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In the present paper, the classical pressure correction method was extended into low Mach number 
compressible flow regime by integrating equation of state into SIMPLE algorithm. The self-developed 
code based on this algorithm was applied to predicting the lid-driven cavity flow and shock tube prob-
lems, and the results showed good agreement with benchmark solutions and the Mach number can 
reach the magnitude of as low as 10−5. The attenuation of sound waves in viscous medium was then 
simulated. The results agree well with the analytical solutions given by theoretical acoustics. This 
demonstrated that the present method could also be implemented in acoustics field simulation, which 
is crucial for thermoacoustic simulation. 

thermoacoustic engine, pressure correction method, low Mach number, compressible flow 

1  Introduction 

The flow inside thermoacoustic engine is a typical low 
Mach number compressible flow, where the time aver-
aged flow rate approaches zero and the sound wave 
transmission is purely based on the compressibility of 
the working fluid. The thermoacoustic engine utilizes 
the heat transfer between oscillating gas particles and 
the solid medium by sound waves to achieve the mutual 
conversion between heat power and acoustic power. 
Since the sound wave can cause changes of the thermo-
dynamic conditions of the working fluid, the ther-
moacoustic engine does not need mechanical moving 
components, such as pistons and crankshafts in conven-
tional compressors and engines. During the past three 
decades, the thermoacoustic engines have experienced a 
rapid development of studies. A lot of new structures 
and new methods have been put forward to improve its 
performance, and make it more efficient and more con-
venient for practical application. In addition, numerical 
simulations have also been adopted to improve our un-
derstanding of the characteristics of the complicated 
process in thermoacoustic engines. However, conven- 

tional simulation methods for thermoacoustic engines 
are based on quasi one-dimensional method and linear 
approximations, which could not reveal the details of 
fluid flow and heat transfer processes. Introduction of 
the computational fluid dynamics (CFD) method into the 
thermoacoustic engine simulation will provide a power-
ful research tool for the further development of the 
thermoacoustic engine.  

The numerical methods for fluid flow prediction can 
be categorized into two groups: density based and pres-
sure based[1]. For the pressure-based approach, methods 
can be classified into coupled and segregated. Den-
sity-based algorithm is traditionally used to deal with 
high speed compressible flows. With preconditioning it 
could be extended to low Mach number regime, but with 
the expense of much longer computation time. Pressure 
correction method is one of the segregated methods. It 
can solve low speed flow successfully for the fixed den-
sity, or incompressible flow. Many attempts have been  
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made to extend this method into the compressible flow 
regime[2―5]. However, most of these works were aimed 
at the compressible flows with Mach number larger than 
0.2. The compressible flows occurring in the ther-
moacoustic engines are of very low speed and their 
Mach numbers are close to zero. Such compressible 
flows are called zero Mach number compressible flow. 

Computational methods for low Mach number com-
pressible flows are an active research area in recent 
years[6―9], and the symposium entitled “Mathematical 
and Numerical Aspect of Low Mach Number Flows” 
was held in France in 2004. Muller[10] carried out a mul-
tiple-time, single-space scale asymptotic analysis of the 
compressible Navier-Stokes equations and revealed the 
relationship between velocity and pressure on different 
scales of time. Nerinckx et al.[11] introduced a new algo-
rithm ranged between coupled and segregated methods, 
named the coupled pressure and temperature correction 
algorithm. Its key idea is to separate the flow and acous-
tic process in computation. During each step of iteration, 
toward the aim of satisfying continuity equation, both 
the pressure correction and the temperature correction 
are considered. The Mach-uniformity of the algorithm 
was also studied and the computational codes were 
validated by simulating the flow through transonic noz-
zle and natural convection in a rectangular cavity.  
Refs. [7, 12, 13] introduced the preconditioning method, 
where the characterized sound speed in the governing 
equation was lowered to the same magnitude as the 
convection flow speed. Thus, the eigenvalues of all the 
algebraic equations approach one, which makes them 
solvable. Munz et al.[14] extended the classical SIMPLE 
algorithm to weak compressible flows by using multi- 

scale asymptotic expansion to analyze N-S equations and 
using multiple pressure variant to solve convection flow 
and acoustic flow. The simulation program was tested by 
solving lid-driven cavity flow, one-dimensional sound 
wave attenuation and Kelvin-Helmholtz problem. 
Schneider et al.[15,16] put forward a multi-step method to 
extend the classical compressible algorithm to low- 

Mach number regime. They also pointed out that the 
difficulty in low-Mach number compressible flow simu-
lation was caused by two problems: dynamic range and 
signal speed. The dynamic range problem rooted in the 
oscillating part of pressure. When Mach number ap-
proaches zero, this oscillating part decreases to zero too, 
which leads to a false reflection in numerical results. On  

the other hand, when Mach number is near zero, there 
will be a magnitude difference between convection ve-
locity and sound speed. To capture the flow in both time 
levels, the computation efficiency will be deteriorated. 

Pressure correction method represented by SIMPLE- 

series algorithm is mature in low speed flow simulation. 
As stated in ref. [15], the background pressure scaling 
by a suitable thermodynamic reference value makes it 
suitable for low Mach number flow simulation. The 
present work is to validate the possibility of extending 
the pressure correction method to the near-zero Mach 
number flow regime. A two-dimensional simulation 
code will be developed based on the SIMPLE algorithm. 
Two simulation examples of lid-driven cavity flow with 
different densities and shock tube flows will be adopted 
to test the reliability of the method and simulation code. 
Then, we will step into the computational aero-acoustic 
regime to solve the sound wave attenuation problem, 
which is seemingly first in the literature for the simula-
tion of the thermoacoustic problems with the extended 
SIMPLE-like algorithm. 

2  Numerical method 
2.1  Governing equations 

The governing equations for the steady-state compressi-
ble flows are as follows. 

Continuity equation  

 ( ) 0.ρ∇ ⋅ =v  (1) 

Momentum equation   

 1( ) ( ) (
3

Pρ μ )μ∇ ⋅ = −∇ + ∇ ⋅ ∇ + ∇ ∇ ⋅vv v v . (2) 

Energy equation 

 

1( ) ( )

                ( ) ( ) ,

p
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c

pT p p
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⎧
∇ ⋅ = ∇ ⋅ ∇⎨

⎩

∂ ⎫⎡ ⎤+ + ∇ ⋅ − ∇ ⋅ + ⎬⎢ ⎥∂⎣ ⎦ ⎭

v

v v

 
(3)

 

where ρ, v, P and T represent the fluid density, velocity, 
pressure and temperature, respectively; μ and k are the 
viscosity and thermal conductivity, respectively; cp is the 
specific heat and β is the thermal expansion coefficient, 
which equals 1/T for ideal gas. In eq. (3), the internal 
heat source and radiation are neglected and viscous dis-
sipation Φ is given as 
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(4)

 

Eqs. (1), (2) and (3) can be further represented in a 
unified form as  
 ( ) ( ) R Sφ φ φρ φ Γ φ∇ ⋅ = ∇ ⋅ ∇ − +v  (5) 

where Rφ and Sφ represent the source terms caused by 
pressure and velocity, respectively. In addition, the 
equation of state for ideal gas is given as 

 = p
RT

ρ ,  (6) 

where R is the gas constant. 

2.2  Pressure correction equation  

It is well known that the pressure correction equation 
plays a very important role in the pressure-correction 
method. In each iterative step, when the intermediate 
velocities are solved based on the assumed or previous 
pressure, they may not satisfy the mass conservation 
condition. Then the pressure-correction equation will be 
applied to calculating the pressure correction value, 
which is used to update the fluid velocity so that the up-
dated velocities can satisfy the continuity equation. 
Moreover, for the low Mach number compressible flow, 
the accuracy of the pressure correction depends on the 
interpolation scheme of the density at the control vol-
ume faces. In the following presentation the interpola-
tion scheme for interfacial density will first be discussed. 
In order to obtain a stable and accurate solution algo-
rithm, a hybrid scheme combining the central difference 
with the first-order upwind is adopted.  

  (7) CDS UDS(1 ) ,e e eρ ρρ α ρ α ρ= + −

where αρ is a weighting factor, being 0.9―1[19]. In eq. (7), 

is the interfacial density computed by the first- or-
der upwind scheme, which is given as  

UDS
eρ

 UDS (0.5 ) (0.5 )e e P e Eρ ω ρ ω ρ= + + − , (8) 

where ρp and ρE are the density at points P and E, and 
the weighting coefficient ω is 

  (9) 
0.5,  0,

0.5, <0,
F
F

ω
⎧

= ⎨−⎩

≥

where F is the interface flux,  is the interfacial 

density at e interface computed by the central difference 
scheme, which is given by  

CDS
eρ

 CDS ,e e P ef f Eρ ρ ρ− += +  (10) 

with ef
+ , ef

−  being the interpolation factors. 
Moreover, the density corrections at the interfaces, 

i.e.,  and in these two numerical sche- 
mes, are given respectively as 

UDS( )eρ′ CDS( )eρ′

 UDS( ) (0.5 ) (0.5 ) ,e e P P eC p C pρ ρρ ω ω E E′ ′ ′= + + −  (11) 

 CDS( ) ,e e P P e Pf C f Cρ ρ
Eρ ρ− + ρ′ ′= + ′  (12) 

where ,  P EC Cρ ρ

( ).C RT

 are transformation factors between 
density and pressure for grid points P and E, respec-
tively. Obviously for the ideal gas, we have 

 1/ρ =

Now, attention is turned to the derivation of pressure- 
correction equation. The discretized continuity equation 
is 
 ( ) ( )e w n sF F y F F x 0,− Δ + − Δ =  (13) 
where the interface flow rate at e-interface is  
 * *( )( )e e e e eF u uρ ρ′ ′ .y= + + Δ  (14) 

Similar expressions can be written for the other inter-
face flow rates. 

The pressure correction equation can be obtained 
from eq. (13) by substitutions of the related expressions 
of ρ′  via p′  

 nb nb ,P
P

P

a p a p
α

′ ′ b= +∑  (15) 

where Pp′  and nbp′  represent pressure correction at P 
point and neighboring points. b is the source term, aP is 
the coefficient of grid point P, which is given as 
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(16)

 

and anb is the coefficients of neighboring grid points.  
Taking point E as an example, the coefficient aE is 

 *[ (0.5 ) ]E e e e E ea d c uρρ λ += − − Δ  (17) 

The underrelaxation factor αP ranges from 0.8 to 1.0. 
It should be pointed out that the final convergent results 
are independent of αP. 

In eqs. (16) and (17), the coefficients λ and d, e.g., at 
interface e, are defined as  
 +0.5 ,e e P P e P efλ ω α α ω α+ += − −  (18) 
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 0.5 ,e e P P e P efλ ω α α ω α− = − − + +  (19) 

 .e
e

e

A
d

a
=  (20) 

The pressure and density are corrected by 
 * ,P P Pp p p′= +  (21) 

 * .P P Pρ ρ ρ′= +  (22) 
From eqs. (16) and (17), it can be seen that the pres-

sure correction equation has a close relationship with the 
interpolated density. So the accuracy of the pressure 
correction depends on the interpolation scheme of the 
density at the control volume faces. 

The solution procedure for one iterative level can be 
summarized as follows. 

1) Initialize the velocity and pressure field, denoted 
by u0, v0 and p0. 

2) Calculate the coefficients and source term of the 
discretized momentum equations.  

3) Solve the momentum equations based on the speci-
fied pressure field to get the intermediate solution, de-
noted by u* and v*. 

4) Based on u* and v*, solve the pressure-correction 
equation to get . p′

5) Based on the , recalculate the velocity to get u** 
and v**  

p′

** * *

** * *

( )

( )
e e e e e P E

n n n n n P N

u u u u d p p

v v v v d p p

′ ′= + = + −

′ ′= + = + −

,

.

′

′
 

6) Solve other variables based on the u**, v** and p*, 
such as temperature T *. 

7) Return to step 2, treating u**, v** and p* as the ini-
tial velocity and pressure field. Iterate until convergence 
is reached. 

The above discussion set forth the back ground of the 
present paper. Because our final goal is to simulate the 
transient process in the thermoacustic engine, the code 
developed has two modes: steady and unsteady. For the 
unsteady simulation the solution process for the steady 
problem described above just consists of one time step 
forward. And the evolution on the time scale is con-
ducted by full implicit scheme for the stability of solu-
tion procedure. 

3  Results and discussion 
3.1  Lid-driven cavity flow 

The physical model for a two-dimensional lid-driven 

cavity flow is shown in Figure 1. The lid-driven flow 
was used as a classical benchmark case for incompressi-
ble flow problem. However, in the present paper, in or-
der to validate our code we used the developed com-
pressible code to solve this problem. 

 
Figure 1  Physical model for the two-dimensional lid-driven cavity flow. 
 

For this case we used the unsteady mode of the code 
to simulate the steady state problem. At the start of the 
simulation, fluid in the cavity was set to be still. After 
the moving of the lid the fluid would move with it be-
cause of the effect of the viscosity. When the computa-
tional time was long enough, the flow would enter a 
steady state. In all the cases studied the dimensionless 
time was long enough to reach a steady state. 

In order to compare with benchmark solutions, three 
Reynolds numbers (100, 1000 and 5000, respectively) 
were tested. The definition of Re is  

 lid .
U L

Re
ν

=  (23) 

Dimensionless time is defined as 

 lid .
U

t
L

τ =  (24) 

A 102×102 staggered grid was adopted after the in-
dependency validation. Figure 2 shows the variation of 
streamlines with time for Re=1000. With the increase of 
the time, the influence region of the lid expanded. Then 
the vortices at the lower right corner and the lower left 
vortex gradually took their shape in order and approach 
their final patterns. It was found that after the dimen-
sionaless time beyond 30 the flow patterns hardly 
changed.  

Figure 3 shows the steady state streamline at Re=100 
and Re=5000, respectively. They agree well with the 
results of Ghia et al.[17] as shown in Figure 4. 
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Figure 2  Variation of stream line with time (Re=1000). (a) τ =7.694; (b) τ =1.539; (c) τ =4.616; (d) τ =11.540; (e) τ =19.234; (f) τ =26.928. 

 
Figure 3  Streamline with different Re. (a) Re=100; (b) Re=5000. 



 

 
Figure 4  Streamline shown in ref. [17]. (a) Re=100; (b) Re=5000. 

 
To get a quantitative comparison, the dimensionless 

velocity U along the centerline of x direction and V along 
the centerline of y direction were examined. Figure 5 
shows the comparison with the results from ref. [17]. Ob-
viously, when Re is low, the agreement is very well. 
When Re is high, there exists a little difference. This 
might be caused by the fact that the present results are 
obtained by a compressible algorithm.  

The results of this example show that a low speed 
flow could be simulated by using the compressible 
SIMPLE algorithm. In the next step, the program will be 
used to solve a shock tube problem. By decreasing the 
pressure difference in the tube, the low Mach number 
characteristics of the present method will be validated.  
3.2  Shock tube 
3.2.1  Introduction.  Shock tube problem describes the 
propagation of shock wave in a one-dimensional tube 
with infinite length. Since there is an exact time- de-
pendent solution for this problem, it is often used as a 
test case for compressible simulation codes, especially  

for shock capturing schemes. In the present work, the 
pressure difference in it is decreased to form a low Mach 
number situation. Figure 6 is the schematic for this 
problem. The initial conditions are expressed as 

0 0 0 0

0 0 0 0

0, , ,0 0.5,
0, , ,0.5 / 1,

L L L

R R R

u u u p p p x L
u u u p p p x L

ρ ρ ρ
ρ ρ ρ

= = = = < <⎧
⎨ = = = = < <⎩

 (25)

in which, u0, p0, ρ0, L0 are characteristic velocity, pres-
sure, density and length, respectively; pL, ρL, pR, ρR are 
dimensionless initial values. 

When the gas at high-pressure flows through the tube 
into the low-pressure part, shock wave will form at the 
interface and rarefaction wave will come forth inside the 
high-pressure part. Between the two waves, there exists 
a contact discontinuity, where density presents a jump. 
Mathematically, shock tube problem is a special case for 
Riemann problem, which has exact solutions. In the 
present paper, the exact solution gained by the program 
provided in ref. [18] will be used to validate the nu-
merical results gained by the current simulation code. 

 
Figure 5  Velocity distribution along centerline. (a) Distribution of U along the line x=0.5; (b) distribution of V along the line y=0.5. 
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Figure 6  Physical model for shock tube. 

3.2.2  Sod’s shock tube model.  At first, the Sod’s 
shock tube model[6,19] will be adopted. Its initial condi-
tions are expressed as 

  (26) 
1, 1,
0.1, 0.125.

L L

R R

p
p

ρ
ρ

= =⎧
⎨ = =⎩

　　

　

The aim of the problem is to get the distribution of 
velocity, pressure, temperature and density at the dimen-
sionless time of 0.1644. 

To simulate one-dimensional inviscid flow with our 
two-dimensional viscous code, we set the viscosity of 
fluid to zero and implemented a periodical boundary 
condition at the direction perpendicular to the flow  

  (27) 

( ,1) ( ,M 2),
( ,M1) ( ,2),
( , 2) ( ,M 2),
( ,M1) ( ,3).

u i u i
u i u i
v i v i
v i v i

=⎧
⎪ =⎪
⎨ =⎪
⎪ =⎩

By doing so, the length of computational domain at y 
direction will not influence the final result, which means 
we can simulate a one-dimensional problem with a two- 
dimensional code.  

A 362×17 staggered grid is adopted for the simulation. 
MUSCL scheme is implemented by using NVD meth-
odology[7,20]. The results are shown in Figure 7. It can be 
seen clearly that our numerical results agree well with 
the exact solution. With MUSCL scheme, the grid num-
ber over the shock wave is about four. 

3.2.3  Low Mach number shock tube.  In the Sod’s 
model, although the fluid is still initial, the final velocity 
is high. Figure 8 shows the Mach number distribution in 
Sod’s model, the highest Mach number reaches 0.93. 
However, the focus of our work is for the low Mach 
number flow. Therefore, we changed the initial pressure 
difference to lower the Mach number and test the feasi-
bility of our simulation code. 

Three conditions with pL/pR at 0.9, 0.99 and 0.999 re-
spectively were calculated. The other parameters re-
mained the same as the Sod’s model. Since at the time of 
0.1644, the pressure wave would reach the end of the 
computational region and bounce back, to avoid this, we 
calculated the results at the time of 0.115. 

The results are shown in Figure 9. When pL/pR is 
0.9999, which means a very slight pressure difference, 

 
Figure 7  Solution for Sod’s shock tube model. (a) Dimensionless pressure; (b) dimensionless density; (c) dimensionless temperature; (d) dimensionless velocity. 
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Figure 8  Mach distribution in Sod’s model. 

 
the maximum Mach number is as low as 6×10−5. The 
results show that the discrepancy between our numerical 
predictions and the exact solutions are very small, which 
may be caused by some numerical error.  

It should be pointed out that we also used first order 
upper difference (FUD) scheme in these cases. From the 
comparison results, we can see that its result is almost 
the same as that of MUSCL, which means that higher  
order scheme shows little advantage to lower order 
scheme in low Mach number regime when the grid 
number is large enough. 

3.3  Plane sound wave attenuation 

By foregoing work, we proved that the compressible 
SIMPLE algorithm and the developed code of the pre-
sent work could be applied to the low Mach number 
compressible flow. In this part, it will be used to solve 
an aero-acoustic problem, the attenuation of sound wave 
in viscous medium.  

3.3.1  Introduction.  The shock tube was treated as a 
one-dimensional inviscid problem in the above para-
graphs. However, actual fluids are all viscous. When 
sound waves transmit in them, the sound waves will be 
attenuated, which means a transfer between acoustic 
power and heat. This process is called sound wave at-
tenuation. Many factors lead to attenuation, such as vis-
cous force, heat conduction and relaxation effects of 
molecules. In our work, we only consider the viscous 
effect. This process is more close to thermoacoustic 
phenomena compared with those flows encountered in 
common fluid dynamics and heat transfer. 

In theoretical acoustics, the research on sound wave at-
tenuation starts from the one-dimensional wave equation  

 
2 2 3

0 2 2 2 ,sK
t x x t
ξ ξρ η∂ ∂ ∂

= +
ξ

∂ ∂ ∂ ∂
 (28) 

 
Figure 9  Mach distribution in low Mach number condition. (a) pL/pR=0.9; (b) pL/pR =0.99; (c) pL/pR =0.999; (d) pL/pR =0.9999. 
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where Ks is the adiabatic elasticity. For idea gas, 

0.sK Pγ=  η is the viscosity, which consists of two parts: 
shear viscosity η′  and volume viscosity η′′ .  

 4 .
3

η η η′ ′＝ ＋ ′  (29) 

By solving eq. (28), the displacement ξ  at any place 
in the sound wave can be expressed as[8,21]  

 e sin e sinx x .x xA t B t
c

η ηα αξ ω ω− −⎛ ⎞ ⎛= − +⎜ ⎟ ⎜
⎝ ⎠ ⎝ c

⎞+ ⎟
⎠

 (30) 

The first part in eq. (30) stands for a harmonic sound 
wave propagating to the x+ direction with a velocity of c 

and angle frequency of ω. Its amplitude is e ,xA ηα−  in 

which A is decided by the source and e xηα−  shows an 
exponential decay of magnitude with the increase of 
distance from the source. ηα  is named acoustic absorp-

tion coefficient. The second part stands for propagation 
to the x- direction, which will be ignored here. 

Accordingly, we can get the local velocity[9] 

 , (31) ( , ) e sin( )xu x t U t xηα ω−= k−

where k is named wave vector and 2 / .λ= πk  
When the viscosity is far smaller than the elastic force, 

the absorption will be very small in one wavelength. In 
this situation, the absorption coefficient can be ex-
pressed as  

 
2 2

3 3
0 0

.
2 2c cη
ω η ωα η η
ρ ρ

⎛ ′ ′′= = ⎜
⎝ ⎠
4

＋
3

⎞
⎟  (32) 

In our case, the volume viscosity is ignored, which 
leads to 

 
2 2

3 3
0 0

2 .
2 3c cη
ω η ωα η
ρ ρ

′= =  (33) 

Eq. (33) shows that the absorption coefficient is propor-
tional to the square of the frequency in the condition of 
low viscosity and low frequency. This means that 
low-frequency sound wave can travel farther than higher 
ones. At the same time, the greater the fluid viscosity, 
the higher the absorption coefficient is. 

Eq. (33) shows that the absorption coefficient is pro-
portional to the square of the frequency in the condition 
of low viscosity and low frequency. This means that 
low-frequency sound wave can travel farther than higher 
ones. At the same time, the greater the fluid viscosity, 
the higher the absorption coefficient is. 

When the sound wave transmits in confined space, 

such as between two parallel plates, the friction between 
gas and fixed plate will also lead to attenuation. Taking 
account of this factor, the acoustic absorption coefficient 
will be larger than that of the one-dimensional problem.  

3.3.2  Physical model.  The computational region is 
shown in Figure 10. Sound source is placed at the loca-
tion of x=0. The source is simulated by a oscillating ve-
locity 0 sin( ),u U tω=  in which U is the magnitude of 
velocity oscillating and equals 1.058×10-4 m/s, ω is the 
angle frequency. Mean pressure is 101325 Pa. 

 
Figure 10  Physical model for sound wave attenuation problem. 

 

3.3.3  Numerical method and boundary condition.  For 
the one-dimensional problem studied, Lx equals 1.7018 
m and Ly equals 1.824 m. Ly is set to be a large number 
to decrease the influence of boundaries. At the same 
time, periodical boundary condition is implemented on 
the upper and lower sides, which is the same as stated in 
Section 3.2. For the two-dimensional problem, Lx equals 
1.7018 m and Ly equals 1.824×10-2  m. Non-moving 
boundary condition is implemented on the upper and 
lower sides. 

In comparison with the problem solved in Section 3.2.2, 
the main difference in this problem is the boundary con-
dition at the sound source. In the lid-driven flow and 
shock tube, all the boundaries are solid walls, where u 
and v are set to be zero. But in this case, a sound source 
is located on the left side open, which is simulated by 
setting 0 sin( ).u U tω=  At this position, all the other 
unknown parameters, such as pressure, density, are ob-
tained by extrapolation. By doing this, the flow in the 
chamber is no longer unilateral but an oscillating one, 
which is different from the traditional problems encoun-
tered in conventional flow simulations.  

The right side opening remains a fixed solid wall. 
And the propagation time will be controlled to avoid 
reflecting on this wall. Since we only consider the at-
tenuation caused by viscosity, the energy equation 
(temperature equation) will not be solved. After the ex-
amination of the grid-independency a 362×42 staggered 
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grid is adopted. 
3.3.4  Results and discussion 
3.3.4.1  One-dimensional attenuation 

(I) Influence of viscosity 
First, a low order scheme (FUD) is used to solve the 

problem. With an ordinary viscosity of air, μ =1.81×10−5 
Pa·s, the attenuation process is very slow, which costs 
very long time for the computation. Therefore, we use 
three large viscosities in our simulation, 103×μ gam, 104 
×μ and 2.5×104×μ. 

Figure 11 shows the velocity distribution along the 
propagation direction with the frequency of 3040 Hz. 
The dashed lines are the results derived from eqs. (31) 
and (33). Obviously, our results agree well with the pre-
dictions of theoretical acoustics. At the front of the 
sound wave, there is some deviation, which might be 
caused by the solid wall boundary at the end of the 
simulation region. Comparing Figures 11(a), (b) and (c), 
it could be derived that with the increase of viscosity, the 
attenuation can be intensified. 

The attenuation process will lead to Reynolds 
stresses[10,22], which will cause second order pressure 

gradient p′ . It has an analytical expression of 

 2 2
0 02 e .xup u U

x
αρ ρ α −∂′ = − =

∂
 (34) 

From the simulation results, we can also get this sec-
ond order pressure gradient, which is shown in Figure 12. 
The second order pressure gradient is also distributed 
exponentially, and the results agree well with the ana-
lytical solution.  

We also tried to use the MUSCL in our simulation 
(Figure 13). The results show very little difference from 
Figure 11. Because this problem is still in linear acous-
tics regime, low order scheme can already get a satisfied 
result when the grid number is enough.  

(II) Influence of frequency 
To get the influence of frequency, the one- dimen-

sional attenuation is simulated with two different fre-
quencies. The viscosity is the same, μ×25000. The re-
sults are shown in Figure 14. Obviously, with the same 
sound source and medium, high frequency sound wave 
attenuates more rapidly. This means that low frequency 
sound wave has a stronger penetration ability, which is 
in accordance with physical facts. 

 
Figure 11  The one-dimensional attenuation with different viscosity (FUD). (a) gam×1000; (b) gam×10000; (c) gam×25000. 
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Figure 12  The second-order pressure gradient. (a) gam×10000; (b) gam×25000. 

 
Figure 13  One-dimensional attenuation with different viscosity (MUSCL). (a) gam×1000; (b) gam×10000; (c) gam×25000. 

 
Figure 14  One-dimensional attenuation with different sound source frequency. (a) 1000 Hz; (b) 2000 Hz. 
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3.3.4.2 Two-dimensional attnuation 
As stated before, because of the fixed solid wall, absorp-

tion factor for the two-dimensional problem will be larger 
than that of the one-dimensional problem. Figure 15 shows 
the velocity distribution along x+ direction in a two- di-
mensional attenuation process. The sound source and 
gas viscosity in Figure 15(b) is the same as that in Fig-
ures 11(b) and 13(b). Comparing the three figures, it is 
clear that in a confined space, the sound wave attenuates 
more rapidly.  

 
Figure 15  Two-dimensional attenuation with different viscosity (f = 

3040 Hz). (a) gam×500; (b) gam×10000. 
 

The influence of solid wall on the sound wave takes 
place in y direction. In addition to the distribution of u 
velocity along x direction, its distribution along y direction 
is also interesting which is shown in Figure 16 in one pe-
riod. From Figure 16, it can be seen that a viscous bound-
ary layer is near the wall, with a thickness of 2.5―4 mm 
(this is larger than that in ordinary air, because of a larger 

viscosity.). In this layer, the u velocity changes dramati-
cally, from 2 m/s to zero. At the same time, the distribution 
is not parabolic as in classical flow. At the outside of the 
boundary layer, there exists a maximum velocity. At the 
farther place, the velocity is lower and distributes uni-
formly. This means not only a magnitude difference along 
the y direction, but also a phase difference.  

 
Figure 16  Distribution of u velocity along y direction in a period. 

4  Conclusion 

In order to perform the numerical simulation for low 
Mach number compressible flows (such as the one in 
thermoacoustic engines), we integrated the equation of 
state for ideal gas into the classical SIMPLE algorithm 
and extended the incompressible method into compressi-
ble regime. Through two computational examples, lid- 

driven cavity flow and low-Mach number shock tube 
problem, the feasibility of the method for low Mach 
number compressible flow is validated. The Mach num-
ber in the flow can reach the magnitude of as low as 10−5 

with reasonable accuracy. The attenuation of sound waves 
in viscous medium is simulated with an oscillating veloc-
ity at the inlet boundary as sound source. The results 
show good agreement with solutions from theoretical 
acoustics and classical thermoacoustics, which verifies 
the feasibility of our method in computational aero- 

acoustics. The present work establishes a platform for the 
next attempts to analyze thermoacoustics phenomena 
based numerical simulation. 
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