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Abstract This paper presents a novel adaptive mode switching scheme for hypersonic morphing aircraft

with retracted winglets based on type-2 Takagi-Sugeno-Kang (TSK) fuzzy sliding mode control. For each of

retracting and stretching modes, a specific sliding mode controller has been adopted. Drawing upon input/output

linearization to globally linearize the nonlinear model of the hypersonic aircraft at first, a type-2 TSK fuzzy

logic system is devised for robust mode switching between these sliding mode controllers. For rapid stabilization

of the system, the adaptive law for mode switching is designed using a direct constructive Lyapunov analysis.

Simulation results demonstrate the stability and smooth transition using the proposed switched control scheme.
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1 Introduction

Hypersonic morphing aircraft (HMA) [1] refers to hypersonic aircraft with variable wings to accomplish

specific tasks better. The HMA has the same characteristics as other hypersonic aircraft, including rapid

time-variation, strong nonlinearity, strong coupling, and model uncertainty [2,3], which cause difficulty in

designing flight controller. In practice, hypersonic aircraft always fly within a large flight condition range,

which causes frequent switching of the conditions [4]. The controller that keeps stabilization around a

single nominal flight condition cannot be used any more. Complex nonlinear systems cannot be controlled

easily in the switching process by simple control methods, which increase the difficulty of flight control

for hypersonic aircraft [5–7].

An HMA with retracted winglets needs to retract or stretch its winglets in large flight envelopes. If the

switching control cannot overcome the state saltation phenomenon while switching the modes of winglets,

it is hard to keep the process of retracting or stretching winglets smooth and stable [8,9]. Our purpose is

to construct an appropriate control of mode switching to keep the switching processes smooth and stable.
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(a) (b)

Figure 1 An illustration of a typical HMA’s modes based on X-24B configuration. (a) The three views of vehicle in

retracting mode; (b) the three views of vehicle in stretching mode. Modified from [24].

In nonlinear control designs for hypersonic aircraft, sliding mode control (SMC) has been widely

used. The SMC provides a systematic approach to the problem of maintaining stability and consistent

performance in the face of modeling imprecision. For example, terminal SMC was combined with a

second-order SMC approach to solve the parameter uncertainties of a hypersonic vehicle in [10,11]. A

continuous high order sliding mode controller was designed to reject aerodynamic uncertainties in [12,13].

The main advantage of the SMC is that system response remains insensitive to model uncertainties and

disturbances. However, chattering phenomenon is the key drawback involved by using pure SMC [14].

Therefore, SMC is always combined with some filtering and fine-tuning methods for real-life applications.

In switching processes, the factors of uncertainties, such as disturbance, have to be overcome. Interval

type-2 TSK fuzzy approach [15,16], has been proven to overcome such factors in various problems [17,18]

and has been increasingly used in control of uncertain systems. Traditional type-1 TSK fuzzy logic

systems [19–21] have been used to solve such control problems [22,23]; however, as systems become more

complex, the exact fuzzy sets and membership functions are no longer enough to accomplish the task.

Thus, the type-2 fuzzy logic controller has arisen and undergone rapid development because of its ability

to deal with problems of uncertainty more effectively. Moreover, the control format of mode switching

is similar to the type-2 TSK fuzzy tools. Considering the advantages of SMC of nonlinear systems and

the characteristics of type-2 TSK fuzzy techniques, a type-2 TSK fuzzy switching scheme combined with

SMC is proposed for adaptive control of HMA in this paper.

The outline of the paper is as follows. Section 2 presents the model of HMA and gives the aerody-

namic parameters of vehicle in retracting, stretching and switching modes. In Section 3, the switching

mechanism is discussed first, and afterwards, the novel switching control is designed by combining type-2

TSK fuzzy and SMC. Moreover, the adaptive signals are obtained drawing upon a direct constructive

Lyapunov analysis. In Section 4, we conduct two simulation studies to test and verify the effectiveness

of the switching control. Finally, conclusions are presented in Section 5.

2 Model of hypersonic morphing aircraft

A hypersonic flight vehicle with retracted winglets is researched in this paper. The data comes from

an experimental aircraft model. The only difference between retracting mode and stretching mode is

the mode of the winglets which are used to adjust the lift-drag ratio, mean aerodynamic chord and

reference area. Illustrations of typical HMA retracting and stretching winglet modes based on X-24B

configuration [24] are shown in Figure 1.

According to the longitudinal force and moment equilibrium, the longitudinal dynamics model of

HMA [25] can be obtained as follows.

V̇ =
T cosα−D

m
−

µ sin γ

r2
, (1)

γ̇ =
L+ T sinα

mV
−

(

µ− V 2r
)

cos γ

V r2
, (2)
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Figure 2 The aerodynamic parameters of vehicle in retracting mode. (a) The lift coefficient; (b) the drag coefficient;

(c) the pitch moment coefficient.

q̇ =
My

Iy
, (3)

α̇ = q − γ̇ (4)

ḣ = V sin γ, (5)

β̈ = −2ξωβ̇ − ω2β + ω2βc. (6)

In this model, V , γ, q, α, h are the velocity, flight path angle, pitch rate, angle of attack, and altitude,

respectively; β, ω, ξ are the throttle setting, natural frequency, and damping coefficient, respectively;

m, µ, r, My, Iy are the mass, gravitational constant, radial distance from the earth’s center, pitching

moment, and moment of inertia, respectively. For the lift L, drag D, thrust T , we have

L =
1

2
ρV 2sCL, (7)

D =
1

2
ρV 2sCD, (8)

T =
1

2
ρV 2sCT , (9)

Cm(δe) = 0.0292(δe − α), (10)

M =
1

2
ρV 2sc̄ (Cm + Cm(δe)) , (11)

CT =

{

0.02576β, if β < 1,

0.0224 + 0.00336β, if β > 1,
(12)

where CL, CD, CT , Cm are lift, drag, thrust and pitch moment coefficients respectively; ρ, s, Re are the

density of the air, reference area, and radius of the earth, respectively. The applicable control signals

are the throttle setting command βc in (6) and the elevator angle δe in (11). The specific dynamic

coefficients are from a set of experimental data. Based on the same data set, we have m = 136820 kg,

Iy = 9490740 kg ·m2.

In the retracting mode, s = 369 m2, c̄ = 27 m, the aerodynamic parameters of lift, drag and pitch

moment coefficients for different Mach and angle of attack values are shown in Figure 2.

In the stretching mode, s = 389 m2, c̄ = 30 m, the aerodynamic parameters of lift, drag and pitch

moment coefficient for different Mach and angle of attack values are shown in Figure 3.

We consider a flight scenario where the aircraft is in retracting mode before time instant t1, then

we would like to morph the aircraft within the time interval [t1, t2], so that it completely switches to

stretching mode after time instant t2.

Assumption 1. Any system parameter X(t), including s, c̄, and all the aerodynamic parameters, is

switched.

X(t) = X1(t)e
(−a(t−t1)) +X2(t)

(

1− e(−a(t−t1))
)

, (13)
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Figure 3 The aerodynamic parameters of vehicle in stretching mode. (a) The lift coefficient; (b) the drag coefficient;

(c) the pitch moment coefficient.
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Figure 4 The system structure of switching control.

where X1 stands for value in retracting mode, X2 stands for value in stretching mode, X stands for value

in switching mode. When t = t1, s, c̄, and all the aerodynamic parameters are retracting mode values.

When t1 < t 6 t2, s, c̄, the weights of values in retracting mode decrease while the weights of values in

stretching mode increase gradually, and eventually, at t = t2, the stretching mode values are reached.

Consequently, in terms of the aerodynamic parameters in retracting mode and stretching mode, we

can obtain the aerodynamic parameters in switching process.

3 Design of adaptive switching control

We consider the problem of tracking desired velocity and altitude trajectories Vc and hc for the HMA

described in Section 2. In the literature, there are control design studies for such problem for the case of

fixed structure aircraft. Our focus is to perform the task for the HMA, robustly to the abrupt changes

in the aircraft dynamics due to mode switching. In the problem, similar to the relevant studies in the

literature, we assume that the flight state x = [V, γ, α, β, h]
T
is available for measurement.

Define U1 = [βc1, δe1]
T as the control signal of retracting mode and U2 = [βc2, δe2]

T as the control

signal of stretching mode. When the HMA switches the mode of winglets, the control signal has to be

switched correspondingly. The control of switching process is as follows.

U(t) =















U1(t), t 6 t1,

Ut(t), t1 < t 6 t2,

U2(t), t > t2,

(14)

where Ut = [βct, δet]
T is the control signal of mode switching, which can be expressed as follows.

Ut =

[

βct(t)

δet(t)

]

=

[

aβ(t)βc1(t)

aδ(t)δe1(t)

]

+

[

bβ(t)βc2(t)

bδ(t)δe2(t)

]

, (15)

where aβ , aδ, bβ , bδ are the time varying control signal weights to be produced by the switching scheme.

The system structure of the switching control is shown in Figure 4.
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3.1 Sliding mode control in retracting mode and stretching mode

3.1.1 Input/Output feedback linearization

For the longitudinal nonlinear model of hypersonic aircraft (1)–(5), the third derivative of V and the

fourth derivative of h are obtained as follows [2,3].



























V̇ =
T cosα−D

m
−

µ sin γ

r2
= f1(x),

V̈ =
∂f1(x)

∂x
ẋ = ω1ẋ,

...
V = ẋT ∂ω1

∂x
ẋ+ ω1ẍ = ω1ẍ+ ẋTω2ẋ,

(16)























ḣ = V sin γ,

ḧ = V̇ sin γ + V γ̇ cos γ,
...
h = V̈ sin γ + 2V̇ γ̇ cos γ − V γ̇2 sin γ + V γ̈ cos γ,

h(4) =
...
V sin γ + 3V̈ γ̇ cos γ − 3V̇ γ2 sin γ + 3V̇ γ̈ cos γ − V γ̇3 cos γ − 3V γ̇γ̈ sin γ + V cos γ ·

...
γ ,

(17)

where the first, second and third derivatives of γ are obtained according to (2) as































γ̇ =
L+ T sinα

mV
−

(

µ− V 2r
)

cos γ

V r2
= f2(x),

γ̈ =
∂f2(x)

x
ẋ = π1ẋ,

...
γ = ẋT ∂π1

∂x
ẋ+ π1ẍ = π1ẍ+ ẋTπ2ẋ.

(18)

Note again that, in (16) and (18), the flight state vector x = [V, γ, α, β, h]
T
is available for measure-

ment, ω1 = ∂f1(x)/∂x, ω2 = ∂ω1/∂x, π1 = ∂f2(x)/∂x, π2 = ∂π1/∂x. The linearized model is obtained

as follows.
[ ...

V

h(4)

]

=

[

fV

fh

]

+

[

b11 b12

b21 b22

][

βc

δe

]

, (19)

where

fV = (ω1ẍ0 + ẋω2ẋ) /m, (20)

fh = 3V̈ γ̇ cos γ − 3V̇ γ̇2 sin γ + 3V̇ γ̈ cos γ − 3V γ̇γ̈ sin γ − V γ̇3 cos γ

+
(

ω1ẍ0 + ẋTω2ẋ
)

sin γ/m+ V cos γ
(

π1ẍ0 + ẋTπ2ẋ
)

, (21)

b11 =
ρV 2s·Cβω

2

2m
cosα, (22)

b12 = −
ρV 2sc̄·ce
2mIy

(T sinα+Dα), (23)

b21 =
ρV 2sCβω

2

2m
sin(α+ γ), (24)

b22 =
ρV 2sc̄·ce
2mIy

[T cos(α+ γ) + Lα cos γ −Dα sin γ] . (25)

3.1.2 Sliding mode control

We first consider a pair of SMC designs, one for each of the retracting and the stretching modes, consid-

ering the nominal system parameters for that mode.
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In the SMC design, following Lyapunov approach, we aim to satisfy the condition SṠ < 0 to have

an appropriate sliding mode selection S converge to zero. Similar to [3], we define the sliding mode

surfaces as
{

SV = (d/dt+ λV )
2
eV (t) = V̈ − V̈d + 2λV ėV + λ2

V eV ,

Sh = (d/dt+ λh)
3
eh(t) =

...
h −

...
h d + 3λhëh + 3λ2

hėh + λ3
heh.

(26)

Then, the derivatives of SV and Sh are obtained as
{

ṠV =
...
V −

...
V d + 2λV ëV + λ2

V ėV ,

Ṡh = h(4) − h
(4)
d + 3λh

...
e h + 3λ2

hëh + λ3
hėh.

(27)

In order to avoid chattering phenomenon, we choose the saturation SMC laws
{

ṠV = −kV sat(SV ),

Ṡh = −khsat(Sh),
(28)

where kV , kh are positive integers, sat(SV ) and sat(Sh) are saturation functions, defined as sat(x) = x if

|x| 6 1 and sat(x) = sgn(x) otherwise. Then, we can get: SV ṠV < 0, ShṠh < 0, which satisfy the sliding

condition. Accordingly, the control signal can be obtained as follows.

U =

[

βc

δe

]

=

[

b11 b12

b21 b22

]−1

·

[ ...
V d − fV − 2λV ëV − λ2

V ėV − kV sat(SV )

h
(4)
d − fh − 3λh

...
e h − 3λ2

h − λ3
hėh − khsat(Sh)

]

. (29)

Note that in (29), bij , fV , fh terms depend on flight conditions. Hence, even if the coefficients λV ,

λh are selected the same, the control law (29) will have different coefficients in retracting and stretching

modes, depending on the values of bij , fV , fh in each of these two modes.

3.2 Adaptive mode switching based on type-2 TSK fuzzy sliding mode control

Each of the two SMC laws designed based on the procedure in Subsection 3.1 is valid only for the

corresponding mode. Due to nonlinearity and parametric sensitivity of the model, using a single fixed

SMC law for both modes will not meet the tracking control requirements. To solve this issue by switching

the SMC law from one mode to the other robustly, an adaptive mode switching scheme based on type-2

TSK fuzzy technique is proposed. The structure is shown in Figure 5: (a) depicts the overall adaptive

control scheme based on the type-2 fuzzy logic system with diagram shown in (b). A similar type-2 fuzzy

logic system was used in [26].

In Figure 5, the control signals U1, U2 are the inputs of the type-2 TSK fuzzy logic controller. After

fuzzy reasoning, type reducer and defuzzication, the crisp output of type-2 TSK fuzzy logic controller

can be obtained. For keeping robustness of controller, the compensation law is used to compensate the

difference between the output of type-2 TSK fuzzy logic controller and the desired solution of control

signal. The estimator is used to estimate some variables of compensation law. The adaptive law is

obtained, following a constructive Lyapunov analysis, as detailed in the sequel.

3.2.1 Type-2 TSK fuzzy logic system

The traditional fuzzy systems based on type-1 fuzzy set has limitation to deal with the uncertainties of

practical plants. In order to enhance the traditional fuzzy system capability of describing and handling

uncertainties, type-2 TSK fuzzy logic approach based on type-2 fuzzy sets is utilized in this paper. For

the block of type-2 TSK fuzzy logic shown in Figure 5(a), U1, U2 are the inputs and Uf is the output.

The structure of type-2 fuzzy logic system [27,28] is shown in Figure 5(b).

In this paper, we use the Gaussian primary membership function with uncertain mean as the input

membership function and the output membership function.

Define:

Ub(t) = [diag(U1(t)), diag(U2(t))] =

[

βc1(t) 0 βc2(t) 0

0 δe1(t) 0 δe2(t)

]

. (30)
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Figure 5 Block diagram of the closed loop system using the proposed type-2 fuzzy logic base adaptive switching controller.

(a) The system structure of adaptive switching control; (b) the structure of type-2 fuzzy logic system.

We describe the ith-rule of interval type-2 TSK fuzzy logic system (A2-C0 case) as

Rule j : If U1(t) ∈ F̃ j
1 , and U2(t) ∈ F̃ j

2 , then Uf (t) = U j
f (t) = Ub(t)C

j , (31)

where U1(t) is the control signal of retracting mode, U2(t) is the control signal of stretching mode; F̃ j
1 is

the interval type-2 fuzzy set of U1(t), F̃
j
2 is the interval type-2 fuzzy set of U2(t); Uf(t) stands for output

of type-2 TSK fuzzy; Cj = [cj1, c
j
2]

T, cj1 = [cjβc1
, cjδe1], c

j
2 = [cjβc2

, cjδe2] are consequent parameters, what

we want to design as the solutions of aβ, aδ, bβ, bδ in (15) to obtain the control signal of mode switching.

The type-2 TSK fuzzy sets F̃ j
1 and F̃ j

2 are characterized by type-2 membership function µ
F̃

j
1

and µ
F̃

j
2

respectively.

Suppose that µ
F̃

j
i

and µ̄
F̃

j
i
are lower membership function and upper membership function of µ

F̃
j
i
(i =

1, 2), respectively. N(m,σ) is the normal distribution with mean m and variance σ. The upper member-

ship function µ̄
F̃

j
i
(Ui(t)) is given by

µ̄
F̃

j
i
(Ui(t)) =















N
(

mj
i1, σ

j
i

)

, Ui < mj
i1,

1, mj
i1 6 Ui 6 mj

i2,

N
(

mj
i2, σ

j
i

)

, Ui > mj
i2,

(32)

and the lower membership function µ
F̃

j
i

(Ui(t)) is given by

µ
F̃

j
i

(Ui(t)) =

{

N
(

mj
i2, σ

j
i

)

, Ui 6 (mj
i1 +mj

i2)/2,

N
(

mj
i1, σ

j
i

)

, Ui > (mj
i1 +mj

i2)/2.
(33)

Consequently, the membership function which is an interval with lower and upper boundaries is

µ
F̃

j
i
(Ui(t)) =

[

µ
F̃

j
i

(Ui(t)), µ̄F̃
j
i
(Ui(t))

]

. (34)
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In the type-2 TSK fuzzy logic system we used interval type-2 fuzzy sets and ”meet” operation under

product t-norm, so the result of the input and antecedent operations, which are contained in the firing

set
∏2

i=1 µF̃
j
i
(Ui(t)) ≡ F j(Ui(t)), is an interval type-1 set [29].

F j(t) =
[

f j(U(t)), f̄ j(U(t))
]

=
[

f j(t), f̄ j(t)
]

, (35)

where






f j(t) = µ
F̃

j
1

(U1(t)) ∗ µF̃
j
2

(U2(t)),

f̄ j(t) = µ̄
F̃

j
1

(U1(t)) ∗ µ̄F̃
j
2

(U2(t)).
(36)

The type reducer is used to generate a type-1 fuzzy set output, which is also an interval set. We used

center of sets (cos) type reduction, which is expressed as

Ufcos(t) = [Ufl(t), Ufr(t)]

=

∫

U1

f
∈[U1

fl
,U1

fr]
· · ·

∫

UM
f

∈[UM
fl

,UM
fr ]

∫

f1∈[f1,f̄1]
· · ·

∫

fM∈[fM ,f̄M ]
1

/

∑M
j=1 f

j(t)U j
f (t)

∑M
j=1 f

j(t)
, (37)

where Ufcos(t) is the interval set; Ufl(t) is the left-most point of Uf (t), Ufr(t) is the right-most point of

Uf (t). M is the number of type-2 fuzzy rules. Then we have

Ufr(t) = Ufr(t)
(

f1, . . . , fR, f̄R+1, . . . , f̄M , U1
f , . . . , U

M
f

)

=

∑R

j=1 f
j(t)U j

f (t) +
∑M

j=R+1 f̄
j(t)U j

f (t)
∑R

j=1 f
j(t) +

∑M

j=R+1 f̄
j(t)

, (38)

Ufl(t) = Ufl(t)
(

f̄1, . . . , f̄L, fL+1, . . . , fM , U1
f , . . . , U

M
f

)

=

∑L
j=1 f̄

j(t)U j
f (t) +

∑M
j=L+1 f

j(t)U j
f (t)

∑L
j=1 f̄

j(t) +
∑M

j=L+1 f
j(t)

, (39)

where L and R are the numbers of points which separate Ufl(t) and Ufr(t) into two sides respectively,

one side using lower firing strengths and the other using upper firing strengths.

Consequently, the de-fuzzified crisp output Uf(t) is

Uf (t) = (Ufl(t) + Ufr(t))/ 2

=
1

2

(

∑L

j=1f̄
j(t)U j

f (t) +
∑M

j=L+1f
i(t)U j

f (t)
∑L

j=1f̄
j(t) +

∑M

j=L+1f
j(t)

+

∑R

j=1f
j(t)U j

f (t) +
∑M

j=R+1f̄
j(t)U j

f (t)
∑R

j=1f
j(t) +

∑M

j=R+1f̄
j(t)

)

, (40)

where f j(t) and f̄ j(t) stand for the lower and upper membership functions of F̃ j(t), respectively. Then

the output of type-2 TSK fuzzy logic system in (40) can be rewritten as follows.

Uf(t) =
1

2





M
∑

j=1

U j
f (t)ξ

j
l (t) +

M
∑

j=1

U j
f (t)ξ

j
r(t)



 =
1

2

(

UT
fb(t)ξl(t) + UT

fb(t)ξr(t)
)

= UT
fb(t)ξ(t), (41)

where Ufb(t) = [U1
f (t), U

2
f (t), . . . , U

M
f (t)]T, ξ(t) = 1

2 (ξl(t) + ξr(t)) ≡ ξ(Ub(t)), and

ξjl (t) =
hj
l (t)

∑L
j=1f̄

j(t) +
∑M

j=L+1f
j(t)

, (42)

ξjr(t) =
hj
r(t)

∑R
j=1f̄

j(t) +
∑M

j=R+1f
j(t)

, (43)
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in which, M is the number of type-2 fuzzy rules, and there are

hj
l (t) =

{

f̄ j(t), j = 1, . . . , L,

f j(t), j = L+ 1, . . . ,M,
(44)

hj
r(t) =

{

f̄ j(t), j = 1, . . . , R,

f j(t), j = R+ 1, . . . ,M.
(45)

Remark: Note above that Ufb(t) = [U1
f (t), . . . , U

M
f (t)]T = [C1, . . . , CM ]TUT

b (t)
∆
= CTUT

b (t). Hence,

Eq. (41) can be rewritten as

Uf (t) = Ub(t)Ξ(t),Ξ(t) = Cξ(t) ≡ Cξ(Ub(t)). (46)

3.2.2 Type-2 TSK fuzzy sliding mode control

Consider the constructive SMC analysis in Subsection 3.1.2 and the resultant SMC law (29). As mentioned

previously, Eq. (29) will guarantee convergence of V to Vd and h to hd only for the specific flight condition.

Its coefficients are selected for, depending on the values of bij , fV , fh terms at that flight condition.

For a flight scenario involving a switch between retracting and stretching modes of the HMA, we can

consider an ideal or desired control law

U∗(t) =

[

β∗
c (t)

δ∗e (t)

]

= Ub(t)Ξ
∗(t) ≡ U∗ (Ub(t)) (47)

that has the same form as (29), but b11, b12, b21, b22, and the coefficients of fV , fh depend on flight

condition, and hence is time-varying.

Due to insufficient flight data, uncertainties, and external disturbances, Eq. (47) cannot be directly

produced during the mode switch. To make the problem tractable, we assume that (47) can be applied

at the full retracting and the full stretching mode using the system parameter information for these

modes. Our approach will focus on approximation of (47) during mode switch by the output Uf (t) =

[βcf(t), δef(t)]
T of type-2 TSK fuzzy control scheme.

According to the universal approximation theorem, since U∗ and ξ are both considered as functions

of Ub,

U∗(t) = A∗Tξ(t) + ε(t), (48)

where A∗ is an ideal constant matrix, ε(t) is the approximation error satisfying |εi(t)| < Ei (i = 1, 2) for

any pre-set constant Ei > 0, provided that L, R, M are sufficiently large. Let Ê(t) be the estimate of E,

whose adaptive law will be defined in the sequel, and

Ē(t) = Ê(t)− E, (49)

where Ē(t) =
[

Ēβc
(t), Ēδe(t)

]

. E is constant, and hence ˙̄E(t) =
˙̂
E(t).

We will define another adaptive law to generate the estimate of U∗
f (t) = A∗Tξ(t) as

Ûf(t) =
[

β̂cf(t), δ̂ef(t)
]T

= ÂT(t)ξ(t). (50)

Therefore, the adaptive switching control of type-2 TSK fuzzy SMC can be expressed as

U(t) = Ûf(t) + Un(t), (51)

where Ûf (t), as the main control signal, is used to mimic the desired control signal U∗(t); Un(t) =

[βcn(t), δen(t)]
T is used to compensate the difference between desired control signal and the output of

type-2 TSK fuzzy SMC.
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According to (48) and (50), Ūf(t) is defined as

Ūf(t) = Ûf(t)− U∗(t) = Ûf (t)− U∗
f (t)− ε(t) = ĀT(t)ξ(t) − ε(t), (52)

where Ā(t) = Â(t)−A∗ =
[

Āβc
(t), Āδe(t)

]

. A∗ is constant, and hence ˙̄A(t) =
˙̂
A(t).

Therefore, Eq. (19) can be rewritten as

[ ...
V

h(4)

]

=

[

fV

fh

]

+

[

b11 b12

b21 b22

] [

β̂cf + βcn

δ̂ef + δen

]

. (53)

From (27), (28), and (53), we obtain that:

[

ṠV

Ṡh

]

=

[

b11 b12

b21 b22

][

β̂cf + βcn − β∗
c

δ̂ef + δen − δ∗e

]

−

[

kV sat(SV )

khsat(Sh)

]

. (54)

3.2.3 Stability analysis and adaptive law design

For the process of mode switching, in order to establish the stability of the closed loop system depicted

in Figure 5, a Lyapunov stability analysis is adopted. To make the sliding mode variable S, Āβc
, Āδe ,

Ēβc
and Ēδe approach zero, we define the Lyapunov function as

V =
1

2
STS +

1

2η1
ĀT

βc
Āβc

+
1

2η2
ĀT

δe
Āδe +

1

2η3
ĒT

βc
Ēβc

+
1

2η4
ĒT

δe
Ēδe , (55)

where S = [SV , Sh]
T
, Ā =

[

Āβc
, Āδe

]

, Ē =
[

Ēβc
, Ēδe

]T
, ε = [εβc

, εδe ]
T
, η1, η2, η3, and η4 are all positive

constant. The derivative of (55) with respect to time is obtained as

V̇ = STṠ +
1

η1
ĀT

βc

˙̄Aβc
+

1

η2
ĀT

δe
˙̄Aδe +

1

η3
ĒT

βc

˙̄Eβc
+

1

η4
ĒT

δe
˙̄Eδe

= −kV SV sat(SV )− khShsat(Sh) + [SV , Sh]

[

b11 b12

b21 b22

][

β̂cf + βcn − β∗
c

δ̂ef + δen − δ∗e

]

+
1

η1
ĀT

βc

˙̄Aβc
+

1

η2
ĀT

δe
˙̄Aδe

+
1

η3

(

Êβc
− Eβc

)

˙̂
Eβc

+
1

η4

(

Êδe − Eδe

)

˙̂
Eδe

= −kV SV sat(SV )− khShsat(Sh) + ĀT
βc

[

(SV b11 + Shb21) ξ +
1

η1
˙̄Aβc

]

+ ĀT
δe

[

(SV b12 + Shb22) ξ +
1

η2
˙̄Aδe

]

+ (SV b11 + Shb21) (βcn − εβc
)

+ (SV b12 + Shb22) (δen − εδe) +
1

η3

(

Êβc
− Eβc

)

˙̂
Eβc

+
1

η4

(

Êδe − Eδe

)

˙̂
Eδe . (56)

For keeping the system stable, Eq. (56) is required to satisfy V̇ 6 0. Accordingly, the adaptive laws

are designed as follows.

˙̄Aβc
=

˙̂
Aβc

= −η1(SV b11 + Shb21)ξ, (57)

˙̄Aδe =
˙̂
Aδe = −η2(SV b12 + Shb22)ξ, (58)

˙̂
Eβc

= η3 |SV b11 + Shb21| , (59)

˙̂
Eδe = η4 |SV b12 + Shb22| , (60)

βcn = −Êβc
sgn(SV b11 + Shb21), (61)

δen = −Êδesgn(SV b12 + Shb22). (62)
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Figure 6 Simulation results of whole process by using U1 and U2 for full time respectively. (a) Velocity; (b) altitude;

(c) throttle setting; (d) elevator deflection; (e) angle of attack; (f) flight path angle.

From (57)–(62), Eq. (56) can be rewritten as

V̇ = −kV SV sat(SV )− khShsat(Sh)− εβc
(SV b11 + Shb21)− Eβc

|SV b11 + Shb21|

−εδe (SV b12 + Shb22)− Eδe |SV b12 + Shb22|

6 −kV SV sat(SV )− khShsat(Sh) + |εβc
| |SV b11 + Shb21| − Eβc

|SV b11 + Shb21|

+ |εδe | |SV b12 + Shb22| − Eδe |SV b12 + Shb22|

= −kV SV sat(SV )− khShsat(Sh) + (|εβc
| − Eβc

) |SV b11 + Shb21|+ (|εδe | − Eδe) |SV b12 + Shb22|

6 −kV SV sat(SV )− khShsat(Sh) 6 0. (63)

Hence we establish stability with the adaptive law selection in (57)–(62).

In order to overcome the well-known chattering phenomenon of SMC, the sign function is replaced
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Table 1 The membership function parameters of βc1 and βc2

Negative Zero Positive

mN1 mN2 σN mZ1 mZ2 σZ mP1 mP2 σP

−0.080 0.080 0.272 0.920 1.080 0.272 1.920 2.080 0.272

Table 2 The membership function parameters of δe1 and δe2

Negative Zero Positive

mN1 mN2 σN mZ1 mZ2 σZ mP1 mP2 σP

−0.377 −0.321 0.095 −0.028 0.028 0.095 0.321 0.377 0.095

with the saturation function:

sat(A/k) =

{

A/k, if |A/k| 6 1,

sign(A/k), otherwise.
(64)

This leads to replacement of (61) and (62) with the following:

βcn = −Êβc
sat(SV b11 + Shb21), (65)

δen = −Êδesat(SV b12 + Shb22). (66)

Note that the issue for either knowing/measuring/estimating bij on-line or bypassing the effect of bij
terms in the constructive analysis can be solved by modifying the Lyapunov function (55) to implement

the adaptive laws (57)–(62). The authors are working on a further enhancement of the proposed scheme

to address this point.

4 Simulation example

U1 is the control signal in retracting mode, U2 is the control signal in stretching mode. At first, we use

U1 and U2 for full time to control the whole process. The simulation results are shown in Figure 6.

From Figure 6, we can see that U1 cannot control the stretching mode and U2 cannot control the

retracting mode. Therefore, we need to use appropriate method to switch the control signal from U1

to U2.

In this paper, we proposed a novel scheme of type-2 TSK fuzzy SMC to realize adaptive control of

mode switching for HMA. The initial parameters of membership functions for type-2 TSK fuzzy SMC

are shown in Tables 1 and 2.

In Tables 1 and 2, the linguistic variables ‘Negative’, ‘Zero’, and ‘Positive’ are what we defined to

represent the labels of membership function. mN1, mN2 are the means of membership function of type-2

fuzzy subset ‘Negative’, mN1 6 mN2, and σN is the variance of type-2 fuzzy subset ‘Negative’; mZ1, mZ2

are the means of membership function of type-2 fuzzy subset ‘Zero’, mZ1 6 mZ2, and σZ is the variance

of type-2 fuzzy subset ‘Zero’; mP1, mP2 are the means of membership function of type-2 fuzzy subset

‘Positive’, mP1 6 mP2, and σP is the variance of type-2 fuzzy subset ‘Positive’.

According to the membership function parameters shown in Tables 1 and 2 and the adaptive switching

signals obtained from (57)–(62) and (65), (66), comparing with the using U1, U2, 0.5U1 + 0.5U2, type-1

TSK fuzzy, general smoother method (GSM) [30] which has the same format with (13), respectively. We

conduct simulation experiments discussing the control effects of mode switching from winglets retracting

mode to winglets stretching mode in 35–40 s. The simulation results are shown in Figure 7.

From the simulation results shown in Figure 7, we can draw the conclusion that when the winglets mode

is switched from retracting mode to stretching mode in 35–40 s, comparing with the other five methods,

the velocity and altitude of the proposed method can maintain good track performance, without the

phenomenon of state saltation. Specially, the velocity of proposed method can switch smoothly from
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Figure 7 Simulation results of whole process by using different methods (note that mode switching is in 35–40 s).

(a) Velocity; (b) altitude; (c) throttle setting; (d) elevator deflection; (e) angle of attack; (f) flight path angle.

35 s, comparing that the velocity of other methods have certain track errors. Furthermore, the other

states of proposed method are also switched smoother than the states of other five methods, which

illustrate that the proposed method has better effects of mode switching for the HMA. For the type-2

TSK fuzzy, the fuzzy sets are also fuzzy, which is more suitable to deal with uncertain problems. In this

paper, we draw upon type-2 TSK fuzzy to distribute the uncertain weights of control signals in retracting

and stretching modes respectively. In theory, the basic type-1 TSK fuzzy design can fulfill the task,

but the effects are unsatisfactory. There are two reasons. First, the fuzzy sets need to be set and they

cannot be changed; while in this paper, the fuzzy sets can be adaptive adjusted according to the flight

states. Second, the membership functions of fuzzy sets of basic type-1 TSK fuzzy are certain, while the
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membership functions of fuzzy sets of type-2 TSK fuzzy have uncertain means, which are more suitable

to deal with uncertain problems.

5 Conclusion

This paper has presented a novel adaptive control of mode switching for HMA based on type-2 TSK fuzzy

SMC, in order to maintain stability and smoothness in the switching process of retracted winglets. First,

the model of HMA and the aerodynamic parameters in retracting mode, stretching mode and switching

mode respectively are given. Then, the switching mechanism is discussed that SMC is used in retracting

mode and stretching mode respectively, and the adaptive control of mode switching is used in switching

process. Furthermore, The combination of type-2 TSK fuzzy and SMC is designed for the switching

process considering that the format of control of mode switching is similar to the type-2 TSK fuzzy.

Afterwards, in order to keep robustness of flight control system and smoothness of mode switching process,

a direct constructive Lyapunov analysis is adopted and the adaptive laws are produced correspondingly.

Finally, two simulation experiments conducted and compared demonstrate that the combined adaptive

control of mode switching based on type-2 TSK fuzzy SMC has good tracking performance.
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