S_{\alpha})$. 类似地, 可证 $\widetilde{\mathcal{R}}_{a}(S) = \widetilde{\mathcal{R}}_{a}(S_{\alpha})$. 因此, 条件 (i) 成立, 且 $\widetilde{\mathcal{H}}_{a}(S) = \widetilde{\mathcal{H}}_{a}(S_{\alpha})$.

由上可知, 因 S 为 U-超富足半群, 显然 S 的每一 $\tilde{\mathcal{J}}$ -类 S_{α} 为 V-超富足半群, 其中 S_{α} 的投射集 $V=U\cap S_{\alpha}$. 为证每一 S_{α} 为完全 $\tilde{\mathcal{J}}$ -单的, 假设 $a,b\in S_{\alpha}$. 显然, $(a,b)\in \tilde{\mathcal{J}}(S)$. 据引理 2.9, 显然 $(a,b)\in \tilde{\mathcal{D}}(S)$. 因此, 存在 $x_1,x_2,\ldots,x_k\in S$, 使得 $a\tilde{\mathcal{L}}(S)x_1\tilde{\mathcal{R}}(S)x_2\cdots x_k\tilde{\mathcal{R}}(S)b$. 由前面的证明, 知 $a\tilde{\mathcal{L}}(S_{\alpha})x_1\tilde{\mathcal{R}}(S_{\alpha})x_2\cdots x_k\tilde{\mathcal{R}}(S_{\alpha})b$. 这样, $(a,b)\in \tilde{\mathcal{D}}(S_{\alpha})$, 即, a,b 在 V-超富足

半群 S_{α} 中是 $\widetilde{\mathcal{D}}$ 相关的. 又据引理 2.9, 知 $(a,b) \in \widetilde{\mathcal{J}}(S_{\alpha})$. 从而, S_{α} 为 $\widetilde{\mathcal{J}}$ -单的. 因此, 据定义 2.7, S_{α} 为完全 $\widetilde{\mathcal{J}}$ -单半群. 又注意到 S 满足同余条件, 显然, 条件 (ii) 成立. 这完成了证明.

综上观察和定理 3.1, 我们有下面的推论. 这些推论可分别看作定理 3.1 在完全正则半群和超富足半群上的应用.

推论 3.2 [2] 半群 S 为超富足半群, 当且仅当 S 为完全 \mathcal{J}^* -单半群 S_{α} ($\alpha \in Y$) 的半格 Y, 并满足关于 $\alpha \in Y$ 和 $a \in S_{\alpha}$, $L^*{}_a(S) = L^*{}_a(S_{\alpha})$ 且 $R^*{}_a(S) = R^*{}_a(S_{\alpha})$.

推论 3.3 (Clifford 定理) $^{[10]}$ 半群 S 为完全正则半群, 当且仅当 S 为完全单半群的半格.

致谢 作者十分感谢审稿人提出的宝贵的修改意见.

参考文献

- 1 Lawson M V. Rees matrix semigroups. Proc Edinburgh Math Soc, 33: 23-37 (1990)
- 2 Fountain J B. Abundant semigroups. Proc London Math Soc, 3: 103-129 (1982)
- 3 Lawson M V. Semigroups and ordered categories. I. the reduced case. J Algebra, 141: 422-462 (1991)
- 4 Chen Y Q, He Y, Shum K P. Projectively condensed semigroups, generalized completely regular semigroups and projective orthomonoids. *Acta Math Hungar*, **119**(3): 281–305 (2008)
- 5 Fountain J B, Gomes G M S, Gould V. A Munn type representation for a class of E-semiadequate semi-groups. *J Algebra*, **218**(3): 693–714 (1999)
- 6 Li G, Guo Y Q, Shum K P. Quasi-C-Ehresmann semigroups and their subclasses. Semigroup Forum, **70**: 369–390 (2005)
- 7 任学明, 王艳慧, 岑嘉评. U-纯正半群. 39(6): 647-665 (2009)
- 8 Ren X M, Yin Q Y, Shum K P. On U^{σ} -abundant semigroups. Algebra Colloquium, to appear in 2009
- 9 Yin Q Y, Ren X M, Shum K P. Comprehensive congruences on *U*-cyber semigroups. *Int Math Forum*, **3**(14): 685–693 (2008)
- 10 Clifford A H, Preston G B. The Algebraic Theory of Semigroups. Math Surveys Amer Math Soc 7. Providence, RI: Vol. I, 1961; Vol. II, 1967
- 11 任学明, 岑嘉评. 超富足半群的结构. 中国科学 A, 33(6): 551-561 (2003)
- 12 Howie J M. Fundamentals of Semigroup Theory. New York: Oxford University Press, 1995
- 13 Howie J M. An Introduction to Semigroup Theory. London: Academic Press, 1976