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Abstract In this study, we present a conservative local discontinuous Galerkin (LDG) method for numerically

solving the two-dimensional nonlinear Schrödinger (NLS) equation. The NLS equation is rewritten as a first-

order system and then we construct the LDG formulation with appropriate numerical flux. The mass and energy

conserving laws for the semi-discrete formulation can be proved based on different choices of numerical fluxes

such as the central, alternative and upwind-based flux. We will propose two kinds of time discretization methods

for the semi-discrete formulation. One is based on Crank-Nicolson method and can be proved to preserve the

discrete mass and energy conservation. The other one is Krylov implicit integration factor (IIF) method which

demands much less computational effort. Various numerical experiments are presented to demonstrate the

conservation law of mass and energy, the optimal rates of convergence, and the blow-up phenomenon.

Keywords discontinuous Galerkin method, nonlinear Schrödinger equation, conservation, Krylov implicit

integration factor method

MSC(2010) 65M12, 65M60

Citation: Zhang R P, Yu X J, Li M J, et al. A conservative local discontinuous Galerkin method for the solu-

tion of nonlinear Schrödinger equation in two dimensions. Sci China Math, 2017, 60: 2515–2530, doi:

10.1007/s11425-016-9118-x

1 Introduction

In this paper, we consider the two-dimensional nonlinear Schrödinger (NLS) equation with cubic nonlin-

earity

iut +∆u+ |u|2u = 0, (x, y) ∈ R2, t > 0, (1.1)

where u is a complex-valued function, i =
√
−1 is the imaginary unit and ∆ is the Laplace operator. The

NLS equation plays an important role in many fields of physics (see [5,11,32]) as an initial-value problem

with initial condition

u(x, y, 0) = u0(x, y). (1.2)
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For example, in nonlinear optics, the NLS equation describes in certain regimes the propagation of

electromagnetic beams in media whose index of refraction depends on the amplitude of the field in a

simple nonlinear way (see [9]).

In this paper, we shall be interested in the numerical approximation of the blow-up solution of (1.1)

with some radially symmetric initial value (1.2) in two dimensions. Since the initial-value problem (1.1)

–(1.2) is defined over the entire plane, application of the numerical scheme requires the truncation of the

whole plane into a bounded domain Ω. We set the boundary condition as the homogeneous Dirichlet

boundary condition

u(x, y) = 0, (x, y) ∈ ∂Ω. (1.3)

It is easy to prove that the initial value problem (1.1)–(1.2) with homogeneous Dirichlet boundary con-

dition (1.3) admits mass conservation law

Q(t) =

∫
Ω

|u(x, y, t)|2dxdy ≡
∫
Ω

|u0|2dxdy = Q(0) (1.4)

and the energy conservation law

E(t) =

∫
Ω

(
|∇u(x, y, t)|2 − 1

2
|u(x, y, t)|4

)
dxdy ≡

∫
Ω

(
|∇u0|2 −

1

2
|u0|4

)
dxdy = E(0) (1.5)

for t > 0.

It is well known that there are singular solutions of (1.1) for suitable initial condition data. Elaborate

mathematical researches have been carried out on the blow-up properties of the solutions for the NLS

equation. Merle and Tsutsumi [26] proved that, for a blow-up solution with a radially symmetric initial da-

ta, the origin is a blow-up point and an L2-concentration phenomenon occurs at the origin. Furthermore,

for arbitrary k points (x1, y1), (x2, y2), . . . , (xk, yk) in R2, Merle [25] constructed a blow-up solution which

blows up exactly at these k points, and described its local behavior at {(x1, y1), (x2, y2), . . . , (xk, yk)}. In
this paper, we will study the numerical solution of NLS equation to have a better understanding of the

blow-up solutions’ behavior and in particular of the local behavior of these solutions.

There have been extensive studies on developing the numerical methods to compute the NLS equation.

These methods include the spectral (pseudospectral) method (see [3,29]), finite difference method (FDM)

(see [7, 12, 13, 20, 30, 31, 33, 36]), finite element method (FEM) (see [1, 14, 17, 18]) and collocation method

(see [16,23,40]). For more numerical methods the reader may consult the reference [2]. Experience reveals

that the mass and energy conserving numerical methods, which conserve the discrete approximation of

the mass and energy, are favorable because they are able to maintain the phase and shape of the soliton

waves accurately, especially for long time integration.

Recently, discontinuous Galerkin (DG) methods were popular in solving some nonlinear diffusion prob-

lems (see [21, 24, 39]). The application of DG methods possesses such advantages: they can handle

complicated geometries and adaptivity well; they are robust and non-oscillatory in the presence of high

gradients, even blow-up; they can maintain high order of accuracy; for time-dependent problems, they

are especially well suited for the implicit integration factor time integration method because their mass

matrices are block diagonal.

The DG methods’ popularity has also attracted researchers to solve some Schrödinger equations by

the DG discretization. Xu and Shu [34] developed the LDG method to solve the generalized NLS. In [37],

Zhang et al. have applied the direct DG method to NLS and proved the mass conservation. Lu et al. [22]

presented a mass preserving DG method for linear Schrödinger equation. All these methods can be

proved to preserve the discrete mass conservation law; however, we do not find that there are any proofs

about the discrete energy conservation law. Recently, Liang et al. [19] studied a mass preserving LDG

method combined with the fourth order exponential time differencing Runge-Kutta method. Hong et

al. [15] proposed a conservative LDG method with upwind-biased numerical fluxes. The two proceeding

conservative LDG methods are confined to the one-dimensional NLS equation. In this paper, we apply

the LDG method to solve the two-dimensional NLS equation and prove that this method can satisfy the
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discrete mass and energy conserving laws. We rewrite the NLS equation as a first-order system and then

apply the DG method on the system. The key ingredient for the success of the conservative LDG method

is the correct design of interface numerical fluxes. In the design of the numerical fluxes, the role of the

auxiliary parameters is to ensure the conservation and enhance the accuracy of the method. The first

LDG method was proposed by Cockburn and Shu [10] for solving convection diffusion equation containing

second derivatives. Thereafter, the LDG methods were widely applied to solve general nonlinear PDEs

with the features of local conservation and stability. For the detailed description about the application

of LDG methods, we refer the readers to the survey paper [35].

After the DG discretization of the NLS equation, we get a system of nonlinear complex ordinary

differential equations (ODEs). The implicit time integration method is necessary because of nonlinear

terms. We will propose two kinds of time discretization methods for the semi-discrete formulation.

One is based on Crank-Nicolson method and can be proved to preserve the discrete mass and energy

conservation. The other one is Krylov implicit integration factor (IIF) method which demands much less

computational effort. The DG discretization leads to a relatively large number of degrees of freedom in

comparison to other discretization methods, especially in high dimension case. If ones use implicit time

integration method, the corresponding nonlinear systems are large and cause enormous computational

cost. Thus, there is the need for suitable time discretization technique to improve the overall efficiency and

performance of the DG method. In this paper, we will apply the Krylov implicit integration factor (IIF)

method (see [8, 38]), which demands much less computational effort. This method treats the linear

diffusions exactly and explicitly, and the nonlinear reactions implicitly. For the linear part, to efficiently

evaluate the product of the matrix exponential and a vector, we perform Krylov subspace approximations.

For the nonlinear part, we will solve the algebraic systems by Picard iteration or Newton iteration. A

novel feature of this method is that the nonlinear algebraic systems can be solved element by element.

So it preserves the “local” property of the DG method. Although there is no proof of mass and energy

conservation for the IIF method, we can numerically observe that its mass and energy keep invariant in

time.

The rest of the paper is organized as follows: In Section 2, we present the semi-discrete DG method

combined with the appropriate numerical flux. We prove the mass and energy conservation laws in

semi-discrete formulation. The fully discrete DG method combined with two kinds of time discretization

method is presented in Section 3. Numerical experiments are reported in Section 4 to demonstrate the

optimal convergence rates and mass and energy conservation of proposed DG method, as well as its

excellent capability of capturing blow-up. Finally, we summarize our conclusion in Section 5.

2 Discontinuous Galerkin method

2.1 Notation

We consider a two-dimensional computation domain Ω which is discretized into triangular cells Th = {K}.
We denote by Eh = E0

h ∪ ∂Ω the set of all edges of Th, where E0
h is the set of all interior edges. We define

the DG approximation space as

Vh = {v ∈ L2(Ω) : v|K ∈ P k(K), ∀K ∈ Th},
Σh = {q ∈ [L2(Ω)]2 : q|K ∈ Σ(K), ∀K ∈ Th},

(2.1)

where P k(K) is the space of complex polynomial functions of degree at most k on element K and

Σ(K) = [P k(K)]2. The DG approximation space (2.1) is equipped with the following broken L2 norm:

|||v|||2 =
∑

K∈Th

∥v∥2L2(K), |||q|||2 =
∑

K∈Th

∥qh∥2L2(K), (2.2)

and broken L4 norm

|||v|||44 =
∑

K∈Th

∥v∥4L4(K), (2.3)
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respectively.

We define the average and jump trace operators on edge e as follows. Let e ∈ E0
h be an interior edge

shared by element K1 and K2. We assume that the normal vectors n1 and n2 on e point exterior to K1

and K2, respectively. With two traces of function vi := v|∂Ki , i = 1, 2, the average and jump of v along

e are defined as

{v} =
1

2
(v1 + v2), [[v]] = v1n1 + v2n2.

The average and jump for the vector function q can be analogously defined as follows:

{q} =
1

2
(q1 + q2), [[q]] = q1 · n1 + q2 · n2.

Notice that the jump [[v]] of the scalar function v is a vector parallel to the normal, and the jump [[q]] of

the vector function q is a scalar quantity.

We will discuss the homogeneous Dirichlet boundary condition (extension to other boundary condition

is straightforward), i.e., that u = 0, on ∂Ω. For this boundary condition, we only require the quantities [[v]]

and {q} which are set as

[[v]] = vn, {q} = q,

where n is the outward unit normal.

2.2 The DG discretization

In this subsection, we only give the semi-discrete DG method for the NLS equation (1.1) and leave the

time dependence continuous. The time integration method will be presented in Section 3. To obtain the

energy conserving scheme, we need rewrite the NLS equation (1.1) into a first order system by introducing

the auxiliary vector function p:

p = ∇u,

iut +∇ · p+ |u|2u = 0. (2.4)

Following [34], the general DG formulation for (2.4) is to find uh ∈ Vh and ph ∈ Σh such that∫
K

ph · qdxdy +
∫
K

uh∇ · qdxdy −
∫
∂K

ûhq · nds = 0,

i

∫
K

(uh)tvdxdy −
∫
K

ph · ∇vdxdy +

∫
∂K

p̂h · nvds+
∫
K

|uh|2uhvdxdy = 0, (2.5)

for all K ∈ Th. Here, ûh and p̂h are numerical fluxes which are single values on the edge of element K

as the approximation of u and p = ∇u, respectively. These fluxes have to be suitably defined in order to

ensure the conservation of the method and enhance its accuracy.

With this choice of these numerical flux, we add (2.5) over all the elements to obtain the following

LDG scheme:∫
Ω

ph · qdxdy +
∑

K∈Th

∫
K

uh∇ · qdxdy −
∫
E0
h

ûh[[q]]ds = 0, (2.6)

i

∫
Ω

(uh)tvdxdy −
∑

K∈Th

∫
K

ph · ∇vdxdy +

∫
Eh

p̂h · [[v]]ds+
∫
Ω

|uh|2uhvdxdy = 0, (2.7)

for all test functions v ∈ Vh and q ∈ Σh.

We are now ready to define the numerical fluxes in (2.6)–(2.7). If the edge e is inside the domain Ω,

the LDG numerical fluxes are taken as [6, 27], i.e.,

ûh = {uh}+C12 · [[uh]],

p̂h = {ph} − C11[[uh]]−C12[[ph]].
(2.8)
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With the homogeneous Dirichlet boundary condition, the fluxes on the boundary are defined as

ûh = 0,

p̂h = ph − C11uhn,
(2.9)

where n is the outward unit normal. The auxiliary parameters C12 and C11 are independent of uh

and ph. Its role is to ensure the conservation and enhance the accuracy of the method. When the

stabilization parameter C11 is of order h−1, our numerical experiments in Section 4 give the optimal

orders of convergence on structured triangulations. If the coefficient C11 = 0, we can prove that the LDG

method (2.6)–(2.7) preserves the mass and energy conservation in Section 2. There are three numerical

fluxes in the case of C11 = 0. When C12 = 0 the flux (2.8) is central flux proposed by Bassi and Rebay [4].

When C12 = 1
2n1 or C12 = 1

2n2, the flux (2.8) is alternative flux which can result in narrow band in

the LDG matrix formulation. We can extend the central and alternative flux into the general case, i.e.,

that C12 = 1
2 (θn1 + (1− θ)n2), 0 6 θ 6 1, and this flux is called as upwind-biased flux which has been

proposed in one-dimensional case in [15].

2.3 Conservation

In the design of the numerical schemes for the NLS equation, the discrete mass and energy conservation

laws are generally taken into consideration. The schemes preserving the mass and energy conservation

appear to approximate the solution better, especially in the long time behavior. In this subsection, we

will prove that the semi-discrete DG method can conserve the mass and energy.

With the definition of broken L2 norm (2.2) and L4 norm (2.3), we define the discrete formulation of

mass and energy as Qh(t) = |||uh|||2, and Eh(t) = |||ph|||2 − 1
2 |||uh|||44, respectively. Before we prove the

conservation of scheme (2.6)–(2.7), we list a useful lemma as follows:

Lemma 2.1. When the coefficient C11 = 0 in the numerical flux (2.8) and (2.9), we have the following

equality: ∑
K∈Th

∫
K

q · ∇vdxdy +
∑

K∈Th

∫
K

v∇ · qdxdy =

∫
E0
h

v̂[[q]]ds+

∫
Eh

q̂ · [[v]]ds (2.10)

for all v ∈ Vh ∩H1
0 and q ∈ Σh.

Proof. Applying the integration by part to the left-hand side, we have∑
K∈Th

∫
K

q · ∇vdxdy +
∑

K∈Th

∫
K

v∇ · qdxdy =
∑

K∈Th

∫
∂K

vq · nds. (2.11)

We use the average and jump operators to rewrite the sums of the element form into the edge form. A

straightforward computation shows that∑
K∈Th

∫
∂K

vq · ndxdy =

∫
E0
h

{v}[[q]]ds+
∫
Eh

{q} · [[v]]ds. (2.12)

Substituting the numerical flux (2.8) and (2.9) into the right-hand side to get∫
E0
h

v̂[[q]]ds+

∫
Eh

q̂ · [[v]]ds

=

∫
E0
h

{v}[[q]]ds+
∫
Eh

{q} · [[v]]ds+
∫
E0
h

(C12 · [[v]][[q]]−C12 · [[v]][[q]])ds− C11

∫
Eh

[[u]] · [[v]]ds

=

∫
E0
h

{v}[[q]]ds+
∫
Eh

{q} · [[v]]ds− C11

∫
Eh

[[u]] · [[v]]ds.

With C11 = 0 we complete the proof.

With Lemma 2.1, we have the following mass and energy conservation for the semi-discrete LDG

scheme (2.6)–(2.7).
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Theorem 2.2. With the homogeneous Dirichlet boundary condition and the coefficient C11 = 0 in

the numerical flux (2.8) and (2.9), the scheme (2.6)–(2.7) preserves the mass conservation law in semi-

discrete formulation
d

dt
Qh(t) ≡ 0. (2.13)

Proof. In (2.6), we choose the test function q = p∗
h where the superscript ∗ denotes the complex

conjugate. We can obtain

|||ph|||2 +
∑

K∈Th

∫
K

uh∇ · p∗
hdxdy −

∫
E0
h

ûh[[p
∗
h]]ds = 0. (2.14)

Taking the complex conjugate for every term in (2.14), we get

|||ph|||2 +
∑

K∈Th

∫
K

u∗
h∇ · phdxdy −

∫
E0
h

ûh
∗
[[ph]]ds = 0. (2.15)

We take the difference between (2.14) and (2.15) to get∑
K∈Th

∫
K

2Im(u∗
h∇ · ph)dxdy −

∫
E0
h

2Im(ûh
∗
[[ph]])ds = 0, (2.16)

where Im(u) means the imaginary part and Re(u) the real part of a complex function u.

Now we take v = u∗
h in (2.7) to obtain

i

∫
Ω

(uh)tu
∗
hdxdy −

∑
K∈Th

∫
K

ph · ∇u∗
hdxdy +

∫
Eh

p̂h · [[u∗
h]]ds+ |||uh|||44 = 0. (2.17)

Similarly, we take the complex conjugate for every term in (2.17),

− i

∫
Ω

(uh)
∗
tuhdxdy −

∑
K∈Th

∫
K

p∗
h · ∇uhdxdy +

∫
Eh

p̂h
∗ · [[uh]]ds+ |||uh|||44 = 0, (2.18)

then take the difference between (2.17) and (2.18) and multiply imaginary unit “i” on the both sides to

obtain
d

dt
|||uh|||2 −

∑
K∈Th

∫
K

2Im(ph · ∇u∗
h)dxdy +

∫
Eh

2Im(p̂h · [[u∗
h]])ds = 0. (2.19)

Taking C11 = 0 in (2.10) and subtracting (2.19) from (2.16), we can get d
dt |||uh|||2 = 0 which

gives (2.13).

Theorem 2.3. Take the coefficient C11 = 0 in the numerical flux (2.8) and (2.9), the DG scheme

(2.6)–(2.7) can preserve the semi-discrete energy conservation law

d

dt
Eh(t) ≡ 0. (2.20)

Proof. By taking the time derivative of (2.6) and choosing the test function q = p∗
h, we obtain∑

K∈Th

∫
K

(ph)t · p∗
hdxdy +

∑
K∈Th

∫
K

(uh)t∇ · p∗
hdxdy −

∫
E0
h

(ûh)t[[p
∗
h]]ds = 0. (2.21)

Taking the complex conjugate for (2.21), we have∑
K∈Th

∫
K

(p∗
h)t · phdxdy +

∑
K∈Th

∫
K

(u∗
h)t∇ · phdxdy −

∫
E0
h

(ûh
∗
)t[[ph]]ds = 0. (2.22)

Summing up (2.21) and (2.22), we have

d

dt
|||ph|||2 +

∑
K∈Th

∫
K

2Re((uh)t∇ · p∗
h)dxdy −

∫
E0
h

2Re((ûh)t[[p
∗
h]])ds = 0. (2.23)
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In (2.7), we choose the test function v = (u∗
h)t and get

i|||(uh)t|||2 −
∑

K∈Th

∫
K

ph · ∇(u∗
h)tdxdy +

∫
Eh

p̂h · [[(u∗
h)t]]ds+

∑
K∈Th

∫
K

|uh|2uh(u
∗
h)tdxdy = 0. (2.24)

We also take the complex conjugate for (2.24) to obtain

− i|||(uh)t|||2 −
∑

K∈Th

∫
K

p∗
h · ∇(uh)tdxdy +

∫
Eh

p̂h
∗ · [[(uh)t]]ds+

∑
K∈Th

∫
K

|uh|2u∗
h(uh)tdxdy = 0. (2.25)

Summing up (2.24) and (2.25), we have

−
∑

K∈Th

∫
K

2Re(ph · ∇(u∗
h)t)dxdy +

∫
Eh

2Re(p̂h · [[(u∗
h)t]])ds+

1

2

d

dt
|||uh|||44 = 0. (2.26)

Taking the difference of (2.23) and (2.26), together with the real part of (2.10) in which v = (u∗
h)t and

q = ph, we can get d
dt |||ph|||2 − 1

2
d
dt |||uh|||44 = 0 which completes the proof.

3 Time discretization

In the preceding section, we have proved that the semi-discrete LDG scheme (2.6)–(2.7) with numerical

flux (2.8)–(2.9) preserves mass and energy conservation when C11 = 0. In order to extend the mass and

energy conservation property to the fully discrete method, it is natural to employ time discretization

methods which also conserve discrete mass and energy. In this section, we will consider two kinds of time

discretization methods for the semi-discrete formulation. One is based on Crank-Nicolson method and

can be proved to preserve the discrete mass and energy conservation. The other one is Krylov implicit

integration factor (IIF) method which demands much less computational effort and can be numerically

observed to preserve the mass and energy conservation.

3.1 Conservative time discretization method

For the semi-discrete LDG scheme (2.6)–(2.7), we construct the time discretization method as follows:∫
Ω

pn+1
h · qdxdy +

∑
K∈Th

∫
K

un+1
h ∇ · qdxdy −

∫
E0
h

ûh
n+1

[[q]]ds = 0, (3.1)∫
Ω

pn
h · qdxdy +

∑
K∈Th

∫
K

un
h∇ · qdxdy −

∫
E0
h

ûh
n
[[q]]ds = 0, (3.2)

i

∫
Ω

un+1
h − un

h

∆t
vdxdy −

∑
K∈Th

∫
K

pn
h + pn+1

h

2
· ∇vdxdy +

∫
Eh

p̂h
n+1

+ p̂h
n

2
· [[v]]ds

+

∫
Ω

|un+1
h |2 + |un

h|2

2

un+1
h + un

h

2
vdxdy = 0, (3.3)

for all test functions v ∈ Vh and q ∈ Σh.

Similar to Theorems 2.2 and 2.3, we have the following mass and energy conservation for the fully

discrete LDG scheme (3.1)–(3.3).

Theorem 3.1. Take C11 = 0 in the numerical flux (2.8) and (2.9). The scheme (3.1)–(3.3) preserves

the mass conservation law in fully discrete formulation

|||un+1
h |||2 = |||un

h|||2 = · · · = |||u0
h|||2. (3.4)

Proof. In (3.1) and (3.2), we choose the test function q =
(pn

h+p
n+1
h )∗

2 and take the sum between them.

We can obtain ∣∣∣∣∣∣∣∣∣∣∣∣ (pn
h + pn+1

h )∗

2

∣∣∣∣∣∣∣∣∣∣∣∣2 + ∑
K∈Th

∫
K

(un+1
h + un

h)∇ ·
(pn

h + pn+1
h )∗

2
dxdy
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−
∫
E0
h

(ûh
n
+ ûh

n+1
)

[[
pn
h + pn+1

h

2

]]∗
ds = 0. (3.5)

Taking the imaginary part in (3.5), we get∑
K∈Th

∫
K

Im

(
(un

h + un+1
h )∗∇ ·

pn
h + pn+1

h

2

)
dxdy

−
∫
E0
h

Im

(
(ûh

n
+ ûh

n+1
)∗
[[
pn
h + pn+1

h

2

]])
ds = 0. (3.6)

Then we take v = (un+1
h + un

h)
∗ in (3.3) to obtain

i

∫
Ω

un+1
h − un

h

∆t
(un+1

h + un
h)

∗dxdy −
∑

K∈Th

∫
K

pn
h + pn+1

h

2
· ∇(un+1

h + un
h)

∗dxdy

+

∫
Eh

p̂h
n+1

+ p̂h
n

2
· [[un+1

h + un
h]]

∗ds+

∫
Ω

|un+1
h |2 + |un

h|2

2

|un+1
h + un

h|2

2
dxdy = 0. (3.7)

Similarly, we take the imaginary part in (3.7) to get

|||un+1
h |||2 − |||un

h|||2

∆t
−

∑
K∈Th

∫
K

Im

(
pn
h + pn+1

h

2
· ∇(un+1

h + un
h)

∗
)
dxdy

+

∫
Eh

Im

(
p̂h

n+1
+ p̂h

n

2
· [[un+1

h + un
h]]

∗
)
ds = 0. (3.8)

When C11 = 0, the flux operator (2.8) is linear, we have ûh
n+1

+ ûh
n
= ̂un+1

h + un
h and p̂h

n+1
+ p̂h

n

= ̂pn+1
h + pn

h . Taking the difference of (3.6) and (3.8), we can get |||un+1
h |||2 = |||un

h|||2 by using

Lemma 2.1 with v = (un+1
h + un

h)
∗ and q =

pn
h+p

n+1
h

2 . Carrying on like this we can complete

the proof.

Theorem 3.2. With C11 = 0 in the numerical flux (2.8) and (2.9), the scheme (3.1)–(3.3) preserves

the following energy conservation law in fully discrete formulation:

|||pn+1
h |||2 − 1

2
|||un+1

h |||44 = |||pn
h |||2 −

1

2
|||un

h|||44 = · · · = |||p0
h|||2 −

1

2
|||u0

h|||44. (3.9)

Proof. In (3.1) and (3.2), we choose the test function q =
(pn

h+p
n+1
h )∗

2 and take the difference between

them to obtain∫
Ω

(pn+1
h − pn

h) ·
(pn

h + pn+1
h )∗

2
dxdy +

∑
K∈Th

∫
K

(un+1
h − un

h)∇ ·
(pn

h + pn+1
h )∗

2
dxdy

−
∫
E0
h

(ûh
n+1 − ûh

n
)

[[
pn
h + pn+1

h

2

]]∗
ds = 0. (3.10)

Taking the real part in (3.10), we get

|||pn+1
h |||2 − |||pn

h |||2

2
+

∑
K∈Th

∫
K

Re

(
(un+1

h − un
h)

∗∇ ·
pn
h + pn+1

h

2

)
dxdy

−
∫
E0
h

Re

(
(ûh

n+1 − ûh
n
)∗
[[
pn
h + pn+1

h

2

]])
ds = 0. (3.11)

Then we take v = (un+1
h − un

h)
∗ in (3.3) to obtain

i

∆t
|||un+1

h − un
h|||2 −

∑
K∈Th

∫
K

pn
h + pn+1

h

2
· ∇(un+1

h − un
h)

∗dxdy
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+

∫
Eh

p̂h
n+1

+ p̂h
n

2
· [[un+1

h − un
h]]

∗ds+

∫
Ω

|un+1
h |2 + |un

h|2

2

un+1
h + un

h

2
(un+1

h − un
h)

∗dxdy = 0. (3.12)

Now we take the real part of (3.12) to get

−
∑

K∈Th

∫
K

Re

(
pn
h + pn+1

h

2
· ∇(un+1

h − un
h)

∗
)
dxdy

+

∫
Eh

Re

(
p̂h

n+1
+ p̂h

n

2
· [[un+1

h − un
h]]

∗
)
ds+

|||un+1
h |||44 − |||un

h|||44
4

= 0. (3.13)

Taking the difference of (3.11) and (3.13) and using Lemma 2.1 with v = (un+1
h − un

h)
∗ and q =

pn
h+p

n+1
h

2 , we have |||pn+1
h |||2 − 1

2 |||u
n+1
h |||44 = |||pn

h |||2 − 1
2 |||u

n
h|||44. Carrying on like this we can complete

the proof.

3.2 Krylov implicit integration factor method

Although the time-discretization scheme (3.1)–(3.3) is conservative, there are some difficulties in solving

the nonlinear complex systems. As a main drawback, the LDG method has relatively large number of

degrees of freedom compared with other methods. Moreover, the solution of large nonlinear complex

algebraic systems causes enormous computational cost. We will use the Krylov IIF method which de-

mands much less computational effort. To apply the Krylov IIF method, we first write the LDG scheme

(2.6)–(2.7) into the matrix equation of the form

M1P = A1U , (3.14)

iM2
dU

dt
= A2P + FN (U), (3.15)

where U and P are solution vectors containing the degrees of freedom of u and p and FN (U) is from

the nonlinear term |u|2u. Since the mass matrices M1 and M2 are block diagonal, we can invert them

easily. Solving P from (3.14), P = M−1
1 A1U , and substituting it into (3.15), we obtain the following

nonlinear complex ODE system:
dU

dt
= AU + F (U), (3.16)

where A = −iM−1
2 A2(M

−1
1 A1) and F (U) = −iM−1

2 FN (U).

Assume the final time is t = T and let time step ∆t = T/N , tn = n∆t, 0 6 n 6 N . Following Chen

and Zhang [8], we multiply (3.16) by the integration factor e−At and integrate over one time step from tn
to tn+1 to obtain

Un+1 = eA∆tUn + eA∆t

∫ ∆t

0

e−AτF (U(tn + τ))dτ. (3.17)

Approximating the integrand in (3.17) by using an (r − 1)-th order Lagrange interpolation polynomial

with interpolation points at tn+1, tn, . . . , tn−r+2, we obtain the r-th IIF scheme

Un+1 = eA∆tUn +∆t

(
α1F (Un+1) +

r−2∑
j=0

α−je
(j+1)A∆tF (Un−j)

)
. (3.18)

The values of coefficients αj , j = 1, 0, . . . , 2 − r can be referred in [28]. The usual schemes include the

second-order scheme (IIF2)

Un+1 = eA∆t

(
Un +

∆t

2
F (Un)

)
+

∆t

2
F (Un+1) (3.19)

and the third-order scheme (IIF3)

Un+1 = eA∆tUn +∆t

(
5

12
F (Un+1) +

2

3
eA∆tF (Un)−

1

12
e2A∆tF (Un−1)

)
. (3.20)



2524 Zhang R P et al. Sci China Math December 2017 Vol. 60 No. 12

In the computation, to be consistent with the order of accuracy in the spatial direction, we combine

the P 1 DG discretization with IIF2 and P 2 DG spatial discretization with IIF3.

To solve the global nonlinear systems (3.17), we first compute the product of matrix exponential and a

vector, for example eA∆tw. Although the discretization matrix A is sparse, their exponentials matrix will

be dense. So we use Krylov subspace method to approximate the products of the exponential matrix and

vector. The Krylov subspace method has been presented in [8]. But to make the paper self-contained,

we will briefly describe it. The underlying principle is to project the large sparse matrix A to the Krylov

subspace

Km = span{w, Aw, . . . , (A)m−1w},

where m is the dimension of the Krylov subspace and is much smaller than the dimension of the large

sparse matrix A. We take m = 25 in all numerical computations of this paper, and accurate results are

obtained as shown in Section 4. Then we apply the Arnoldi algorithm to generate an orthonormal basis

Vm+1 = (v1, . . . ,vm+1) and an (m + 1) × (m + 1) upper Hessenberg matrix Hm+1 = [hij ]. The very

small Hessenberg matrix Hm+1 represents the projection of the large sparse matrix A to the Krylov

subspace Km, with respect to the basis Vm+1. Since the columns of Vm+1 are orthonormal we get the

approximation

eA∆tUn = βVm+1e
∆tHm+1e1, (3.21)

where e1 is the first unit basis vector, β = ∥w∥2. The small matrix exponential e∆tHm+1 can be

computed with a Padé approximation with only computational cost of O((m + 1)2). Thus the large

matrix exponential problem is replaced by a much smaller approximation.

Applying the Krylov subspace approximation to (3.18), we get nonlinear algebraic system

Un+1 − α1∆tF (Un+1)−Qn = 0, (3.22)

where Qn = eA∆tUn + ∆t
∑r−2

j=0 α−je
(j+1)A∆tF (Un−j) can be computed by (3.21). Notice that the

nonlinear implicit term F (Un+1) does not involve the matrix exponential operator. Hence the computa-

tion of it does not involve the coupling of the numerical values at the spatial grid points. So we can solve

the nonlinear systems (3.22) locally by the classic nonlinear solver such as Newton or Picard iteration

method.

4 Numerical experiments

In this section, we will demonstrate the performance of the proposed DG scheme on a number of test

problems. Firstly, we test our scheme using the NLS equation which has the exact solution. In this test,

we will show the optimal convergence rate, unconditional stability and robustness of the DG method

numerically. Then we apply the DG scheme to approximate the blow-up solution of cubic NLS equation

on a disk.

Example 4.1. Consider the following NLS equation on a rectangle Ω = [0, π]2:

iut +∆u+ |u|2u− sin2 x sin2 yu = 0, t > 0 (4.1)

with homogeneous Dirichlet boundary condition. The equation has the following exact solution:

u = e−2it sinx sin y. (4.2)

We consider triangular meshes obtained by splitting the rectangle Ω = [0, π]2 into a total of 2m2

triangles, giving uniform element sizes of h = π
2m . We use four different meshes, m = 2, 3, 4, 5. The

mesh with m = 5 is shown in Figure 1(a). We solve (4.1) by using P 1 and P 2 elements, i.e., that k = 1

and k = 2 in (2.1), respectively. The final computation time is t = 0.5. To demonstrate the spatial

accuracy, we fix the time step as ∆t = 0.001 and the computations are performed on four levels meshes

with h = 2π
2k
, k = 2, 3, 4, 5.
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Figure 1 The triangular mesh and the discretized mass and energy in Example 4.1

Table 1 The L2, L∞ spatial errors and order of convergence for P 1 element with C11 = 0

θ m L2 error Order L∞ error Order

0.4 2 1.1328E−1 − 1.1512E−1 −
3 3.1791E−2 1.8332 3.2590E−2 1.8206

4 8.3377E−3 1.9309 6.4454E−3 2.3381

5 2.1681E−3 1.9432 2.0100E−3 1.6811

0.5 2 1.0696E−1 − 7.8492E−2 −
3 3.1179E−2 1.7784 2.3405E−2 1.7457

4 8.4980E−3 1.8754 6.8787E−3 1.7666

5 2.1669E−3 1.9715 1.5646E−3 2.1363

1.0 2 2.9904E−1 − 3.3903E−1 −
3 1.4032E−1 1.0916 1.7234E−1 0.9762

4 6.8369E−2 1.0373 8.6819E−2 0.9892

5 3.3948E−2 1.0100 4.3638E−2 0.9924

Table 2 The L2, L∞ spatial errors and order of convergence for P 2 element with C11 = 0

θ m L2 error Order L∞ error Order

0.4 2 1.3276E−2 − 1.3353E−2 −
3 2.1551E−3 2.6230 1.8291E−3 2.8680

4 4.2448E−4 2.3440 3.5120E−4 2.3808

5 9.8766E−5 2.1036 9.2430E−5 1.9259

0.5 2 1.1453E−2 − 1.2162E−2 −
3 1.2279E−3 3.2215 1.3451E−3 3.1766

4 1.4700E−4 3.0623 1.6533E−4 3.0243

5 1.7783E−5 3.0472 2.0448E−5 3.0153

1.0 2 4.0410E−2 − 4.7777E−2 −
3 1.0085E−2 2.0025 1.2152E−2 1.9751

4 2.5208E−3 2.0003 3.0546E−3 1.9921

5 6.3022E−4 2.0000 7.6658E−4 1.9945
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Table 3 The L2, L∞ spatial errors and order of convergence for P 1 element with C11 = h−1

θ m L2 error Order L∞ error Order

0.5 2 1.1988E−1 − 7.1699E−2 −
3 3.7331E−2 1.6831 2.4724E−2 1.5360

4 1.0167E−2 1.8765 6.7190E−3 1.8796

5 2.5995E−3 1.9676 2.0355E−3 1.7229

1.0 2 1.3095E−1 − 1.0290E−1 −
3 3.3363E−2 1.9727 2.8691E−2 1.8426

4 9.3512E−3 1.8350 8.9633E−3 1.6785

5 2.2164E−3 2.0769 1.9411E−3 2.2072

Table 4 The L2, L∞ spatial errors and order of convergence for P 2 element with C11 = h−1

θ m L2 error Order L∞ error Order

0.5 2 4.6918E−2 − 4.7507E−2 −
3 4.1486E−3 3.4994 5.6162E−3 3.0805

4 3.9769E−4 3.3829 3.8544E−4 3.8650

5 3.1474E−5 3.6594 4.0368E−5 3.2552

1.0 2 9.0549E−3 − 8.0907E−3 −
3 9.8008E−4 3.2077 1.0398E−3 2.9600

4 1.0332E−4 3.2458 1.2008E−4 3.1142

5 1.1699E−5 3.1427 1.3707E−5 3.1310

Table 5 The L2, L∞ temporal errors and order of convergence for IIF2 method

∆t L2 error Order L∞ error Order

0.2 1.2605E−2 − 1.2383E−2 −
0.1 2.5722E−3 2.2929 2.7931E−3 2.1484

0.05 6.3360E−4 2.0214 6.4481E−4 2.1149

We have proved that the LDG method (2.6)–(2.7) preserves the mass and energy conservation when

the coefficient C11 = 0 in Section 2. Taking C12 = 1
2 (θn1 + (1− θ)n2) , 0 6 θ 6 1, we study the spatial

convergence with different parameter θ. Tables 1 and 2 list the L2 and maximum norms of the errors and

orders of convergence with different values of θ = 0.4, 0.5 and 1.0 for P 1 and P 2 element, respectively.

Here, θ = 0.4 corresponds to the upwind-biased flux, θ = 0.5 corresponds to the central flux and θ = 1.0

corresponds to the alternative flux. From Tables 1 and 2, we observe that the central fluxes achieve the

optimal (k + 1)-th order of accuracy with the stabilization parameter C11 = 0. On the other hand, the

alternative flux can only achieve the suboptimal k-th order of accuracy. In fact, the alternative flux can

obtain the optimal order of accuracy with the stabilization parameter C11 of order h−1 (see [6]). The

errors and orders of convergence with C11 = h−1 are listed in Tables 3 and 4 for P 1 and P 2 elements,

respectively. We can observe that the both alternative and central flux can achieve optimal convergence

with stabilization parameter of order h−1.

We can conclude that the LDG methods with central flux not only preserve the mass and energy

conservation but also achieve the optimal convergence. Therefore, we will select the central flux in the

following numerical tests.

To estimate the rate of convergence for time, we fix the space parameter as h = π
8 and choose the

time step as ∆t = 0.2 , 0.1 and 0.05. Table 5 shows the L2 and maximum norms of the errors and orders

of convergence for the time discretization method (3.19). These results show that the IIF2 method is

indeed second-order accurate. We also check our method’s ability of preserving the mass and energy

conservation. The discretized expressions for conservation (1.4) and (1.5) at time t = n∆t are written as
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Figure 2 Images |u| for the numerical solution of propagation problem in Example 4.2 at different times

Qn = |||un|||2, and En = |||pn|||2 − 1
2 |||un|||44, respectively. The discrete mass and energy are shown

in Figure 1(b) at time t = 5. It shows that our proposed scheme is very robust and stable.

Furthermore, we will study the blow up properties of the solutions. Firstly, we set the initial condi-

tion with unique radially symmetric origin. Next, we take multiple points as the origin of the radially

symmetric initial value to find the L2-concentration phenomenon.

Example 4.2. In this example, we perform the computation on a circular domain x2 + y2 6 5. The

initial data (1.2) is given as

u(x, y, 0) = 6
√
2e−(x2+y2). (4.3)

It has been proved in [26] that in this case, the solution is expected to blow up at the center of the

domain. Therefore we refine the mesh at the center point in advance. The modulus of the solutions, |u|,
computed by our method at times t = 0, t = 0.03, t = 0.04, t = 0.040262 are shown in Figure 2. We

observe from Figure 2 that the solution blows up at the center in a finite time. This example demonstrates

that our method can capture the blow up phenomenon.

Example 4.3. In this example, let us consider the following setup for the initial data:

u(x, y, 0) = 6
√
2(e−((x−

√
2)2+(y−

√
2)2) + e−((x+

√
2)2+(y+

√
2)2)). (4.4)

The initial condition contains double origins of radially symmetric data. The underlying computational

domain is the same as Example 4.2. The modulus of the solution computed at different times t = 0,
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Figure 3 Images |u| for the numerical solution of propagation problem in Example 4.3 at different times

t = 0.03, t = 0.04, t = 0.040262 are shown in Figure 3. The results seem to be in a very good agreement

with the theoretical result reported in [25], which shows that the double radial origins evolve into two

blow-up points where the L2-concentration phenomenon occurs.

5 Conclusion

In this paper, we use the LDG method for solving the two-dimensional nonlinear Schrödinger (NLS)

equation. The semi-discrete and fully discrete schemes obtained by the DG method are proved to preserve

the mass and energy conservation when C11 = 0. These semi-discrete formulations are especially effective

when they are combined with high-order, large stepsize ODE solvers for their time evolution. We introduce

the Krylov IIF method in time discretization. In addition, it avoids computing the complex algebraic

equation systems. This method is an efficient and attractive method for high dimensional complex partial

differential equation. The obtained results confirm that our DG method is a powerful and reliable method

for capturing the blow-up phenomenon.
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