
SCIENCE CHINA
Information Sciences

May 2018, Vol. 61 052102:1–052102:15

doi: 10.1007/s11432-016-9039-4

c© Science China Press and Springer-Verlag Berlin Heidelberg 2017 info.scichina.com link.springer.com

. RESEARCH PAPER .

autoC: an efficient translator for model checking
deterministic scheduler based OSEK/VDX

applications

Haitao ZHANG1*, Zhuo CHENG2, Guoqiang LI3 & Shaoying LIU4

1School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China;
2School of Information Science, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan;

3School of Software, Shanghai Jiao Tong University, Shanghai 200240, China;
4Faculty of Computer and Information Sciences, Hosei University, Tokyo 184-8584, Japan

Received 3 November 2016/Revised 21 January 2017/Accepted 20 February 2017/Published online 11 August 2017

Abstract The OSEK/VDX automotive OS standard has been widely adopted by many automobile man-

ufacturers, such as BMW and TOYOTA, as the basis for designing and implementing a vehicle-mounted

OS. With the increasing functionalities in vehicles, more and more multi-task applications are developed

based on the OSEK/VDX OS. Currently, ensuring the reliability of the developed applications is becoming

a challenge for developers. As to ensure the reliability of OSEK/VDX applications, model checking as a

potential solution has attracted great attention in the automotive industry. However, existing model check-

ers are often unable to verify a large-scale OSEK/VDX application that consists of many tasks, since the

corresponding application model too complex. To make existing model checkers more scalable in verifying

large-scale OSEK/VDX applications, we describe a software tool named autoC to tackle this problem by

automatically translating a multi-task OSEK/VDX application into an equivalent sequential model. We

conducted a series of experiments to evaluate the efficiency of autoC. The experimental results show that

autoC is not only capable of efficiently sequentializing OSEK/VDX applications, but also of improving the

scalability and efficiency of existing model checkers in verifying large-scale OSEK/VDX applications.

Keywords OSEK/VDX application, deterministic scheduler, software formal method, model checking,

sequentialization

Citation Zhang H T, Cheng Z, Li G Q, et al. autoC: an efficient translator for model checking deterministic

scheduler based OSEK/VDX applications. Sci China Inf Sci, 2018, 61(5): 052102, doi: 10.1007/s11432-016-9039-4

1 Introduction

Developments in the automotive industry and electronic technology increasingly involve the deployment

of vehicle-mounted systems in automobiles. However, reusing and transplanting the developed systems

have become a serious problem for automobile manufacturers, since there is no uniform development

standard in the automotive industry. To overcome this problem, European of automobile manufacturer

association develops and promulgates an automotive OS standard named OSEK/VDX [1] in 1994. The

standard has now been widely adopted by automotive manufacturers, such as BMW, Opel and TOYOTA.

Currently, more and more complex applications have been developed based on the OSEK/VDX OS.

As shown in Figure 1, an application developed to run on OSEK/VDXOS consists of multiple tasks, and

these tasks are concurrently executed under the scheduling of OSEK/VDX OS scheduler (a deterministic

*Corresponding author (email: htzhang@lzu.edu.cn)

 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-016-9039-4&domain=pdf&domain=pdf&date_stamp=2018-4-24
https://doi.org/10.1007/s11432-016-9039-4
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:2

APIs

Processor

Application

Scheduler

OSEK/VDX OS

Ready queue

TaskTaskTask
Task TaskMultiple tasks

Static priority scheduler

Figure 1 (Color online) Structure of OSEK/VDX application.

scheduler called static priority scheduler is adopted by OSEK/VDX OS to dispatch tasks, where a ready

queue is used to manage the scheduling order of tasks). Moreover, tasks within an application can

invoke application interfaces (APIs) to dynamically change the scheduling order of tasks, e.g., activate

a higher priority task. However, developers face the challenge of ensuring the reliability of developed

OSEK/VDX applications which are becoming increasingly complex because of the concurrency of tasks

and the dynamic scheduling. To ensure the reliability of developed OSEK/VDX applications, model

checking [2–4] as an automatic and exhaustive checking technique has attracted great attention in the

automotive industry.

Recently, the persistent improvement of model checking techniques has resulted in many different

model checking techniques based automatic model checkers such as Spin [5], ESBMC [6], and VCC [7]

being built and widely using to verify concurrent programs [8, 9]. To make existing model checkers such

as Spin model checker successfully verify OSEK/VDX applications, Refs. [10, 11] have shown a plain

method. In the proposed method, all tasks within an application are simulated by concurrent processes.

Moreover, an application is explicitly verified by adding a special concurrent process for OSEK/VDX

OS to realize deterministic scheduling behaviours and respond to the APIs invoked from tasks. Although

this method can be applied to verify OSEK/VDX applications, the method is not capable of verifying

a large-scale OSEK/VDX application that contains many tasks, as reported in [10, 11]. This is because,

the method uses a number of concurrent processes to simulate task behaviours and OSEK/VDX OS

scheduling behaviours in the application model. In the verification stage, these concurrent processes

will generate a large number of interleavings which often result in state space explosion [12].

In order to make existing model checkers more scalable in verifying OSEK/VDX applications, one

of reasonable solutions is to simplify the application models. In this paper, based on our previous

research [13], we present the development of a software tool named autoC to address this problem. The

tool automatically translates OSEK/VDX applications into equivalent sequential models which enable

developers to verify an OSEK/VDX application by only verifying a sequential model (one concurrent

process) rather than the application model that holds a lot of concurrent processes. Actually, there are

several existing works in literatures that translate concurrent programs dispatched by a non-deterministic

scheduler into sequential models. For example, Cimatti et al. [14] proposed an approach to translate

SystemC concurrent programs into sequential programs. In addition, Ref. [15] also shows an approach

to sequentialize the multi-threaded software that conforms to the POSIX standard [16]. However, these

existing methods focus on a non-deterministic scheduler, and are not suitable to sequentialize OSEK/VDX

applications.

Currently, our autoC accepts the C programming language as input, supports the 12 types of APIs

specified in the OSEK/VDX OS standard, and can output two types of sequential model: Promela

and C sequential models. The advantage of autoC is, based on the sequential translation, the multi-

task OSEK/VDX application is translated into a sequential model. Thus, model checkers only verify one

concurrent process instead of many concurrent processes in the verification stage. The two contributions

of autoC are as follows: (i) the sequential translation of autoC enables developers to directly apply
 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:3

Scheduler module
Synchronization

event module

Shared

resource module

Wait Terminate

Pree-
mpt

Start

ActivateRelease

Running

Ready

Waiting Suspended

Ready queue

tk1

tk4

tk6

tk3

tk5

tk2

Application interfaces (APIs)

ActivateTask(tk)

ChainTask(tk) TerminateTask ()

Schedule () SetEvent (tk, evt)

WaitEvent(evt)

ClearEvent(evt) GetResource (res)

ReleaseResource (res) …

Figure 2 (Color online) Structure of OSEK/VDX OS and provided APIs.

different model checking techniques to verify OSEK/VDX applications according to different checking

targets without considering the details of OSEK/VDX OS; (ii) autoC can be considered as a guideline

for verifying other deterministic scheduler based multi-task software using model checking.

We conducted a series of experiments to evaluate the efficiency of autoC. In the conducted experiments,

we firstly used autoC to translate the experimental applications into the equivalent sequential models,

and then employed the well-known Spin model checker to carry out verification. Furthermore, in the

experiments, an existing plain checking method [10, 11] was considered as a comparison object. Based

on the experimental results, we found that autoC is not capable of efficiently translating OSEK/VDX

applications into sequential models, but also of improving the efficiency and scalability of the Spin model

checker in verifying OSEK/VDX applications compared with the plain checking method.

The outline of this paper is as follows. The OSEK/VDX OS and a running application used in the

paper are introduced in Section 2. The plain checking method is presented in Section 3. In Section 4,

the details of autoC are stated based on the running application. In addition, the advantages of autoC

in contrast with the plain checking method are also described in this Section. The efficiency of autoC is

demonstrated in Section 5, where the experiments and evaluation are discussed. We then compare our

work with related work in Section 6. The last section concludes the paper.

2 Background of OSEK/VDX OS and running application

The OSEK/VDX supports the development of a customized application by providing multi-task devel-

opment and many application interfaces (APIs) for developers. Details of the OSEK/VDX OS and a

running application are stated below.

2.1 OSEK/VDX OS

In general, as shown in Figure 2, an OSEK/VDX OS consists of three primary process modules: a

scheduler module, synchronization event module, and shared resource module. In addition, these process

modules also provide many useful APIs to allow applications to change the scheduling order of tasks, to

realize synchronous executions, and to access shared resources. The process modules of the OSEK/VDX

OS and corresponding APIs are as follows.

2.1.1 Scheduler module

The OSEK/VDXOS allows developers to define two types of tasks in application: basic task and extended

task. A basic task holds three states: running state, suspended state, and ready state. Compared with

the basic task, an extended task can take synchronization events, and holds a unique state called waiting

state. In the scheduling process, a deterministic scheduling policy, which is a static priority scheduling

policy with mix-preemptive strategy (Full-preemptive strategy and Non-preemptive strategy), is adopted

by the OSEK/VDX OS to conduct the executions of tasks, where a ready queue is used to manage the
 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:4

Task contask
{
 Type=Basic ;
 Priority=2;
 Schedule =Full;
 Autostart=True;
}

Task plustask
{
 Type=Basic ;
 Priority=3;
 Schedule =Non;
 Autostart=False ;
}

Task minustask
{
 Type=Basic ;
 Priority=3;
 Schedule =Non;
 Autostart=False ;
}

int speed, fixspeed ;
Task contask () {
 fixspeed =120 ;
 bool switch=true;
 while(switch=true){
 speed=read _speed ();
 if (speed<fixspeed)
 ActivateTask (plustask);
 else
 ActivateTask (minustask);
 switch=read _switch();
 }
 TerminateTask ();
}

Task plustask () {
 speed ++ ;
 TerminateTask ();
}

Task minustask () {
 speed −− ;
 TerminateTask ();
}

Source file Configuration file

Figure 3 (Color online) Running application.

scheduling order of tasks. Furthermore, the OSEK/VDX scheduler provides several APIs for applications

(e.g., TerminateTask, ActivateTask, Schedule and ChainTask), and tasks within an application can invoke

these APIs to dynamically change the states of tasks. For example, when a task that is currently running

invokes API ActivateTask(tk1) and the activated task tk1 is in the suspended state, task tk1 will be

moved from suspended state to ready state by the OSEK/VDX scheduler.

2.1.2 Synchronization event module

The OSEK/VDX OS also supports a synchronization mechanism. The synchronization event module

provides several APIs (e.g., SetEvent, WaitEvent and ClearEvent), and tasks within an application can

invoke these APIs to implement the synchronous executions. For example, a running task t1 invokes the

API WaitEvent(evt1), task t1 is waited until the event evt1 occurs by being set in another task using

the API SetEvent(t1, evt1).

2.1.3 Shared resource module

The OSEK/VDX OS adopts the Priority Ceiling Protocol [17] to coordinate the task behaviours for

accessing shared resources. The shared resource module provides two APIs for applications, i.e., Ge-

tResource and ReleaseResource. For example, if a task within an application needs to access a shared

resource res1, the APIs GetResource(res1) and ReleaseResource(res1) can be invoked by the task to create

a critical section for accessing the shared resource.

2.2 Running application

As shown in Figure 3, an OSEK/VDX application consists of two files: a source file, and a configuration

file. The source file is used to present the concrete behaviors of an application, which can be developed

in C programming language. The configuration file is used to configure an application, e.g., define tasks,

synchronization events and shared resources. In task configuration, the attribute Type is used to indicate

the type of task (basic or extended). The attribute Priority is used to set the priority of the task.

Schedule is used to indicate the scheduling type of the task. If the attribute Schedule is set to Full, the

task can be preempted by higher priority tasks; otherwise, this preemption is not possible. Autostart

is used to specify the initial state of the task. If the attribute is set to True, the task starts from ready

state as the initial state (it will be inserted into the ready queue according to the priority of the task);

otherwise, the task starts from suspended state.
 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:5

Ready queue

t1

OSEK/ VDX scheduler

4

3

t1 FIFO

t2

SystemC scheduler

Select
thread

Run

thread

Scheduling order

t1

t2

t2

t1

t2

Scheduling order

t1

t2

Figure 4 (Color online) Scheduling type: non-deterministic scheduler and deterministic scheduler.

The execution characteristics of OSEK/VDX applications are expressly explained by describing the

symbolic execution of the running application shown in Figure 3 in this paragraph. As seen in Figure 3,

there are three tasks, contask, plustask and minustask in the running application. When the application

starts, since the only task in the ready state is contask (the attribute Autostart of contask is configured as

True), the scheduler within the OSEK/VDX OS moves contask from ready state to running state. When

contask is running on the processor, either the API ActivateTask(plustask) or ActivateTask(minustask)

are invoked in the if-else branches. For instance, if ActivateTask(plustask) is invoked, the scheduler

would be loaded to respond to this API, and then task plustask would be activated (scheduler moves

plustask from suspended state to ready state). At this moment, the currently running task contask

will be preempted by the activated task plustask, because the priority of contask is lower than that of

plustask and its attribute Schedule is set to Full. Then, plustask will get processor to run and go to

suspended state when the API TerminateTask() is invoked (API TerminateTask() is used to terminate

a task, and the terminated task will be moved from running state to suspended state by the scheduler).

When plustask is terminated, the scheduler dispatches contask to run again from the preempted point.

Similarly, if ActivateTask(minustask) is invoked by contask, minustask will preempt contask to run and

terminate itself when the API TerminateTask() is invoked.

Execution characteristics. According to the executions of running application, we can find the

following execution characteristics of OSEK/VDX applications:

• Tasks within an application are concurrently executed based on the scheduling of the OSEK/VDX

OS, and the running task can be explicitly determined by the OSEK/VDX scheduler.

• Tasks can invoke APIs to dynamically change the states of tasks, and these changed task states

affects the scheduling order of tasks.

Due to the concurrency of tasks and dynamic scheduling, how to exhaustively check the developed

OSEK/VDX applications is becoming a challenge for developers. In the following sections, we will

demonstrate two exhaustive checking methods based on existing model checkers. The first method directly

employs existing model checkers (we name this method as the plain checking method), and the other is

based on our developed translator autoC.

3 Plain checking method

In general, in multi-threaded software such as in SystemC and ANSI-C concurrent programs, threads

are concurrently executed, and the running thread, which is arbitrarily selected by scheduler, cannot

be explicitly specified. For example, as depicted in Figure 4, if threads t1 and t2 are currently in the

runnable or ready state and the SystemC scheduler is used to dispatch these two threads, there exist two

possible scheduling orders, one of which is (t1, t2), and the other is (t2, t1). Usually, we refer to this

type of scheduler as a non-deterministic scheduler. Due to the non-deterministic scheduling behaviours,

it is difficult to achieve an exhaustive examination. In the software industry, this problem has been

solved by applying model checking as an exhaustive technique. Currently, based on the different model

checking techniques, many model checkers such as Spin, ESBMC and VCC have already been built

for automatically verifying non-deterministic scheduler based concurrent programs. When we employ
 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:6

Spurious bug

Checked interleavings

Realistic interleavings

Figure 5 (Color online) Realistic task interleavings in deterministic scheduler based concurrent program.

existing model checkers to verify a non-deterministic scheduler based concurrent program, we usually

do not need to consider the complex non-deterministic scheduling behaviours. In the verification stage,

model checkers can systematically verify all possible scheduling orders or interleavings of threads. For

example, if the Spin model checker is employed to verify the threads t1 and t2 depicted in Figure 4, we

can simply use proctype process to represent each thread in the program model. In the verification

stage, Spin verifies all of the possible scheduling orders of the threads.

Unfortunately, in contrast with the non-deterministic scheduler based multi-threaded programs, in

OSEK/VDX applications, the running task can be explicitly determined by the OSEK/VDX scheduler

based on the ready queue. For example, as depicted in Figure 4, we assume that tasks t1 and t2 are

currently in the ready queue and the priority of task t1 is higher than that of task t2. If the OSEK/VDX

scheduler is used to dispatch these two tasks, only a single scheduling order (t1, t2) exists. In general, we

refer to this type of scheduler as deterministic scheduler. To verify this type of concurrent programs using

existing model checkers, if we do not consider the scheduling behaviours and just use concurrent process

to represent each task (like checking non-deterministic scheduler based multi-threaded programs), a lot

of unnecessary interleavings of tasks will be checked by model checkers in the verification stage (as shown

in Figure 5, the interleavings checked by model checkers are larger than the realistic interleavings in

deterministic scheduler based concurrent program). Furthermore, due to the unnecessary interleavings,

model checkers often find a spurious bug which makes the verification inexplicit. In order to explicitly

verify OSEK/VDX applications using existing model checkers, we will demonstrate a checking method

named the plain checking method based on our previous work [10]. In addition, the advantages and

disadvantages of the plain checking method will also be discussed.

3.1 Key idea of plain checking method

Existing model checkers such as Spin can be enabled to explicitly verify OSEK/VDX applications by

using the plain checking method, the key idea of which is: each of the tasks in the application, such

as those that are used to check non-deterministic scheduler based concurrent programs, is designed as

a concurrent process. In particular, a special concurrent process for OSEK/VDX OS is added in the

application model to determine the running task and respond to the APIs invoked by tasks. Based on

the application model with the OSEK/VDX OS process, all of the possible interleavings of tasks are

checked by model checker; especially, unnecessary interleavings of tasks are removed by scheduling of the

OSEK/VDX OS process in the verification stage.

According to the aforementioned idea, the plain checking method can explicitly verify OSEK/VDX

applications using existing model checkers. For example, if we employ the Spin model checker to verify

the running application, as shown in Figure 6, we can construct three proctypes to simulate contask,

plustask and minustask; moreover, we can add a proctype named osekOS to represent the OSEK/VDX

OS.

3.2 Advantage and disadvantage of plain checking method

In the plain checking method, since a special concurrent process for the OSEK/VDX OS is used to

explicitly dispatch tasks within an application and respond to the invoked APIs, the advantage of the

plain checking method is that it can exhaustively verify OSEK/VDX applications without spurious bugs.
 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:7

proctype

contask

proctype

plustask

proctype

minustask

proctype

osekOS

APIs

Figure 6 (Color online) Running application model in the Spin model checker.

Task CFGs
Application

Promela/C model

Task

Config. file

CFG CFG
CFG

OSEK/VDX OS

model

Translator

Sequential Alg.
Extended

directed graph

Sequential model

autoC

Model
checkers

Figure 7 (Color online) Architecture of autoC.

However, the scalability of the method is limited, because the states of the OSEK/VDX OS process

are explored by model checkers in the verification. If an application invokes a number of APIs, a large

number of states from the OSEK/VDX OS process will be explored. This enables the model checkers

to easily meet the verification limitation. Furthermore, in the plain checking method, the size of the

application model (the number of concurrent processes) depends on the number of tasks. If a target

application holds many tasks, in the verification stage, model checkers have to verify a large number of

interleavings from task processes, and this could easily result in the state space explosion problem.

4 autoC

Because the application model consists of an excessive number of concurrent proceses, the plain checking

method causes model checkers to fail in verifying a large-scale OSEK/VDX application which contains

many tasks. Thus, a reasonable approach for improving the scalability of existing model checkers to

verify OSEK/VDX applications would be to simplify the application models, e.g., to reduce the number

of concurrent processes in the application model. In this section, we describe a software tool named

autoC to address this problem by automatically translating an OSEK/VDX application into an equivalent

sequential model. According to this model, in the verification stage, model checkers simply verify one

concurrent process instead of multiple processes. The details of autoC are stated below.

4.1 Architecture of autoC

As shown in Figure 7, if autoC receives an OSEK/VDX application from users, it firstly calls the C

Intermediate Language (CIL) [18] to interpret the behaviours of tasks written in complex C programming

language into a simple goto program in the first step. Then, based on the simple goto program, the

behaviours of tasks are extracted and constructed as corresponding control flow graphs (CFGs). In the

second step, based on the task CFGs and configuration file, autoC translates the target application into

an equivalent sequential model. Here, since the OSEK/VDX scheduler is used to dispatch tasks and tasks

can invoke APIs to dynamically change the scheduling order, in order to translate an application into a

sequential model equivalently, we embed an OSEK/VDX OS model in autoC to realize the scheduling

behaviours and respond to the invoked APIs. In addition, an extended directed graph is used to compute
 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:8

L0L0

L1

fixspeed=120

L2

switch=true

L4 L3

switch==true !(switch==true)

L6

speed =read_speed ()

L7

L8

speed<fixspeed

!(speed<fixspeed)

L9

ActivateTask(plustask)

ActivateTask(minustask)

L5

TerminateTask()

L10

switch=read_switch()

goto

L0

L1

L2

speed ++

TerminateTask()

L0

L1

L2

speed−−

TerminateTask()

contask miunstask

plustask

Figure 8 (Color online) CFGs for tasks contask, plustask and minustask.

the sequential model according to the executions of the target application. In the last step, autoC encodes

the computed extended directed graph into the two types of sequential model, the Promela and C models.

4.2 Key processes in autoC

Based on the architecture of autoC, we systematically explain how autoC automatically translates

OSEK/VDX applications into the equivalent sequential models.

4.2.1 Task CFGs

Developers can implement an OSEK/VDX application using C programming language. However, C code

is often too complex to analyze in the static analysis. To easily analyze an OSEK/VDX application

developed in C programming language, like the model checker CBMC [19], the application is firstly

interpreted into the simple goto program based on CIL, where complex structures such as loops and

structs in C code are interpreted as branch statements with goto labels and general variables. Then,

the behaviours of all tasks within the application are extracted and constructed as the corresponding

CFGs. The description of a task CFG has been represented in Definition 1. For example, as shown in

Figure 8, autoC constructs three CFGs to represent each task included in the running application.

Definition 1. The CFG of a task is a tuple Ω=(L, L0, Σ, R). Where, L = {L0, L1, . . .} is a set of

statement locations of a task with the start location L0∈L. Σ is a set of task statements, the expression

of a statement α∈Σ is as follows:

α ::= condition | assignment | goto | assertion | API,

R⊆L×L is the set of directed edges labelled by task statements Σ.

4.2.2 Translation

To translate an OSEK/VDX application into the equivalent sequential model, there are two problems

that should be addressed, one is how to explicitly perform the scheduling behaviours of OSEK/VDX OS,

and the other is how to compute the sequential model.
 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:9

As to explicitly perform the scheduling behaviours of OSEK/VDX OS, we embed an OSEK/VDX OS

model in autoC for dispatching tasks and responding to the invoked APIs. The embedded OSEK/VDX

OS model consists of two key components (see [13]). The first component is the data structures used to

record the scheduling data such as the states of the tasks. The second component is the functions that

are used to respond to APIs and update the data within the data structures. In addition, in order to

successfully compute the sequential model of an OSEK/VDX application, the extended directed graph

defined in Definition 2 is employed to carry out sequential translation. In the translation processes, autoC

uses the extended directed graph to execute an application in a symbolic way, and calls the embedded

OS model to determine the running task when meeting an API.

Definition 2. An extended directed graph G is a tuple G=(V , v0, E). Where, V is a set of nodes of G

with the start node v0 ∈ V . A node v ∈V consists of two variables p and D, p is an array used to record

the statement locations of tasks, and D is a set of variables used to store the states of tasks, the states

of synchronization events and the states of shared resources. E⊆V ×V is a set of directed edges used to

map the statements of tasks within an application.

Based on the extended directed graph and embedded OSEK/VDXOS model, the key processes of autoC

for translating a given OSEK/VDX application into a sequential model are formalized in Algorithm 1.

In the translation processes, autoC does not compute the values of variables; instead, it just explores

task statements according to the executions of running task. If the explored statements are sequential

statements and branch statements, autoC will create several new nodes in the extended directed graph,

Input: CFGs of takes and configuration file of application

Output: Extended directed graph G

Create a start node and a set V for extended directed graph G ;

Initialize p and D in node v0

v0

with initial locations of task CFGs and application configuration file, V := {v0};

Call OS model to determine running task t in node v0 based on D of node v
0
;

Create a node v and a set V , v := v0 , V := {v};

while V = do0

v V , V := V \{ v};

if running task t in node v is not null then

explore task statements from the current location of running task t in node v in symbolic way;

if explored statement is an API then

create a new node , where := v ;

map the explored statement in directed edge (v ,v);

update p of node with current location of running task t in node v ;

call OS model to respond to the API and determine running task t in node v based on D of node ;

end

if explored statements are branch statements then

according to the number m of branches, create m new nodes , where := v := v ;

map the explored branch statements in directed edges (v ,),..., (v ,vm), respectively;

update p of node ,...,v with current location of running task t in node v ;

1
,...,vm};

else

create a new node , where v := v ;

map the explored statement in directed edge (v ,v);

update p of node v with current location of running task t in node v ;

;

end

forall vi V do

if vi = vj V, then change the relationship of directed edge (v, vi) to (v, vj), := \{ vi }; otherwise,

V := V {vi } (where vi =vj means that p and D in node vi are equal to p and D in node vj , respectively);

end

end

end

return G ;

∪

V := V {v }∪

∈

∈

∈

′

′ ′ ′

V := V {v∪′ ′ ′

1v′

′

};V := V {v∪′ ′ ′

v′

v′ v′

v′

′

′

′ ′

′ ′

′

v ′ ′

′

V ′ V ′

m′

,..., v
1v′ m′

′

,...,v1v′

′

m′

′1v′

/ /

Algorithm 1 The key processes of autoC

 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:10

v 1

fix
speed =120

v 2

switch=true

v 4 v 3

switch==true !(switch==true)

v 6

speed=read_speed()

v 7

v 11

speed<fixspeed

!(speed <fixspeed)

v 8

ActivateTask (plustask)

A
ct

iv
at

eT
as

k
(m

in
u
st

as
k
)

TerminateTask()

switch=read _switch()

goto

v 12
v 13

speed−−

L0v 0

v 9

speed ++

v 10

v 5

T
er

m
in

at
eT

as
k

()

TerminateTask()

v 14

contask

minustask

plustask

Figure 9 (Color online) Extended directed graph for running application.

and then maps the explored statements in the directed edges. When the explored statement is an API,

autoC firstly maps the statement in the extended directed graph and then calls the embedded OS model

to respond to the API and determine the next running task. Particularly, if the task locations p and

the scheduling data D in a new node are equal to those of an old node, autoC constructs a cycle in the

extended directed graph.

4.2.3 Sequential model

Once the extended directed graph is constructed according to the executions of the given application,

autoC encodes the extended directed graph into the Promela and C sequential models to enable de-

velopers to employ existing model checkers to carry out the verification directly. Actually, based on

the constructed extended directed graph, developers can easily select different model checkers to verify a

given OSEK/VDX application according to the different checking targets. This becomes possible because

task statements and the relationships between them are clearly shown in the extended directed graph.

Developers only need to implement an encoder to encode the extended directed graph into the input

languages of selected model checkers.

4.3 Example

We include this example to facilitate the understanding of the translation or sequentialization processes

of autoC. This example is based on the running application depicted in Figure 3. As shown in Figure 9,

in the first step, autoC creates a start node v0 and initializes v0 with the initial locations of tasks and

configuration file (in node v0, all tasks start from initial locations L0 shown in Figure 8 with contask

in the ready state, plustask and minustask in the suspended state). In the second step, autoC calls the

embedded OS model to determine the running task in node v0. Currently, contask becomes the running

task in node v0. Then, autoC successively explores the statements of contask and maps the explored

statements in the directed edges of G. For example, in Figure 9, two nodes v1 and v2 are created, and

the explored statements are mapped to directed edges (v0, v1) and (v1, v2). When autoC explores a

statement from node v2, it meets the condition statements of while loop in contask. Thus, the two nodes

v3 and v4 are created, and the loop condition statement and negative condition statement are mapped

to directed edges (v2, v4) and (v2, v3). The task statements from node v3 are explored by invoking the

API TerminateTask. Then, autoC creates a node v5 and maps the API in directed edge (v3, v5). Since

the explored statement is an API, the OS model is called to respond to the API and compute the states

of tasks (in node v5, all tasks are in the suspended state). When autoC explores the task statements
 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:11

int speed, fixspeed;
bool switch ; // local variable in contask
void seqM() {
 fixspeed =120;
 switch=true;
Loop:
 if (switch == true) {
 speed=read _speed ();
 if (speed < fixspeed) {
 //ActivateTask(plustask);
 speed ++;
 //TerminateTask ();
 }
 else if (!(speed < fixspeed)) {
 //ActivateTask(minustask);
 speed−−;
 //TerminateTask ();
 }
 switch=read _switch();
 }
 goto Loop;
}

Figure 10 (Color online) C sequential model for running application.

from node v4, according to the executions of contask, autoC creates five nodes (v6, v7, v8, v11, v12) to map

the corresponding task statements, e.g., the APIs ActivateTask(plustask) and ActivateTask(minustask)

are mapped in directed edges (v7, v8) and (v11, v12), respectively. In edge (v7, v8), since the API

ActivateTask(plustask) is invoked, autoC calls the OS model to respond to the API and compute the

states of tasks in node v8. At this moment, contask is preempted by plustask in node v8, and then autoC

creates two nodes v9 and v10 to successively map the statements of plustask. Since the mapped statement

in directed edge (v9, v10) is the API TerminateTask, the OS model is called to respond to the API and to

compute the states of tasks in node v10 (in node v10, contask becomes running task again). Accordingly,

autoC also maps the task statements of minustask in directed edges (v12, v13) and (v13, v10) from node

v12. After that, autoC creates a node to continue the executions of contask from node v10 and maps the

corresponding statements in directed edges.

Then, autoC encodes the computed extended directed graph into the sequential model, e.g., if we

require autoC to generate a C model, as shown in Figure 10, autoC will encode the extended directed

graph depicted in Figure 9 into the corresponding C sequential model. Based on the shown C sequential

model, we can easily find that the C sequential model is equivalent to the executions of the running

application. In particular, since OSEK/VDX OS model is embedded in autoC to dispatch tasks and

respond to the invoked APIs, the sequential model does not hold the states of OSEK/VDX OS.

4.4 Advantages of autoC

One of the main advantages of autoC is that the translation or sequentialization process of autoC ob-

viates the need for developers to consider the complex behaviours of the OSEK/VDX OS when using

model checkers based on different model checking techniques to verify OSEK/VDX applications, such as

the symbolic model checking [20], bounded model checking [21], and counterexample guided abstraction

refinement [22,23] techniques. This enhances the cost-effectiveness of the verification of OSEK/VDX ap-

plications. In addition, based on the sequential model translated by autoC, advanced software techniques

for sequential programs (e.g., testing [24] technique and code optimization [25] technique) can be directly

employed to process OSEK/VDX applications.

4.5 Usage of autoC

autoC is available on the website http://www.jaist.ac.jp/∼s1220209/autoC.htm, implemented on the

Visual Studio 2010 platform with C++ programming language. Currently, it can be run on the Windows

OS, and accepts C programming language as input. In addition, autoC supports 12 types of APIs specified

in the OSEK/VDX standard, and it can output two types of sequential models, the Promela and C

sequential models for model checking OSEK/VDX applications. Furthermore, to enable developers to
 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

http://www.jaist.ac.jp/~s1220209/autoC.htm

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:12

easily verify OSEK/VDX applications using different model checkers, autoC can also output a sequential

model represented by a directed graph. Based on the relationships between nodes and labelled statements

in the directed graph model, developers can easily encode it into the input languages of selected model

checkers.

The use of autoC firstly requires Visual Studio to be installed, after which autoC can be run from the

Visual Studio command prompt. For example, if we require autoC to translate the running application

shown in Figure 3 into sequential model and output C model, we can run autoC on the Visual Studio

command prompt with the command “autoC -sourcefile source.cpp -configfile config.oil -seqC.”

Further details of autoC are provided on the autoC website.

5 Experiments and discussion

5.1 Experiments

we have conducted a series of experiments to evaluate the efficiency of autoC. The sequential translation

features of autoC determine the extent to which the task number and API number affect the perfor-

mance of autoC. Thus, autoC was comprehensively investigated on realistic applications by selecting

experimental applications with different task and API numbers as benchmarks. Moreover, the execu-

tion behaviours of OSEK/VDX applications were realistically represented by additionally taking into

account the non-preemptive scheduling behaviour, full-preemptive scheduling behaviour, mix-preemptive

scheduling behaviour, synchronous behaviour, and accessing shared resource behaviour of the selected

benchmarks. The benchmarks developed by our research group are available at http://www.jaist.ac.jp/
∼s1220209/autoC.htm. In addition, the well-known Spin model checker was selected to show whether

autoC can improve the scalability of existing model checkers for verifying OSEK/VDX applications. Par-

ticularly, in the experiments, the plain checking method based on the Spin model checker was considered

as comparison object.

All the experiments were conducted on the Intel Core(TM)i7-3770 CPU with 32 G RAM, and we set

the time limit and memory limit to 600 s and 1 GB, respectively. Note that, in the experiments, the

“C compiler” of Spin was set to “−DVECTORSZ=16384 −DBITSTATE”, and the maximum depth was

set to “20000000”. In addition, we thoroughly evaluated autoC by not specifying any property in the

experiments to allow Spin to explore the states of the target benchmarks as much as possible. The

experimental results are listed in Table 1. In the table, #t is the number of tasks, #API is the times of

invoked APIs by tasks, #s is the number of explored states by Spin. “Mb” and “Time” are the memory

consumption and time consumption measured in Mbyte and seconds, respectively. M.O. and T.O. stand

for that Spin model checker runs out of time and memory, respectively.

5.2 Discussion

The experimental results shown in Table 1 indicate that the plain checking method fails to verify the

benchmarks which contain a number of tasks and APIs (e.g., lines 4, 12 and 20). This is because, (i) in

the plain checking method, the application model holds too many concurrent processes, thereby easily

causing the state space to experience exponential growth in the verification stage. In addition, (ii) in the

method, when an API is invoked by the running task, the states of OSEK/VDX OS are checked, and

this significantly increases the state space if an application holds a number of APIs. These drawbacks

seriously limit the efficiency and scalability of this method.

In contrast with the plain checking method, the autoC+Spin method can successfully verify these

benchmarks with lower costs (time and memory) and lesser states. This is because, (i) based on the

sequentialization of autoC, the model checker Spin only verifies one concurrent process rather than

multiple concurrent processes. In addition, (ii) in the sequentialization, we embedded an OSEK/VDX

OS model in autoC to explicitly dispatch tasks and respond to the invoked APIs, thereby resulting in
 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

http://www.jaist.ac.jp/~s1220209/autoC.htm
http://www.jaist.ac.jp/~s1220209/autoC.htm

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:13

Table 1 Comparison: Spin based Plain checking method vs. autoC+Spin

autoC + Spin

Spinplain checking method autoC SpinBenchmark #t #API

#s Time Mb Time Mb #s Time Mb

Non-preemption

6 11 4652 0.21 17.7 0.18 3.19 36 0 0.02

8 14 25253 0.71 81.1 0.26 3.64 38 0.01 0.04

10 17 103835 2.67 303.2 0.30 4.11 60 0.01 0.09

18 35 – T.O. – 0.60 5.72 99 0.02 0.50

Full-preemption

4 61 20501 0.10 82.5 0.14 2.98 1008 0.11 0.93

6 101 34371 1.12 126.2 0.19 3.34 1624 0.16 1.79

9 161 46990 1.26 138.1 0.29 4.05 2607 0.27 2.78

13 241 – – M.O. 0.45 5.14 3904 0.39 0.75

Mix-preemption

5 101 13541 0.44 54.7 0.18 3.21 1308 0.13 0.75

9 161 – – M.O. 0.30 4.22 2588 0.13 1.71

13 241 – – M.O. 0.45 5.23 3868 0.26 2.56

13 313 – – M.O. 0.41 4.78 390 0.38 0.24

Synchronization

5 14 2443 0.15 11.6 0.18 3.16 134 0.04 0.11

8 23 24159 0.78 86.8 0.26 4.01 230 0.02 0.14

11 32 210841 5.37 612.4 0.42 4.53 322 0.02 0.02

12 42 382329 9.62 998.3 0.45 5.11 358 0.03 0.19

Shared resource

2 4 13907 0.46 56.5 0.21 3.41 1308 0.13 0.75

9 320 – – M.O. 0.34 4.63 2588 0.26 1.71

13 480 – – M.O. 0.61 5.84 3868 0.38 2.56

12 250 – – M.O. 0.44 4.98 389 0.03 0.24

the sequential model only holding the states of the given application. These efforts improve the efficiency

and scalability of the Spin model checker in verifying large-scale OSEK/VDX applications.

Based on the results of comparison, it can be seen that, autoC is not only capable of efficiently

translating OSEK/VDX applications into sequential models, but also of improving the efficiency and

scalability of existing model checkers for verifying OSEK/VDX applications.

6 Related work

Currently, the OSEK/VDX standard has been widely adopted by many automotive manufacturers and

research groups to implement practical systems and study embedded systems, e.g., well-known manu-

facturers BMW and TOYOTA, and research groups IRCCyN and TOPPERS. However, ensuring the

reliability of the developed OSEK/VDX OS and its applications has become a challenge for developers

with the continuously increasing complexity of the development process.

In the scope of checking developed OSEK/VDX OS, there are some invaluable methods, e.g., Chen

and Aoki [26] have proposed a method to generate the highly reliable test-cases for checking whether the

developed OS conforms to the OSEK/VDX OS standard based on Spin. In addition, for Trampoline1),

which is an open source RTOS that was developed based on the OSEK/VDX standard, Choi [27] presented

a method to convert the Trampoline kernel into formal models, and an incremental verification approach

is proposed to carry out the verification in the method. Furthermore, a CSP-based approach for checking

the code-level OSEK/VDX OS is presented in [28]. All of these related studies are different from our

work, because our autoC focuses on developed OSEK/VDX applications.

For the developed OSEK/VDX applications, we have proposed a Spin-based checking method to check

the safety property [10]. Similarly, the paper [11] also proposed a method to check the timing property

based on the model checker UPPAAL. Although these two methods can explicitly verify OSEK/VDX

applications, they cannot handle the large-scale applications that hold many tasks because of a lot of

1) Trampoline. http://trampoline.rts-software.org/.

 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:14

concurrent processes of tasks and too many details of OSEK/VDX OS included in the application model.

To avoid the states of OSEK/VDX OS to be checked in the verification, we presented a new technique

named EPG [29] based on the SMT-based bounded model checking. Even so, the method is not efficient to

check the applications which holds a lot of branches, since the method will spend much time exploring all

of the execution paths in order to construct the corresponding transition system, which will seriously slow

down the performance of the method. Compared with EPG technique, autoC uses an extended directed

graph to execute OSEK/VDX applications in symbolic way rather than exploring execution paths, which

is more efficient than EPG technique.

To verify concurrent programs with a scheduler, Liu and Joseph [30] proposed a transformational ap-

proach to specification and verification of concurrent application programs executing on systems with

limited resources. There, a generic transformation is defined such that for an application (or a specifica-

tion), a system model with limited resources such as the number of processors and their computational

speeds, and a scheduler (or a specification of the scheduling policy), the implementation of the application

on the system by the scheduler is transformed into a program with reduced interleavings. The transfor-

mation is used for the verification of the schedulability of real-time and fault-tolerant applications, and

the feasibilities of real-time schedulers for the real-time and fault-tolerance requirements of applications.

The advantage is to allow the real-time and fault-tolerance requirements be specified and verified in the

traditional theory refinement and temporal verification in a single notation. However, that work does not

consider the issue of a possible implementation of the transformation for any existing operating system,

and to our best knowledge there does not exist any tool to support Liu and Joseph’s transformational

approach. In this paper, we do not consider the verification process, but we focus on the problems of

design and implementation of a transformation for translating OSEK/VDX concurrent applications into

sequential execution models. In the field of verifying concurrent programs using sequentialization based

model checking, several studies, such as [14,15], have been carried out. In these studies, the target systems

are non-deterministic scheduler based concurrent programs such as SystemC and ANSI-C. In the trans-

lation process, random numbers are appended in the target programs to simulate the non-deterministic

scheduling behaviour. However, as reported in [14], sequentialization based model checking methods

are usually unable to verify large-scale programs, because too many appended random numbers often

incur a large number of non-deterministic states, which will quickly cause the model checkers to reach

their verification limit. Compared with existing works, autoC focuses on a deterministic scheduler. This

involves employing an extended directed graph for sequential translation to compute a sequential model

that does not hold random numbers. Once an OSEK/VDX application is successfully translated into a

sequential program by autoC, model checkers can efficiently verify the target application.

7 Conclusion

This paper presented a software tool named autoC that is capable of automatically translating the deter-

ministic scheduler based OSEK/VDX applications into equivalent sequential models. We explicitly real-

ized the scheduling behaviour of the OSEK/VDXOS by embedding an OSEK/VDXOS model in autoC to

dispatch tasks within applications and respond to the APIs invoked from tasks. In addition, an extended

directed graph was used to carry out sequential translation in order to efficiently sequentialize OSEK/VDX

applications. The sequential models translated by autoC enable developers to directly employ advanced

model checking techniques to verify OSEK/VDX applications; moreover, developers can also use state-of-

the-art software techniques for sequential programs to process OSEK/VDX applications. We conducted

a series of experiments to evaluate the efficiency of autoC. The experimental results show that au-

toC not only has the ability to efficiently sequentialize OSEK/VDX applications, but also to improve

the efficiency and scalability of existing model checkers in verifying large-scale OSEK/VDX applications.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant Nos.

61602224, 61472240) and Fundamental Research Funds for the Central Universities (Grant Nos. lzujbky-2016-142,

lzujbky-2016-k07).

 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

Zhang H T, et al. Sci China Inf Sci May 2018 Vol. 61 052102:15

Conflict of interest The authors declare that they have no conflict of interest.

References

1 Lemieux J. Programming in the OSEK/VDX Environment. New York: CMP Media, Inc., 2011

2 Clarke E M, Emerson E A, Sifakis J. Model checking: algorithmic verification and debugging. Commun ACM, 2009,

152: 74–84

3 Clarke E M, Grumberg O, Long D E. Model checking and abstraction. ACM Trans Programm Languages Syst, 1994,

16: 1512–1542

4 Pu F, Zhang W H. Combining search space partition and abstraction for LTL model checking. Sci China Ser F-Inf

Sci, 2007, 50: 793–810

5 Holzmann G J. The Spin Model Checker: Primer and Reference Manual. Boston: Lucent Technologies Inc., 2003

6 Morse J, Ramalho M, Cordeiro L, et al. ESBMC 1.22. In: Proceedings of the 20th International Conference on Tools

and Algorithms for the Construction and Analysis of Systems. Berlin: Springer, 2014. 405–407

7 Cohen E, Dahlweid M, Hillebrand M, et al. VCC: a practical system for verifying concurrent C. In: Proceedings of

the 22nd International Conference on Theorem Proving in Higher Order Logics. Berlin: Springer, 2009. 23–42

8 Cordeiro L, Fischer B. Verifying multi-threaded software using SMT-based context-bounded model checking. In:

Proceedings of the 33rd International Conference on Software Engineering, Waikiki, 2011. 331–340

9 Cimatti A, Micheli A, Narasamdya I, et al. Verifying SystemC: a software model checking approach. In: Proceedings

of the 2010 Conference on Formal Methods in Computer-Aided Design, Lugano, 2010. 51–60

10 Zhang H T, Aoki T, Chiba Y. A spin-based approach for checking OSEK/VDX applications. In: Proceedings of the

3rd International Workshop Formal Techniques for Safety-Critical Systems (FTSCS), Paris, 2014. 239–255

11 Waszniowski L, Hanzalek Z. Formal verification of multitasking applications based on timed automata model. J

Real-Time Syst, 2008, 38: 39–65

12 Clarke E M, Klieber W, Novacek M, et al. Model checking and the state explosion problem. In: Tools for Practical

Software Verification. Berlin: Springer, 2012. 1–30

13 Zhang H T, Aoki T, Chiba Y. Yes! You can use your model checker to verify OSEK/VDX applications. In: Proceedings

of the 8th International Conference on Software Testing, Verification and Validation, Graz, 2015. 1–10

14 Campana D, Cimatti A, Narasamdya I, et al. An analytic evaluation of SystemC encodings in Promela. In: Proceedings

of the 18th International SPIN Conference on Model Checking Software, Snowbird, 2011. 90–107

15 Inverso O, Tomasco E, Fischer B, et al. Lazy-CSeq: a lazy sequentialization tool for C. In: Proceedings of International

Conference on Tools and Algorithms for the Construction and Analysis of Systems, Grenoble, 2014. 398–401

16 IEEE Standard for Information Technology. Portable operating system interface (POSIX) base specifications. Issue 7.

http://standards.ieee.org/reading/ieee/interp/1003.1-2008.html

17 Burns A, Wellings A. Real-Time Systems and Programming Languages. 4th ed. New York: Addison Wesley Longmain,

2009

18 George C N, Scott M, Shree P, et al. CIL: intermediate language and tools for analysis and transformation of C

programs. In: Proceedings of the 11th International Conference on Compiler Construction. London: Springer, 2002.

213–228

19 Clarke E, Kroening D, Lerda F. A tool for checking ANSI-C programings. In: Proceedings of International Conference

on Tools and Algorithms for the Construction and Analysis of Systems. Berlin: Springer, 2004. 168–176

20 Yang Z J, Wang C, Gupta A, et al. Model checking sequential software programs via mixed symbolic analysis. ACM

Trans Design Autom Electron Syst, 2009, 14: 1–26

21 Armin B, Clarke E M, Zhu Y S. Bounded model checking. Adv Comput, 2003, 58: 117–148

22 Tian C, Duan Z H. Detecting spurious counterexamples efficiently in abstract model checking. In: Proceedings of the

35th International Conference on Software Engineering, San Francisco, 2013. 202–211

23 Tian C, Duan Z H, Duan Z. Making CEGAR more efficient in software model checking. IEEE Trans Softw Eng, 2014,

40: 1206–1223

24 Basili V R, Selby R W. Comparing the effectiveness of software testing strategies. IEEE Trans Softw Eng, 1987, 13:

1278–1296

25 Hoffmann J, Ussath M, Holz T, et al. Slicing droids: program slicing for smali code. In: Proceedings of the 28th

Annual ACM Symposium on Applied Computing, Portugal, 2013. 1844–1851

26 Chen J, Aoki T. Conformance testing for OSEK/VDX operating system using model checking. In: Proceedings of the

18th Asia-Pacific Software Engineering Conference, Washington, 2011. 274–281

27 Choi Y J. Safety analysis of trampoline OS using model checking: an experience report. In: Proceedings of the IEEE

22nd International Symposium on Software Reliability Engineering, Washington, 2011. 200–209

28 Huang Y H, Zhao Y X, Zhu L F, et al. Modeling and verifying the code-level OSEK/VDX operating system with CSP.

In: Proceedings of the 5th International Symposium on Theoretical Aspects of Software Engineering, Xi’an, 2011.

142–149

29 Zhang H T, Aoki T, Lin X H, et al. SMT-based bounded model checking for OSEK/VDX applications. In: Proceedings

of the 20th Asia-Pacific Software Engineering Conference, Bangkok, 2013. 307–314

30 Liu Z M, Joseph M. Specification and verification of fault-tolerance, timing, and scheduling. ACM Trans Program

Lang Syst, 1999, 21: 46–89

 https://engine.scichina.com/doi/10.1007/s11432-016-9039-4

	Introduction
	Background of OSEK/VDX OS and running application
	OSEK/VDX OS
	Scheduler module
	Synchronization event module
	Shared resource module

	Running application

	Plain checking method
	Key idea of plain checking method
	Advantage and disadvantage of plain checking method

	autoC
	Architecture of autoC
	Key processes in autoC
	Task CFGs
	Translation
	Sequential model

	Example
	Advantages of autoC
	Usage of autoC

	Experiments and discussion
	Experiments
	Discussion

	Related work
	Conclusion

