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of ball.

Keywords abelian cover, normalization, irregularity, the quotient of ball

MSC(2000): 14C20, 14F17, 14H10, 14J99

Citation: Gao Y. A note on finite abelian covers. Sci China Math, 2011, 54(7): 1333–1342, doi: 10.1007/s11425-

011-4201-1

1 Introduction

Finite covers are widely used in algebraic geometry. They attract many authors to study the basic

problems on finite covers: to find the construction data, to compute the branch locus, to resolve the

singularities and to compute the global invariants.

In order to get the defining data for a finite cover, the modern method starts from characterizing the

ring structure of a finite extension, i.e., finding all conditions for a finite module to be a finite algebra.

For example, Miranda [14] and Pardini [15] did it for triple covers and abelian covers respectively. As a

consequence of this method, Miranda [14] established the correspondence between the binary cubic forms

on an algebraic variety and triple covers, which generalizes the classical correspondence between integral

binary cubic forms and cubic number fields. On the other hand, when the degree of the cover is higher

(even if in the abelian case), the construction data obtained by this method is too complicated to use as

noted by several authors.

The classical method starts essentially with the defining equations of a finite cover. In fact, the theory

of algebraic function fields is the classical language of the theory of finite covers. See, for example, [8] for

double covers, [1] and [2] (or [4, p. 194]), [16] and [17] for triple covers, [6] for bi-double covers, [18] for

B-J covers.

Double covers, triple covers and cyclic covers are well understood, and the basic problems of the covers

have been solved starting with their defining equations.

Using the modern method, Pardini [15] gave a set of conditions for a free R-module A to be an R-

algebra which is an abelian extension of R. As Bauer and Catanese [3] noted, the treatment by Pardini

is very algebraic and not explicit. It is not convenient to use.

Our purpose of this note is to try to solve the basic problems about arbitrary finite abelian covers

by using their defining equations. In fact, the defining equations are quite simple and all interesting
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information (global invariants, singularities, branch locus, ramification indices) can be obtained explicitly

from the equations.

A finite cover π : Y → X is said to be abelian with an abelian group G if the function field C(Y ) of Y

is a finite Galois extension of C(X) such that Gal(C(Y )/C(X)) = G. From the structure theorem about

abelian field extensions (see [12], Corollary 1.16 at p. 208, and Theorem 6.2 at p. 289),

C(Y ) = C(X)[ n1
√
ξ1, . . . ,

nk

√
ξk],

where G ∼= Zn1 ⊕ · · · ⊕ Znk
. Namely, the field extension is defined by ηn1

1 = ξ1, . . . , η
nk

k = ξk. It implies

that any abelian G-cover π : Y → X over a smooth variety X is determined by some ni-divisible effective

divisors Di, i = 1, . . . , k, i.e.,

D1 ≡ n1L1, . . . , Dk ≡ nkLk. (1)

In fact, if fi ̸= 0 is the global section of OX(niLi) defining Di, i.e., Di = div(fi), then Y is the

normalization of the variety Σ defined by the following equations,

zn1
1 = f1, . . . , znk

k = fk, (2)

where zi is the fiber coordinate of the line bundle [Li] associated with Li. π is just the composition of

the normalization Y → Σ with the natural projection Σ → X. Therefore, (1) is the data determining the

abelian cover π, and (2) is the defining equations of π. Because we did not find an appropriate reference,

for the reader’s convenience, we will present a proof of the known fact that any abelian cover can be

constructed in this way.

The following formula can be used to compute some of the global invariants of Y , e.g., the geometric

genus pg(Y ), the irregularity q(Y ), and the Euler characteristic number χ(OY ).

Theorem 1.1. Denote by [Z] the integral part of a Q-divisor Z and

Lg = −
k∑

i=1

giLi +

[
k∑

i=1

gi
ni

Di

]
.

We have

π∗OY =
⊕
g∈G

OX

(
−

k∑
i=1

giLi +

[ k∑
i=1

gi
ni

Di

])
=

⊕
g∈G

OX(Lg).

When k = 1, the theorem is obtained by Esnault and Viehweg [7] and is used in Viehweg’s proof of

Kawamata-Viehweg theorem.

Actually, the proof of Theorem 1.1 is the computation of integral bases of the abelian extension

OY (Y )/OX(X) of OX -algebras.

The branch locus of π is the subset of {D1, . . . , Dk}. Over each point p on the branch locus, we will

compute also the ramification indices.

In order to resolve the singularities of Y , which lie over the singular points of the branch locus, we

only need to resolve the singularities of D = D1 + · · · +Dk. In fact, by blowing up X, σ : X ′ → X, we

can assume that D′ = σ∗D is a normal crossing divisor. Then the pullback abelian cover π′ : Y ′ → X ′ is

defined by

σ∗D1 ≡ n1σ
∗L1, . . . , σ∗Dk ≡ nkσ

∗Lk.

Y ′ admits at worst Hirzebruch-Jung singularities, which can be resolved by the standard method (see [5,

pp. 99–107]).

Because we know the ramification indices of the ramification divisors, by Hurwitz formula, we can

compute the canonical divisor of the smooth model of Y . From the canonical resolution of the singularities,

we have formulas to compute the first Chern class of Y .

To explain our method, we will construct a new surface of the general type whose Chern numbers

satisfies c21 = 3c2. We also simplify Zuo and Ishida’s computations of the invariants of some famous

surfaces constructed by Hirzebruch (cf. [10, 19, 11]).



Gao Y Sci China Math July 2011 Vol. 54 No. 7 1335

2 The defining equations of an abelian cover

We always assume that X is smooth. The data of an abelian cover over X with group G = Zn1 ⊕· · ·⊕Znk

consist of k linear equivalence relations between divisors on X,

D1 ≡ n1L1, . . . , Dk ≡ nkLk,

where D1, . . . , Dk are either effective divisors or zero on X.

Let Li = OX(Li). Then Di = div(fi) is defined by a nonzero global section fi ∈ H0(X,L ni
i ). From

these data, we can construct an abelian cover π : Y → X with the group G = Zn1 ⊕ · · · ⊕ Znk
.

Denote by V (Li) = SpecS(Li) the associated line bundle of Li, where S(Li) is the symmetric OX -

algebra of Li. Let zi be the fiber coordinate of V (Li), i.e., a global section of p∗Li, where p is the bundle

projection of V (Li) to X. Thus we obtain a polynomial section pi(zi) = zni
i − fi of p

∗L ni
i . Consider the

subvariety Σ ⊂ V := V (L1)⊕ · · · ⊕ V (Lk) defined by

zn1
1 − f1 = 0, . . . , znk

k − fk = 0. (3)

Then the composition of the normalization Y → Σ with the bundle projection defines an abelian cover

π : Y → X with group G. The equations in (3) are called the defining equations of the abelian cover π.

Conversely, we will prove that any abelian cover π : Y → X can be constructed in this way. Let G

be the Galois group. Assume that Y is normal, and G = G1 × · · · × Gk, where Gi = Zni is a cyclic

group of order ni. The following theorem is based on the structure theorem about abelian field extensions

(see [12], Corollary 1.16 at p. 208, and Theorem 6.2 at p. 289).

Theorem 2.1. For any finite abelian cover π : Y → X with group G = Zn1 × · · · × Znk
, there

exist effective divisors D1, . . . , Dk (maybe zero) on X, and some other divisors L1, . . . , Lk satisfying the

equations

D1 ≡ n1L1, . . . , Dk ≡ nkLk

such that π : Y → X is defined by (3). Furthermore, we can require that all the coefficients of the

components in Di are less than ni.

Proof. Let π∗ : F = C(X) ↪→ K = C(Y ) be the function field extension. Then K/F is an abelian

Galois extension. Let

Hi = G1 × · · · ×Gi−1 × {1} ×Gi+1 × · · · ×Gk,

and let Ki = KHi . Then Ki is a Galois extension of F , and

Gal(Ki/F ) ∼= G/Hi
∼= Gi

which is a cyclic group of order ni. Furthermore, Ki+1 ∩ K1 · · ·Ki = F , and K = K1 · · ·Kk (see [12],

Corollary 1.16 at p. 208, and Theorem 6.2 at p. 289).

Because C ⊂ F contains all roots of unity, the field extension Ki/F is generated by one element

θi ∈ Ki \ F satisfying

θni
i = π∗ai, ai ∈ F,

i.e., Ki = F [θi]. So K = K1 · · ·Kk = F [θ1, . . . , θk].

Now, let Li be any divisor (not necessarily effective) on X such that

niLi +Div(ai) > 0.

We can require also that Li be minimal, i.e., for any prime divisor P , the divisor ni(Li −P ) +Div (ai) is

not effective, equivalently, the coefficients of the components of niLi +Div (ai) are nonnegative integers

less than ni.

Let Li = OX(Li). Then Li is defined by a nonzero rational section ℓi of Li. (If Li = A− B denotes

the difference of two effective divisors A and B, then A (resp. B) is defined by a regular global section
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a of OX(A) (resp. b of OX(B)). One can see that ℓi = a/b is a rational section of OX(Li) which defines

Li.) Now, consider the following rational sections of L ni
i and π∗Li respectively,

fi = aiℓ
ni
i , θ̃i = π∗ℓi · θi.

The divisor of fi is Div(ai) + niLi. By the choice of Li, this is an effective divisor and fi has no poles,

so fi ∈ H0(X,L ni
i ). As sections of π∗L ni

i , i = 1, . . . , r, we have

θ̃n1
1 = π∗(f1), . . . , θ̃nk

k = π∗(fk). (4)

Because of these equations, θ̃i = π∗(ℓi)θi has no pole when viewed as a rational section of π∗Li on Y .

So θ̃i ∈ H0(Y, π∗Li).

On the other hand, we denote by pi : V (Li) → X the line bundle associated with Li, and by zi ∈
H0(V (Li), p

∗
i Li) the fiber coordinate of V (Li). Let V =

⊕
i V (Li), and z = (z1, . . . , zk). Then the

common zero set of the sections zni
i − π∗fi ∈ H0(Y, π∗L ni

i ) defines a subvariety (maybe non-normal)

Σ ⊂ V , which is an abelian cover of X with the group G, p|Σ : Σ → X. We say simply that Σ is defined

by the following equations in V ,

zn1
1 = f1, . . . , znk

k = fk. (5)

θ̃ = (θ̃1, . . . , θ̃k) defines a section of the bundle p̃ :
⊕

V (π∗Li) → Y which is the pullback bundle of

p : V → X under the base change π : Y → X.⊕
V (π∗Li)

π̃−−−−→ V

p̃

y↑ θ̃ ν↗
yp

Y −−−−→
π

X.

So π is lifted to a map ν = π̃◦ θ̃ : Y → V . Locally, ν(y) = π̃(y, θ̃(y)) = (π(y), θ̃(y)), the fiber coordinate

of ν(y) is θ̃(y), i.e., z(ν(y)) = θ̃(y) and ν∗(z) = θ̃ as sections. Hence (4) is the pullback of (5) under ν∗,

i.e.,

z1(ν(y))
n1 = f1(π(y)), . . . , zk(ν(y))

nk = fk(π(y)). (6)

Hence the image of ν is obviously Σ which is a (maybe non-normal) Galois cover of X with group G.

Now we see that the birational finite map ν is nothing but the normalization of Σ and π := p ◦ ν. 2

Remark 2.1. If the divisors D1, . . . , Dk are all zero, then π is unramified. So π is determined by k

torsion divisors. The converse is also true, i.e., if π is unramified, and if Di contains no component whose

multiplicity in Di is ni, then D1 = · · · = Dk = 0. When k = 1, this is well-known. If k > 1, one can also

prove it by using induction on k.

Corollary 2.1. π is unramified if and only if D1 = · · · = Dk = 0.

3 The invariants of abelian covers

In this section, we use [s/t] to denote the maximal integer 6 s/t. A k-tuple of integers g = (g1, . . . , gk) ∈
Zk is said to be in G = Zn1 ⊕ · · · ⊕ Znk

, if 0 6 gi < ni for any i. For convenience, we introduce a new

notation: if f =
∏

pai
i , ai ∈ Q, is the prime factorization, then we let [f ] =

∏
p
[ai]
i .

From now on, we assume that the abelian cover π : Σ → X is defined by (2) and Y is the normalization

of Σ. In order to compute the normalization, we can do it locally. Suppose X = Spec(A), and Σ =

Spec(B),

B = A[α1, . . . , αk] ∼= A[z1, . . . , zk]/(z
n1
1 − f1, . . . , z

nk

k − fk),

where αni
i − fi = 0. Because X is nonsingular, the local ring is always a UFD. So we can assume that

A is a UFD and contains C. Denote respectively by F and K the fraction fields of A and B. Then

K = F [α1, . . . , αk]. If g = (i1, . . . , ik) ∈ G, then we denote

αg = αi1
1 · · ·αik

k .
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Proposition 3.1. h =
∑

g∈G kgα
g ∈ K is integral over A if and only if kgα

g is integral over A for

any g ∈ G.

Proof. Denote by ξi the ni-th root of unity, ξni
i = 1. Then for any g = (g1, . . . , gk) ∈ G, we have

g(αj) = ξ
gj
j αj , j = 1, . . . , k.

We prove the lemma by induction on k.

The case when k = 0 is trivial. We rewrite h ∈ A[α2, . . . , αk][α1] as

h = h0 + h1α1 + · · ·+ hn1−1α
n1−1
1 .

Denote σ1 = (1, 0, . . . , 0) ∈ G = Gal(K/F ). Note that h is integral over OX , so are σ1(h), . . . , σ
n1−1
1 (h)

because σ1 fixes A and F . Now we see that the elements

h, σ1(h), . . . , σn1−1
1 (h) (7)

are linear transformations of

h0, h1α1, . . . , hn1−1α
n1−1
1 , (8)

and the transformation matrix is the Vendermonde matrix of (1, ξ1, . . . , ξ
n1−1
1 ). So (8) can be expressed

linearly by (7). Hence hiα
i
1 is integral over K for any i.

We can do the same process for hiα
i
1 with respect to α2, . . . It is easy to see that the proposition can

be proved eventually. 2

Theorem 3.1. The integral closure B̃ of B in its fraction field K is freely generated over A by the

generators {
αg =

∏k
i=1 α

gi
i

[
∏k

i=1 f
gi/ni

i ]

∣∣∣∣ g = (g1, . . . , gk) ∈ G

}
.

Proof. According to Proposition 3.1, we see that B̃ is generated over A by the elements of the form

kgα
g. Let N =

∏k
i=1 ni. Then

(kgα
g)N = kNg

k∏
i=1

αgiN
i = kNg

k∏
i=1

f
giN/ni

i ∈ K

is integral over A, so it must be in A because A is a UFD. Namely, for any prime p in A,

orderp

(
kNg

k∏
i=1

f
giN/ni

i

)
= N · orderp(kg) +N · orderp

( k∏
i=1

f
gi/ni

i

)
> 0,

i.e.,

orderp(k
−1
g ) 6 orderp

( k∏
i=1

f
gi/ni

i

)
.

Because kgα
g is a generator,

orderp(k
−1
g ) =

[
orderp

( k∏
i=1

f
gi/ni

i

)]
,

we have k−1
g = [

∏k
i=1 f

gi/ni

i ].

Therefore, the generators form an integral base of B̃ over A. 2

Theorem 1.1 is just the globalization of Theorem 3.1. By using Riemann-Roch theorem for surfaces,

we get

Corollary 3.2. Assume that X is a smooth surfaces. Denote

Lg = −
k∑

i=1

giLi +

[ k∑
i=1

gi
ni

Di

]
.
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Then

χ(OY ) = |G| · χ(OX) +
∑
g∈G

1

2
(L2

g − LgKX).

Theorem 3.2. Let P be an irreducible and reduced hypersurface in X, let P̄ = π−1(P ) be the reduced

preimage of P in Y , and let ai be the multiplicity of P in Di = div(fi). Then

π∗P =
|G|
dP

P̄ ,

where

dP = gcd

(
|G|, |G|a1

n1
, . . . , |G|ak

nk

)
is the number of points in the preimage of a generic point on P .

Proof. At a generic point p of P , P is smooth and is defined locally by a coordinate x = 0. So the

cover is defined locally by

zn1
1 = xa1 , . . . , znk

k = xak .

Now, we prove the theorem by using induction on k. In fact, we only need to prove that π−1(p) consists

of dP distinct points.

When k = 1, the result can be found in [7, p. 31, Lemma].

Assume that it is true for k − 1. We factorize the cover π : Y → X as π : Y
π′

→ Z
φ→ X, where φ is

defined by zn1
1 = xa1 , and π′ is defined by

zn2
2 = φ∗(x)a2 , . . . , znk

2 = φ∗(x)ak .

Note that φ∗(x) = yn1/d1 , where d1 = gcd(n1, a1). p ∈ P is generic, so φ−1(p) consists of d1 smooth

points of φ−1(P ) = P ′. Hence the number of points in π−1(p) is d1 · dP ′ . By the induction hypothesis,

dP ′ = gcd

(
|G|
n1

,
|G|
n1

a2n1/d1
n2

, . . . ,
|G|
n1

akn1/d1
nk

)
= gcd

(
|G|
n1

, |G| a2
d1n2

, . . . , |G| ak
d1nk

)
,

so

dP = d1dP ′ = gcd

(
|G|, |G|a1

n1
, |G|a2

n2
, . . . , |G|ak

nk

)
.

This proves the formula. 2

4 Applications

In this section, we give some applications of our method. At first, we construct a new ball quotient

surface. See Example 4.1. Secondly, we compute the irregularity of Hirzebruch’s example which is the

only one of Hirzebruch’s ball quotient surfaces whose irregularity has never been computated as far as the

author knows. See Example 4.2. Thirdly, we can also compute the invariants of the surface constructed

by Hirzebruch [9, 10], which has been computed by Ishida [11], Libgober [13] and Zuo [19] by using

different methods.

Example 4.1. This new ball quotient surface is an abelian cover over P2 whose branch locus is the

following line configurations as Figure 1.
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P1

P2 P3

ℓ1

ℓ2

ℓ3

ℓ5
ℓ6

ℓ4

P4

Figure 1 Branch locus

The surface Y is defined by the following equations,

z51 = ℓ2ℓ3ℓ5ℓ
2
6, z52 = ℓ1ℓ2ℓ4ℓ

2
5, z53 = ℓ1ℓ3ℓ

2
4ℓ6.

Let σ : X → P2 be the blowing up of P2 at P1, P2, P3 and P4, L̃i = div(ℓi) be the strict transform of

Li, and Ei be the exceptional curve over Pi. Then we get 15 double points. At each double point, the

cover is defined locally by

z51 = xa1yb1 , z52 = xa2yb2 , z53 = xa3yb3 .

It is easy to see that there exist some i, j such that aibj − ajbi ≡ 1 (mod 5). So one can prove that Y

is smooth.

Denote by ℓ̃i the strict image of ℓi and by ei = 0 the defining equation of the exceptional curve Ei.

The abelian cover π : Y → X is defined by the following equations,

z51 = ℓ̃2ℓ̃3ℓ̃5ℓ̃
2
6e

2
1e

2
2e

3
3e

3
4, z52 = ℓ̃1ℓ̃2ℓ̃4ℓ̃

2
5e

2
1e

3
2e

2
3e

3
4, z53 = ℓ̃1ℓ̃3ℓ̃

2
4ℓ̃6e

3
1e

2
2e

2
3e

3
4.

According to Theorem 3.2, the ramification indices of the curves over H̃i = div(ℓ̃i) and Ei are 5. So

KY = π∗
(
σ∗(−3H) +

4∑
i=1

Ei +

(
1− 1

5

) 6∑
i=1

H̃i +

(
1− 1

5

) 4∑
i=1

Ei

)

= π∗
(
9

5
σ∗(H)− 3

5

4∑
i=1

Ei

)
.

It implies K2
Y = 225. Due to Corollary 3.2, we get χ(OY ) = 25. By Noether’s formula, χtop(OY ) = 75.

So the surface Y satisfies c21 = 3c2.

Via Theorem 1.1, we can compute Lg, for all g ∈ Z⊕3
5 , where Lg is the same notation as Theorem 1.1.

Then

L(g1,g2,g3) = −
3∑

i=1

giLi +

[ 3∑
i=1

gi
ni

Di

]
≡ − (g1 + g2 + g3)σ

∗H +

[
g2 + g3

5

]
(σ∗H − E2 − E3)

+

[
g1 + g2

5

]
(σ∗H − E1 − E3) +

[
g1 + g3

5

]
(σ∗H − E1 − E2)

+

[
g2 + 2g3

5

]
(σ∗H − E1 − E4) +

[
g1 + 2g2

5

]
(σ∗H − E2 − E4)

+

[
2g1 + g3

5

]
(σ∗H − E3 − E4) +

[
2g1 + 2g2 + 3g3

5

]
E1
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Table 1 Classification of g

Type KX − Lg ≡ χ(Lg) h1(X,Lg)

1) 0 1 0

2) Ei 0 0

3) −Ei 0 0

4) σ∗(H)− Ei − Ej − Ek 0 0

5) −σ∗(H) + Ei 0 0

6) −σ∗(H) + Ei + Ej 0 0

7) −σ∗(H) + Ei + Ej + Ek 0 0

8) −σ∗(H) + Ei + Ej + Ek − El −1 1

9) −2σ∗(H) + Ei + Ej + Ek 0 0

10) −2σ∗(H) +
∑4

i=1 Ei 0 0

11) −3σ∗(H) +
∑4

i=1 Ei 1 0

+

[
2g1 + 3g2 + 2g3

5

]
E2 +

[
3g1 + 2g2 + 2g3

5

]
E3

+

[
3g1 + 3g2 + 3g3

5

]
E4,

where ≡ means linear equivalent.

Let Lg = OX(Lg). It is easy to check that Lg is not effective, so h0(X,Lg) = 0 for all g ̸= 0, g ∈ Z⊕3
5 .

And L0 = 0, therefore, h0(X,L0) = 1, h2(X,L0) = 0 and χ(L0) = 1. So h1(X,L0) = 0.

Using Riemann-Roch theorem, we can compute χ(Lg). Then

h1(X,Lg) = h0(X,Lg) + h2(X,Lg)− χ(Lg) = h0(X,Lg) + h0(X,OX(KX − Lg))− χ(Lg).

After the computation, the elements g ∈ G can be classified as Table 1, where {i, j, k, l}={1, 2, 3, 4}.
We take g = (1, 2, 3) ∈ G for example. By the computation, L(1,2,3) ≡ −2σ∗(H) + 2E1, then

KX − L(1,2,3) ≡ −σ∗(H)− E1 + E2 + E3 + E4.

So g = (1, 2, 3) is type 8).

If g is of the types 1), 2) or 3), obviously h0(X,OX(KX − Lg)) = 1.

For the type 4), h0(X,OX(KX−Lg)) = 0 because no 3 triple points are collinear. Then h1(X,Lg) = 0.

For Ei being the exceptional curve, it cannot be moved. So KX −Lg is not effective for the types 5)–11).

Therefore, h0(X,OX(KX − Lg)) = 0. Then h1(X,Lg) = 1 for the type 8) and h1(X,Lg) = 0 for other

types.

In addition, there are 6 elements of the type 8). So

q(Y ) = h1(Y,OY ) = h1(X,π∗OY ) =
∑
g∈G

h1(X,Lg) = 6.

As far as the author knows, only one of Hirzebruch’s example satisfies c21 = 3c2 = 225. We will show

that the irregularity of Hirzebruch’s surface is different from ours. So they are not isomorphic.

Example 4.2. In [9, p. 68, Example 9], Hirzebruch constructed a surface with c21 = 3c2 by using

Kummer covers of degree 53 ramified over the configuration in Figure 1. He gave a geometrical description

of his example. We can see that it is defined by the following equations,

z51 = ℓ1ℓ
4
2ℓ3ℓ

2
4ℓ5ℓ6, z52 = ℓ41ℓ2ℓ3ℓ4ℓ5ℓ

2
6, z53 = ℓ1ℓ2ℓ

4
3ℓ4ℓ

2
5ℓ6.

Using the same method as the above, we get c21 = 3c2 = 225.

In this case, g ∈ G can be classified as Table 2.
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Table 2 Classification of g

Type KX − Lg ≡ χ(Lg) h1(X,Lg)

1) 0 1 0

2) Ei 0 0

3) Ei − Ej 0 0

4) −Ei 0 0

5) σ∗(H)− Ei − Ej 1 0

6) σ∗(H)− Ei − Ej − Ek 0 0

7) −σ∗(H) + Ei 0 0

8) −σ∗(H) + Ei + Ej 0 0

9) −σ∗(H) + Ei + Ej + Ek 0 0

10) −2σ∗(H) + Ei + Ej + Ek 0 0

11) −2σ∗(H) +
∑4

i=1 Ei 0 0

12) −3σ∗(H) +
∑4

i=1 Ei 1 0

Similarly, h1(X,Lg) = 0 for all types. So

q =
∑
g∈G

h1(X,Lg) = 0.

Example 4.3. The authors of [11], [13] and [19] computed the irregularities of Hirzebruch’s examples.

The surface Y is an abelian covering of degree 55 branched over the former line configurations on P2 (see

Figure 1). Y is defined by the following equations,

z51 = ℓ1ℓ
4
6, z52 = ℓ2ℓ

4
6, z53 = ℓ3ℓ

4
6, z54 = ℓ4ℓ

4
6, z55 = ℓ5ℓ

4
6.

Using the same method, we get c21 = 3c2 = 5625, and

q =
∑
g∈G

h1(X,Lg) = 30.

Acknowledgements This work was supported by National Natural Science Foundation of China (Grant No.

10731030) and the Innovation Program of Shanghai Municipal Education Commission (Grant No. 11ZZ18). The

author would like to thank the referees for many useful suggestions. This is part of the author’s Ph.D thesis. She

thanks also her advisors Prof. Sheng-Li Tan and Prof. Zhijie Chen for introducing her to this interesting problem

and for their useful helps.

References

1 Bauer L. Theorie der funktionen eines cubischen Körper. Math Ann, 1893, XLIII: 505–520
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