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Extension of the pressure correction method to
zero-Mach number compressible flows
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In the present paper, the classical pressure correction method was extended into low Mach number
compressible flow regime by integrating equation of state into SIMPLE algorithm. The self-developed
code based on this algorithm was applied to predicting the lid-driven cavity flow and shock tube prob-
lems, and the results showed good agreement with benchmark solutions and the Mach number can
reach the magnitude of as low as 10™. The attenuation of sound waves in viscous medium was then
simulated. The results agree well with the analytical solutions given by theoretical acoustics. This
demonstrated that the present method could also be implemented in acoustics field simulation, which

is crucial for thermoacoustic simulation.
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1 Introduction

The flow inside thermoacoustic engine is a typical low
Mach number compressible flow, where the time aver-
aged flow rate approaches zero and the sound wave
transmission is purely based on the compressibility of
the working fluid. The thermoacoustic engine utilizes
the heat transfer between oscillating gas particles and
the solid medium by sound waves to achieve the mutual
conversion between heat power and acoustic power.
Since the sound wave can cause changes of the thermo-
dynamic conditions of the working fluid, the ther-
moacoustic engine does not need mechanical moving
components, such as pistons and crankshafts in conven-
tional compressors and engines. During the past three
decades, the thermoacoustic engines have experienced a
rapid development of studies. A lot of new structures
and new methods have been put forward to improve its
performance, and make it more efficient and more con-
venient for practical application. In addition, numerical
simulations have also been adopted to improve our un-
derstanding of the characteristics of the complicated
process in thermoacoustic engines. However, conven-

tional simulation methods for thermoacoustic engines
are based on quasi one-dimensional method and linear
approximations, which could not reveal the details of
fluid flow and heat transfer processes. Introduction of
the computational fluid dynamics (CFD) method into the
thermoacoustic engine simulation will provide a power-
ful research tool for the further development of the
thermoacoustic engine.

The numerical methods for fluid flow prediction can
be categorized into two groups: density based and pres-
sure based™. For the pressure-based approach, methods
can be classified into coupled and segregated. Den-
sity-based algorithm is traditionally used to deal with
high speed compressible flows. With preconditioning it
could be extended to low Mach number regime, but with
the expense of much longer computation time. Pressure
correction method is one of the segregated methods. It
can solve low speed flow successfully for the fixed den-
sity, or incompressible flow. Many attempts have been
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made to extend this method into the compressible flow
regime®=2.. However, most of these works were aimed
at the compressible flows with Mach number larger than
0.2. The compressible flows occurring in the ther-
moacoustic engines are of very low speed and their
Mach numbers are close to zero. Such compressible
flows are called zero Mach number compressible flow.
Computational methods for low Mach number com-
pressible flows are an active research area in recent
years®2 and the symposium entitled “Mathematical
and Numerical Aspect of Low Mach Number Flows”
was held in France in 2004. Muller®™ carried out a mul-
tiple-time, single-space scale asymptotic analysis of the
compressible Navier-Stokes equations and revealed the
relationship between velocity and pressure on different
scales of time. Nerinckx et al.2Y introduced a new algo-
rithm ranged between coupled and segregated methods,
named the coupled pressure and temperature correction
algorithm. Its key idea is to separate the flow and acous-
tic process in computation. During each step of iteration,
toward the aim of satisfying continuity equation, both
the pressure correction and the temperature correction
are considered. The Mach-uniformity of the algorithm
was also studied and the computational codes were
validated by simulating the flow through transonic noz-
zle and natural convection in a rectangular cavity.
Refs. [7,12,13] introduced the preconditioning method,
where the characterized sound speed in the governing
equation was lowered to the same magnitude as the
convection flow speed. Thus, the eigenvalues of all the
algebraic equations approach one, which makes them
solvable. Munz et al.X! extended the classical SIMPLE
algorithm to weak compressible flows by using multi-
scale asymptotic expansion to analyze N-S equations and
using multiple pressure variant to solve convection flow
and acoustic flow. The simulation program was tested by
solving lid-driven cavity flow, one-dimensional sound
wave attenuation and Kelvin-Helmholtz problem.
Schneider et al.*>% put forward a multi-step method to
extend the classical compressible algorithm to low-
Mach number regime. They also pointed out that the
difficulty in low-Mach number compressible flow simu-
lation was caused by two problems: dynamic range and
signal speed. The dynamic range problem rooted in the
oscillating part of pressure. When Mach number ap-
proaches zero, this oscillating part decreases to zero too,
which leads to a false reflection in numerical results. On

the other hand, when Mach number is near zero, there
will be a magnitude difference between convection ve-
locity and sound speed. To capture the flow in both time
levels, the computation efficiency will be deteriorated.

Pressure correction method represented by SIMPLE-
series algorithm is mature in low speed flow simulation.
As stated in ref. [15], the background pressure scaling
by a suitable thermodynamic reference value makes it
suitable for low Mach number flow simulation. The
present work is to validate the possibility of extending
the pressure correction method to the near-zero Mach
number flow regime. A two-dimensional simulation
code will be developed based on the SIMPLE algorithm.
Two simulation examples of lid-driven cavity flow with
different densities and shock tube flows will be adopted
to test the reliability of the method and simulation code.
Then, we will step into the computational aero-acoustic
regime to solve the sound wave attenuation problem,
which is seemingly first in the literature for the simula-
tion of the thermoacoustic problems with the extended
SIMPLE-like algorithm.

2 Numerical method
2.1 Governing equations

The governing equations for the steady-state compressi-
ble flows are as follows.
Continuity equation

V- (pv) =0. (1)

Momentum equation
V-(pwW)=-VP+V-(uVV) +%V(;N V). 2
Energy equation

V-(pvT) =Ci{v(kvr)

+ﬁT[%+V~(pv) —pV-(V)}+@}, 3)

where p, v, P and T represent the fluid density, velocity,
pressure and temperature, respectively; x and k& are the
viscosity and thermal conductivity, respectively; c, is the
specific heat and g is the thermal expansion coefficient,
which equals 1/T for ideal gas. In eq. (3), the internal
heat source and radiation are neglected and viscous dis-
sipation @is given as
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Egs. (1), (2) and (3) can be further represented in a
unified form as

V(o) =V (V) - R, +5,, (5)
where R4 and S, represent the source terms caused by
pressure and velocity, respectively. In addition, the
equation of state for ideal gas is given as

r
P= T (6)

where R is the gas constant.
2.2 Pressure correction equation

It is well known that the pressure correction equation
plays a very important role in the pressure-correction
method. In each iterative step, when the intermediate
velocities are solved based on the assumed or previous
pressure, they may not satisfy the mass conservation
condition. Then the pressure-correction equation will be
applied to calculating the pressure correction value,
which is used to update the fluid velocity so that the up-
dated velocities can satisfy the continuity equation.
Moreover, for the low Mach number compressible flow,
the accuracy of the pressure correction depends on the
interpolation scheme of the density at the control vol-
ume faces. In the following presentation the interpola-

tion scheme for interfacial density will first be discussed.

In order to obtain a stable and accurate solution algo-
rithm, a hybrid scheme combining the central difference
with the first-order upwind is adopted.

pe=a S+ (L-a,)p™, ™)
where a, is a weighting factor, being 0.9—12 Ineq. (7),
p P3is the interfacial density computed by the first-or-
der upwind scheme, which is given as
P = (05+m,)pp +(05-1,)p; (8)
where p, and pg are the density at points P and £, and
the weighting coefficient w is
0.5, F=0,
= 9)
-0.5, F<0,

CDS

where F is the interface flux, p, is the interfacial

density at e interface computed by the central difference
scheme, which is given by

CDs—f Pp+ 12 Pes (10)

with /", f,” being the interpolation factors.

Moreover, the density corrections at the interfaces,

ie., (p)°° and (p)C>i

mes, are given respectively as
(P).>° =(05+,)Chpp +(05-0,)CEpy,  (11)

(P)C> = 1.Chph + 1 Ch P (12)
where Cp, CZ are transformation factors between

in these two numerical sche-

density and pressure for grid points P and E, respec-
tively. Obviously for the ideal gas, we have
C”=1/(RT).

Now, attention is turned to the derivation of pressure-

correction equation. The discretized continuity equation
is

(F, —F,)Ay+(F, - F,)Ax =0, (13)
where the interface flow rate at e-interface is
F, =(p, + p.)u, +ul)Ay. (14)

Similar expressions can be written for the other inter-
face flow rates.

The pressure correction equation can be obtained
from eq. (13) by substitutions of the related expressions
of p' via p’
a—PPp = Zanbp;]b +b, (15)

ap
where p, and pj;, represent pressure correction at P
point and neighboring points. b is the source term, ap is
the coefficient of grid point P, which is given as

ap =[p.d, + p,d,, +(05+ 2", )cpu,
_(0'5_2+)01§) M* ]Ay +[p;dn +p:dv
+(05+ 4 )chv, — (05— A )chv.]Ax,  (16)

and ayy is the coefficients of neighboring grid points.
Taking point £ as an example, the coefficient ag is

ap =[p.d, —(05-2)ct u]Ay. 17
The underrelaxation factor «p ranges from 0.8 to 1.0.
It should be pointed out that the final convergent results
are independent of ap.
In egs. (16) and (17), the coefficients A and d, e.g., at
interface e, are defined as

A =o,+05a, —ap0, —apf,, (18)
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A, =w,-05ap, —a,0, +apf,, (19)
d,= i (20)
ae
The pressure and density are corrected by
Pp=DPp+ Pps (21)
Pp=Pp+ Pp. (22)

From egs. (16) and (17), it can be seen that the pres-
sure correction equation has a close relationship with the
interpolated density. So the accuracy of the pressure
correction depends on the interpolation scheme of the
density at the control volume faces.

The solution procedure for one iterative level can be
summarized as follows.

1) Initialize the velocity and pressure field, denoted
by «°, v* and p°.

2) Calculate the coefficients and source term of the
discretized momentum equations.

3) Solve the momentum equations based on the speci-
fied pressure field to get the intermediate solution, de-
noted by »” and v

4) Based on «” and v', solve the pressure-correction
equation to get p’.

5) Based on the p', recalculate the velocity to get u”
and v

=u, +uy =u, +d,(pp — Pfp),
v, =V, +v, =v, +d,(pp ~ P)-

6) Solve other variables based on the ™, v"" and p’,
such as temperature 7.

7) Return to step 2, treating « , v and p" as the ini-
tial velocity and pressure field. Iterate until convergence
is reached.

The above discussion set forth the back ground of the
present paper. Because our final goal is to simulate the
transient process in the thermoacustic engine, the code
developed has two modes: steady and unsteady. For the
unsteady simulation the solution process for the steady
problem described above just consists of one time step
forward. And the evolution on the time scale is con-
ducted by full implicit scheme for the stability of solu-
tion procedure.

u

-

i

3 Results and discussion

3.1 Lid-driven cavity flow
The physical model for a two-dimensional lid-driven

cavity flow is shown in Figure 1. The lid-driven flow
was used as a classical benchmark case for incompressi-
ble flow problem. However, in the present paper, in or-
der to validate our code we used the developed com-
pressible code to solve this problem.
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L ]l ~
>

X, u
r L>

-
-

[
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.
-

Figure 1 Physical model for the two-dimensional lid-driven cavity flow.

For this case we used the unsteady mode of the code
to simulate the steady state problem. At the start of the
simulation, fluid in the cavity was set to be still. After
the moving of the lid the fluid would move with it be-
cause of the effect of the viscosity. When the computa-
tional time was long enough, the flow would enter a
steady state. In all the cases studied the dimensionless
time was long enough to reach a steady state.

In order to compare with benchmark solutions, three
Reynolds numbers (100, 1000 and 5000, respectively)
were tested. The definition of Re is

Re= M (23)
14
Dimensionless time is defined as
Ulid
T=—151, 24
7 (24)

A 102x102 staggered grid was adopted after the in-
dependency validation. Figure 2 shows the variation of
streamlines with time for Re=1000. With the increase of
the time, the influence region of the lid expanded. Then
the vortices at the lower right corner and the lower left
vortex gradually took their shape in order and approach
their final patterns. It was found that after the dimen-
sionaless time beyond 30 the flow patterns hardly
changed.

Figure 3 shows the steady state streamline at Re=100
and Re=5000, respectively. They agree well with the
results of Ghia et al.2” as shown in Figure 4.
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Figure 3  Streamline with different Re. (a) Re=100; (b) Re=5000.
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Figure 4 Streamline shown in ref. [17]. (a) Re=100; (b) Re=5000.

To get a quantitative comparison, the dimensionless
velocity U along the centerline of x direction and 7 along
the centerline of y direction were examined. Figure 5
shows the comparison with the results from ref. [17]. Ob-
viously, when Re is low, the agreement is very well.
When Re is high, there exists a little difference. This
might be caused by the fact that the present results are
obtained by a compressible algorithm.

The results of this example show that a low speed
flow could be simulated by using the compressible
SIMPLE algorithm. In the next step, the program will be
used to solve a shock tube problem. By decreasing the
pressure difference in the tube, the low Mach number
characteristics of the present method will be validated.

3.2 Shock tube

3.2.1 Introduction. Shock tube problem describes the
propagation of shock wave in a one-dimensional tube
with infinite length. Since there is an exact time-de-
pendent solution for this problem, it is often used as a
test case for compressible simulation codes, especially

1LoF@

« Re=100

02r Re=100 o Re=1000
4 Re=5000
Benchmark
00 I Re:SOOIO 1 1 1 1 1 1
-04 -02 00 02 04 06 08 1.0
U

for shock capturing schemes. In the present work, the
pressure difference in it is decreased to form a low Mach
number situation. Figure 6 is the schematic for this
problem. The initial conditions are expressed as

{u/u():uL =0,p/po=p.,P/Po=p,,0<x/Ly<0.5, (25)
ufug=1p=0, p/ py=pr. P/ Py=pp.0.5<x/Ly<1,

in which, uo, po, oo, Lo are characteristic velocity, pres-
sure, density and length, respectively; pr, o1, pr, pr are
dimensionless initial values.

When the gas at high-pressure flows through the tube
into the low-pressure part, shock wave will form at the
interface and rarefaction wave will come forth inside the
high-pressure part. Between the two waves, there exists
a contact discontinuity, where density presents a jump.
Mathematically, shock tube problem is a special case for
Riemann problem, which has exact solutions. In the
present paper, the exact solution gained by the program
provided in ref. [18] will be used to validate the nu-
merical results gained by the current simulation code.

0.4

o s Re1000
[ ] e:

02 4 Re=5000

0.1
0.0
=N

0.1
-0.2
-0.3
-0.4
-0.5

Benchmark

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5 \elocity distribution along centerline. (a) Distribution of U along the line x=0.5; (b) distribution of ¥ along the line y=0.5.
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Figure 6 Physical model for shock tube.

3.2.2 Sod’s shock tube model. At first, the Sod’s
shock tube model®® will be adopted. Its initial condi-
tions are expressed as

rL=1
pr=0.1,
The aim of the problem is to get the distribution of
velocity, pressure, temperature and density at the dimen-
sionless time of 0.1644.
To simulate one-dimensional inviscid flow with our
two-dimensional viscous code, we set the viscosity of

fluid to zero and implemented a periodical boundary
condition at the direction perpendicular to the flow

u(i,)) =u(i,M2),
u(i, M1) = u(i,2),
v(i,2) =v(i,M2),
v(i,M1) =v(i,3).

P =1,

26
pp =0.125. (20)

(27)

|

1.0F @) — Exact solution
0.9L MUSCL

0.81
0.7F
0.6+
0.5F
0.41
0.3+
0.2+

0.1+ —_—

0.0
0.6

Dimensionless pressure

-0.3 0.0 0.3 0.6
Dimensionless length
[ ()

Lk — Exact solution
’ —— MUSCL

1.0F
0.9+

0.8}

Dimensionless temperature

-

0.7

=02 00 02 04 06
Dimensionless length

06 —04

By doing so, the length of computational domain at y
direction will not influence the final result, which means
we can simulate a one-dimensional problem with a two-
dimensional code.

A 362x17 staggered grid is adopted for the simulation.
MUSCL scheme is implemented by using NVD meth-
odology™?%. The results are shown in Figure 7. It can be
seen clearly that our numerical results agree well with
the exact solution. With MUSCL scheme, the grid num-
ber over the shock wave is about four.

3.2.3 Low Mach number shock tube. In the Sod’s
model, although the fluid is still initial, the final velocity
is high. Figure 8 shows the Mach number distribution in
Sod’s model, the highest Mach number reaches 0.93.
However, the focus of our work is for the low Mach
number flow. Therefore, we changed the initial pressure
difference to lower the Mach number and test the feasi-
bility of our simulation code.

Three conditions with p,/pr at 0.9, 0.99 and 0.999 re-
spectively were calculated. The other parameters re-
mained the same as the Sod’s model. Since at the time of
0.1644, the pressure wave would reach the end of the
computational region and bounce back, to avoid this, we
calculated the results at the time of 0.115.

The results are shown in Figure 9. When p;/pr is
0.9999, which means a very slight pressure difference,

I.1r (b)
1.OF — Exact solution
0.9} - MUSCL

Dimensionless density
(=33

0.2 0.0 0.2 0.4 0.6
Dimensionless length

) .
=06 -0.4

1.0 (d) — Exact solution
09l - MUSCL

05t
04+
03F
0.2¢
0.1t
0.0F

01 .
06 —04

Dimensionless velocity

02 00 02 04 06
Dimensionless length

Figure 7 Solution for Sod’s shock tube model. (a) Dimensionless pressure; (b) dimensionless density; (c) dimensionless temperature; (d) dimensionless velocity.
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1.1p
LOF — Exact solution
0.9r « MUSCL

081
0.7r
0.61
0.5r
0.4F
031
0.2p
0.1p
0.0r

-0.1
=0.6

Mach

0.4 0.6

-0.2 0.0 0.2

Dimensionless length

-0.4
Figure 8 Mach distribution in Sod’s model.

the maximum Mach number is as low as 6x10~°. The
results show that the discrepancy between our numerical
predictions and the exact solutions are very small, which
may be caused by some numerical error.

It should be pointed out that we also used first order
upper difference (FUD) scheme in these cases. From the
comparison results, we can see that its result is almost
the same as that of MUSCL, which means that higher
order scheme shows little advantage to lower order
scheme in low Mach number regime when the grid
number is large enough.

0.06 (@)
0.05 —— - Il?ﬂtil solution
MUSCL
0.041
2 003f
=
0.02F
0.01F 1
0.00F 4’J
=06 -04 -0.2 0.0 0.2 0.4 0.6
Dimensionless length
0.0006
(c) . .
— Exact solution
0.0005 F 3 FUD
3 +  MUSCL
0.0004 -
2 0.0003f
=
0.0002 -
0.0001}F
0.0000 -

0.0 0.2 0.4 0.6

Dimensionless length

0.6 -04 -02

Mach

Mach

3.3 Plane sound wave attenuation

By foregoing work, we proved that the compressible
SIMPLE algorithm and the developed code of the pre-
sent work could be applied to the low Mach number
compressible flow. In this part, it will be used to solve
an aero-acoustic problem, the attenuation of sound wave
in viscous medium.

3.3.1 Introduction. The shock tube was treated as a
one-dimensional inviscid problem in the above para-
graphs. However, actual fluids are all viscous. When
sound waves transmit in them, the sound waves will be
attenuated, which means a transfer between acoustic
power and heat. This process is called sound wave at-
tenuation. Many factors lead to attenuation, such as vis-
cous force, heat conduction and relaxation effects of
molecules. In our work, we only consider the viscous
effect. This process is more close to thermoacoustic
phenomena compared with those flows encountered in
common fluid dynamics and heat transfer.

In theoretical acoustics, the research on sound wave at-
tenuation starts from the one-dimensional wave equation

0%¢& 0%t %
y—=K,—+7 , (28)
2 s 2 2
ot Ox ox“ot
0.006
(b) . .
t —— Exact solution
i FUD
k +  MUSCL
0.004
0.002 + L
=06 -04 -0.2 f}l.[l 0.2 0.4 0.6
Dimensionless length
0.00006
(d) 4 — Exact solution
W FUD
N +  MUSCL
0.00004 + A
0.00002 +
0.00000 | o————
=06 -04 =02 0.0 0.2 0.4 0.6

Dimensionless length

Figure 9 Mach distribution in low Mach number condition. (a) p./pz=0.9; (b) p./pr =0.99; () pr/pr =0.999; (d) pr/pr =0.9999.
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where K, is the adiabatic elasticity. For idea gas,

K, =yFR. nis the viscosity, which consists of two parts:

shear viscosity 7' and volume viscosity 7".

4 ! "
=3 +n". (29)

By solving eq. (28), the displacement &£ at any place
in the sound wave can be expressed as®2!

) +Be “"sin a)Lt + fj. (30)
C

The first part in eq. (30) stands for a harmonic sound
wave propagating to the x* direction with a velocity of ¢

—a,.x - X
E=Ae “"‘sma)(z——
C

and angle frequency of . Its amplitude is Ae ", in

X

which 4 is decided by the source and e “* shows an
exponential decay of magnitude with the increase of
distance from the source. «, is named acoustic absorp-

tion coefficient. The second part stands for propagation
to the x” direction, which will be ignored here.
Accordingly, we can get the local velocity™

u(x,t) =Ue “" sin(wt — kx) , (31)

where k is named wave vector and k = 2w/ A.
When the viscosity is far smaller than the elastic force,
the absorption will be very small in one wavelength. In
this situation, the absorption coefficient can be ex-

pressed as

2 2
o°n 1)

4
a, = = —n'+tn"| 32
" 2 2p063(377 n J (32)
In our case, the volume viscosity is ignored, which
leads to

o*n 20°

= = 33
T 2pyc® 3pyc® (33)

Eqg. (33) shows that the absorption coefficient is propor-
tional to the square of the frequency in the condition of
low viscosity and low frequency. This means that
low-frequency sound wave can travel farther than higher
ones. At the same time, the greater the fluid viscosity,
the higher the absorption coefficient is.

Eqg. (33) shows that the absorption coefficient is pro-
portional to the square of the frequency in the condition
of low viscosity and low frequency. This means that
low-frequency sound wave can travel farther than higher
ones. At the same time, the greater the fluid viscosity,
the higher the absorption coefficient is.

When the sound wave transmits in confined space,

such as between two parallel plates, the friction between
gas and fixed plate will also lead to attenuation. Taking
account of this factor, the acoustic absorption coefficient
will be larger than that of the one-dimensional problem.

3.3.2 Physical model. The computational region is
shown in Figure 10. Sound source is placed at the loca-
tion of x=0. The source is simulated by a oscillating ve-
locity u, =Usin(wt), in which U is the magnitude of
velocity oscillating and equals 1.058x10™ m/s, w is the
angle frequency. Mean pressure is 101325 Pa.

- .
- - o

[ '
[ ]
[ '

ty

[ ]
[ v '
[ - '

HEs H
T L}
L} “
P
1 .

Figure 10 Physical model for sound wave attenuation problem.

3.3.3 Numerical method and boundary condition. For
the one-dimensional problem studied, L, equals 1.7018
m and L, equals 1.824 m. L, is set to be a large number
to decrease the influence of boundaries. At the same
time, periodical boundary condition is implemented on
the upper and lower sides, which is the same as stated in
Section 3.2. For the two-dimensional problem, L, equals
1.7018 m and L, equals 1.824x102 m. Non-moving
boundary condition is implemented on the upper and
lower sides.

In comparison with the problem solved in Section 3.2.2,
the main difference in this problem is the boundary con-
dition at the sound source. In the lid-driven flow and
shock tube, all the boundaries are solid walls, where u
and v are set to be zero. But in this case, a sound source
is located on the left side open, which is simulated by
setting u, =Usin(wt). At this position, all the other

unknown parameters, such as pressure, density, are ob-
tained by extrapolation. By doing this, the flow in the
chamber is no longer unilateral but an oscillating one,
which is different from the traditional problems encoun-
tered in conventional flow simulations.

The right side opening remains a fixed solid wall.
And the propagation time will be controlled to avoid
reflecting on this wall. Since we only consider the at-
tenuation caused by viscosity, the energy equation
(temperature equation) will not be solved. After the ex-
amination of the grid-independency a 362x42 staggered
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grid is adopted.
3.3.4 Results and discussion
3.3.4.1 One-dimensional attenuation

(1) Influence of viscosity

First, a low order scheme (FUD) is used to solve the
problem. With an ordinary viscosity of air, z2=1.81x10"
Pa-s, the attenuation process is very slow, which costs
very long time for the computation. Therefore, we use
three large viscosities in our simulation, 10®xz gam, 10*
x s and 2.5%x10%x 4.

Figure 11 shows the velocity distribution along the
propagation direction with the frequency of 3040 Hz.
The dashed lines are the results derived from egs. (31)
and (33). Obviously, our results agree well with the pre-
dictions of theoretical acoustics. At the front of the
sound wave, there is some deviation, which might be
caused by the solid wall boundary at the end of the
simulation region. Comparing Figures 11(a), (b) and (c),
it could be derived that with the increase of viscosity, the
attenuation can be intensified.

The attenuation process will lead to Reynolds
stressest’®22 which will cause second order pressure

(a)

=]
T

1
E 0
~1k

5 J u J —— Numerical result

I - - - Analytical result

0200 02 04 06 08 1.0 1.2 14 16 18

Distance (m)
21

u(m/s)

gradient p'. It has an analytical expression of

pP'=-2p <u6_u> = poarli e 2%, (34)
Ox

From the simulation results, we can also get this sec-
ond order pressure gradient, which is shown in Figure 12.
The second order pressure gradient is also distributed
exponentially, and the results agree well with the ana-
lytical solution.

We also tried to use the MUSCL in our simulation
(Figure 13). The results show very little difference from
Figure 11. Because this problem is still in linear acous-
tics regime, low order scheme can already get a satisfied
result when the grid number is enough.

(1) Influence of frequency

To get the influence of frequency, the one-dimen-
sional attenuation is simulated with two different fre-
quencies. The viscosity is the same, £x25000. The re-
sults are shown in Figure 14. Obviously, with the same
sound source and medium, high frequency sound wave
attenuates more rapidly. This means that low frequency
sound wave has a stronger penetration ability, which is
in accordance with physical facts.

(b)
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Figure 11 The one-dimensional attenuation with different viscosity (FUD). (a) gamx1000; (b) gamx10000; (c) gamx25000.
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Figure 12 The second-order pressure gradient. (a) gamx10000; (b) gamx25000.
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Figure 13  One-dimensional attenuation with different viscosity (MUSCL). (a) gamx1000; (b) gamx10000; (c) gamx25000.
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Figure 14 One-dimensional attenuation with different sound source frequency. (a) 1000 Hz; (b) 2000 Hz.
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3.3.4.2 Two-dimensional attnuation

As stated before, because of the fixed solid wall, absorp-
tion factor for the two-dimensional problem will be larger
than that of the one-dimensional problem. Figure 15 shows
the velocity distribution along x* direction in a two-di-
mensional attenuation process. The sound source and
gas viscosity in Figure 15(b) is the same as that in Fig-
ures 11(b) and 13(b). Comparing the three figures, it is
clear that in a confined space, the sound wave attenuates
more rapidly.

L] @

u(m/s)

3040 Hz, gam=500

-0.2 00 02 04 06 08 1.0 1.2 14 16 1.8
Distance (m)

[ ®)
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2k
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Figure 15 Two-dimensional attenuation with different viscosity (=
3040 Hz). (a) gamx500; (b) gamx10000.

The influence of solid wall on the sound wave takes
place in y direction. In addition to the distribution of u
velocity along x direction, its distribution along y direction
is also interesting which is shown in Figure 16 in one pe-
riod. From Figure 16, it can be seen that a viscous bound-
ary layer is near the wall, with a thickness of 2.5—4 mm
(this is larger than that in ordinary air, because of a larger

1 Tao W Q. Numerical Heat Transfer (in Chinese). 2nd ed. Xi’an: Xi’an
Jiaotong University Press, 2001
2 Van Doormaal J P, Raithby G D, McDonald B H. The segregated ap-

viscosity.). In this layer, the u velocity changes dramati-
cally, from 2 m/s to zero. At the same time, the distribution
is not parabolic as in classical flow. At the outside of the
boundary layer, there exists a maximum velocity. At the
farther place, the velocity is lower and distributes uni-
formly. This means not only a magnitude difference along
the y direction, but also a phase difference.
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Figure 16 Distribution of u velocity along y direction in a period.

4 Conclusion

In order to perform the numerical simulation for low
Mach number compressible flows (such as the one in
thermoacoustic engines), we integrated the equation of
state for ideal gas into the classical SIMPLE algorithm
and extended the incompressible method into compressi-
ble regime. Through two computational examples, lid-
driven cavity flow and low-Mach number shock tube
problem, the feasibility of the method for low Mach
number compressible flow is validated. The Mach num-
ber in the flow can reach the magnitude of as low as 10~
with reasonable accuracy. The attenuation of sound waves
in viscous medium is simulated with an oscillating veloc-
ity at the inlet boundary as sound source. The results
show good agreement with solutions from theoretical
acoustics and classical thermoacoustics, which verifies
the feasibility of our method in computational aero-
acoustics. The present work establishes a platform for the
next attempts to analyze thermoacoustics phenomena
based numerical simulation.
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