SCIENCE CHINA
Mathematics

« ARTICLES - July 2011 Vol.54 No.7: 1333-1342
doi: 10.1007/511425-011-4201-1

A note on finite abelian covers

GAO Yun

Department of Mathematics, Shanghat Jiao Tong University, Shanghai 200240, China
Email: gaoyunmath@sjtu.edu.cn

Received April 27, 2010; accepted January 14, 2011; published online April 18, 2011

Abstract We prove that any abelian cover over a smooth variety is defined by some cyclic equations. From the
defining equations, we compute explicitly the normalization, branch locus, ramification indices, global invariants,
and the resolution of singularities. As an application, we construct a new algebraic surface which is the quotient
of ball.

Keywords abelian cover, normalization, irregularity, the quotient of ball

MSC(2000): 14C20, 14F17, 14H10, 14J99

Citation: Gao Y. A note on finite abelian covers. Sci China Math, 2011, 54(7): 1333-1342, doi: 10.1007/s11425-
011-4201-1

1 Introduction

Finite covers are widely used in algebraic geometry. They attract many authors to study the basic
problems on finite covers: to find the construction data, to compute the branch locus, to resolve the
singularities and to compute the global invariants.

In order to get the defining data for a finite cover, the modern method starts from characterizing the
ring structure of a finite extension, i.e., finding all conditions for a finite module to be a finite algebra.
For example, Miranda [14] and Pardini [15] did it for triple covers and abelian covers respectively. As a
consequence of this method, Miranda [14] established the correspondence between the binary cubic forms
on an algebraic variety and triple covers, which generalizes the classical correspondence between integral
binary cubic forms and cubic number fields. On the other hand, when the degree of the cover is higher
(even if in the abelian case), the construction data obtained by this method is too complicated to use as
noted by several authors.

The classical method starts essentially with the defining equations of a finite cover. In fact, the theory
of algebraic function fields is the classical language of the theory of finite covers. See, for example, [8] for
double covers, [1] and [2] (or [4, p. 194]), [16] and [17] for triple covers, [6] for bi-double covers, [18] for
B-J covers.

Double covers, triple covers and cyclic covers are well understood, and the basic problems of the covers
have been solved starting with their defining equations.

Using the modern method, Pardini [15] gave a set of conditions for a free R-module A to be an R-
algebra which is an abelian extension of R. As Bauer and Catanese [3] noted, the treatment by Pardini
is very algebraic and not explicit. It is not convenient to use.

Our purpose of this note is to try to solve the basic problems about arbitrary finite abelian covers
by using their defining equations. In fact, the defining equations are quite simple and all interesting
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information (global invariants, singularities, branch locus, ramification indices) can be obtained explicitly
from the equations.

A finite cover 7 : Y — X is said to be abelian with an abelian group G if the function field C(Y') of Y
is a finite Galois extension of C(X) such that Gal(C(Y)/C(X)) = G. From the structure theorem about
abelian field extensions (see [12], Corollary 1.16 at p. 208, and Theorem 6.2 at p. 289),

(C(Y) = (C(X)[ n{/gv"'v n%}v

where G = Z,,, & - -+ @ Zp,,. Namely, the field extension is defined by ni"* = &1,...,n.* = &. It implies
that any abelian G-cover 7 : Y — X over a smooth variety X is determined by some n;-divisible effective
divisors D;, i =1,...,k, i.e.,

Dl E’I’LlLl, ey Dk EnkLk. (1)

In fact, if f; # 0 is the global section of Ox(n;L;) defining D;, i.e., D; = div(f;), then Y is the
normalization of the variety 3 defined by the following equations,

Z;“:fla ceey ng:fka (2)

where z; is the fiber coordinate of the line bundle [L;] associated with L;. 7 is just the composition of
the normalization Y — ¥ with the natural projection ¥ — X. Therefore, (1) is the data determining the
abelian cover 7, and (2) is the defining equations of 7. Because we did not find an appropriate reference,
for the reader’s convenience, we will present a proof of the known fact that any abelian cover can be
constructed in this way.

The following formula can be used to compute some of the global invariants of Y, e.g., the geometric
genus py(Y'), the irregularity ¢(Y), and the Euler characteristic number x(Oy ).

Theorem 1.1.  Denote by [Z] the integral part of a Q-divisor Z and

k .
> 20
=1

k

Lg = - Zgsz +
i=1

We have

.0y = @ox(_ igiLi + {Xk;iiDiD =P Ox(Ly).

geG = i= geG

When k = 1, the theorem is obtained by Esnault and Viehweg [7] and is used in Viehweg’s proof of
Kawamata-Viehweg theorem.

Actually, the proof of Theorem 1.1 is the computation of integral bases of the abelian extension
Oy (Y)/Ox(X) of Ox-algebras.

The branch locus of 7 is the subset of {Dy,..., Di}. Over each point p on the branch locus, we will
compute also the ramification indices.

In order to resolve the singularities of Y, which lie over the singular points of the branch locus, we
only need to resolve the singularities of D = Dy + - -+ + Dy. In fact, by blowing up X, o : X’ — X, we
can assume that D’ = ¢* D is a normal crossing divisor. Then the pullback abelian cover 7’ : Y' — X' is
defined by

oc*Di=ni0"Ly, ..., 0*Dy=ngo*Ly.

Y’ admits at worst Hirzebruch-Jung singularities, which can be resolved by the standard method (see [5,
pp. 99-107)).

Because we know the ramification indices of the ramification divisors, by Hurwitz formula, we can
compute the canonical divisor of the smooth model of Y. From the canonical resolution of the singularities,
we have formulas to compute the first Chern class of Y.

To explain our method, we will construct a new surface of the general type whose Chern numbers
satisfies ¢7 = 3cp. We also simplify Zuo and Ishida’s computations of the invariants of some famous
surfaces constructed by Hirzebruch (cf. [10, 19, 11]).
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2 The defining equations of an abelian cover

We always assume that X is smooth. The data of an abelian cover over X with group G = Z,,, ®---®Z,,
consist of k linear equivalence relations between divisors on X,

Dy =n1Ly, ..., Dp=nilLyg,

where D1, ..., Dy are either effective divisors or zero on X.

Let % = Ox(L;). Then D; = div(f;) is defined by a nonzero global section f; € H°(X, #/""). From
these data, we can construct an abelian cover 7 : Y — X with the group G =Z,, ®--- ® Z,,.

Denote by V(.%;) = Spec S(.%;) the associated line bundle of .%;, where S(.%;) is the symmetric Ox-
algebra of .Z;. Let z; be the fiber coordinate of V(.%;), i.e., a global section of p*.%;, where p is the bundle
projection of V(.%;) to X. Thus we obtain a polynomial section p;(z;) = 2;"* — f; of p*.%;"*. Consider the
subvariety ¥ C V :=V(ZA) @ --- ® V(%) defined by

2t —=fi=0, ..., zZ*—fi=0. (3)

Then the composition of the normalization Y — ¥ with the bundle projection defines an abelian cover
7 :Y — X with group G. The equations in (3) are called the defining equations of the abelian cover .
Conversely, we will prove that any abelian cover m : ¥ — X can be constructed in this way. Let G
be the Galois group. Assume that Y is normal, and G = Gy x --- x Gy, where G; = Z,, is a cyclic
group of order n;. The following theorem is based on the structure theorem about abelian field extensions
(see [12], Corollary 1.16 at p. 208, and Theorem 6.2 at p. 289).
Theorem 2.1. For any finite abelian cover m :' Y — X with group G = Zp, X -+ X Ly, , there
exist effective divisors Dy, ..., Dy (maybe zero) on X, and some other divisors Ly, ..., Ly satisfying the

equations
D1 E’I”Lth eey DkEnkLk

such that m : Y — X is defined by (3). Furthermore, we can require that all the coefficients of the
components in D; are less than n;.
Proof. Let m* : F = C(X) — K = C(Y) be the function field extension. Then K/F is an abelian

Galois extension. Let
Hi:Gl X XGi_l X{l} XGi+1 X XGk,

and let K; = K. Then K, is a Galois extension of F, and

which is a cyclic group of order n;. Furthermore, K;11 N Ky ---K; = F, and K = Ky --- K}, (see [12],
Corollary 1.16 at p. 208, and Theorem 6.2 at p. 289).
Because C C F contains all roots of unity, the field extension K;/F is generated by one element
0; € K; \ F satisfying
0;“ = w*ai, a; € F,

i.e., Kz ZF[QI] So KZKlKk = F[Gl,...,ﬁk].
Now, let L; be any divisor (not necessarily effective) on X such that

We can require also that L; be minimal, i.e., for any prime divisor P, the divisor n;(L; — P) + Div (a;) is
not effective, equivalently, the coefficients of the components of n;L; + Div (a;) are nonnegative integers
less than n;.

Let % = Ox(L;). Then L; is defined by a nonzero rational section ¢; of .%;. (If L; = A — B denotes
the difference of two effective divisors A and B, then A (resp. B) is defined by a regular global section
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a of Ox(A) (resp. b of Ox(B)). One can see that £; = a/b is a rational section of Ox (L;) which defines
L;.) Now, consider the following rational sections of .Z/"* and 7*.Z; respectively,

fi = al[;“, gi = F*fi . 91‘.

The divisor of f; is Div(a;) + n;L;. By the choice of L;, this is an effective divisor and f; has no poles,
so f; € HY(X, Z"). As sections of 7", i =1,...,r, we have

O =7*(f1), ..., O =7 (fr). (4)

Because of these equations, 51 = 7*(¢;)0; has no pole when viewed as a rational section of 7*.%; on Y.
So 6; € HO(Y, m*.%).

On the other hand, we denote by p; : V(L;) — X the line bundle associated with L;, and by z; €
HO(V(L;),p;%;) the fiber coordinate of V(L;). Let V. = @,V (L;), and z = (21,...,2;). Then the
common zero set of the sections z['' — m* f; € HO(Y,7*.%/"") defines a subvariety (maybe non-normal)
3 C V, which is an abelian cover of X with the group G, p|s : ¥ — X. We say simply that 3 is defined
by the following equations in V,

2t =f, ., 2t = fre (5)
§ = (61,...,0;) defines a section of the bundle p : @ V(7*.%) — Y which is the pullback bundle of
p:V — X under the base change 7 : Y — X.

PV(rYL) ——s V

5l¢§ v ip

Y — X.

So m is lifted to a map v = %35: Y — V. Locally, v(y) = 7 (y, 0(y)) = (m(y),8(y)), the fiber coordinate
of v(y) is 8(y), i-e., z(v(y)) = 0(y) and v*(z) = 0 as sections. Hence (4) is the pullback of (5) under v*,
ie.,

)™ = hxW), - @)™ = filz(y). (6)
Hence the image of v is obviously ¥ which is a (maybe non-normal) Galois cover of X with group G.
Now we see that the birational finite map v is nothing but the normalization of ¥ and 7 :=pow. O

Remark 2.1.  If the divisors D1, ..., Dy are all zero, then 7 is unramified. So 7 is determined by k
torsion divisors. The converse is also true, i.e., if 7 is unramified, and if D; contains no component whose
multiplicity in D; is n;, then Dy = --- = Dy = 0. When k = 1, this is well-known. If £ > 1, one can also
prove it by using induction on k.

Corollary 2.1. 7 is unramified if and only if Dy = --- = Dy = 0.

3 The invariants of abelian covers

In this section, we use [s/t] to denote the maximal integer < s/t. A k-tuple of integers g = (g1,...,9x%) €
7ZF is said to be in G = Ly, &+ DLy, if 0 < g; < n; for any i. For convenience, we introduce a new
notation: if f = [[p}*, a; € Q, is the prime factorization, then we let [f] = Hpgai].

From now on, we assume that the abelian cover 7 : ¥ — X is defined by (2) and Y is the normalization
of ¥. In order to compute the normalization, we can do it locally. Suppose X = Spec(A), and ¥ =
Spec(B),

B=Alay,...;ap] =2 Alzr, . 2] /(207 = fioo 20 — fr),
where o — f; = 0. Because X is nonsingular, the local ring is always a UFD. So we can assume that
A is a UFD and contains C. Denote respectively by F' and K the fraction fields of A and B. Then
K =Flag,...,af). If g = (41,...,ik) € G, then we denote

9 — oo
od =y ok
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Proposition 3.1. h = EgeG kgad € K is integral over A if and only if kgof is integral over A for
any g € G.
Proof.  Denote by & the n;-th root of unity, ¢ = 1. Then for any g = (g1,...,9x) € G, we have
g(ej) = §§'jaj, j=1,...,k.

We prove the lemma by induction on k.

The case when k = 0 is trivial. We rewrite h € Alaa, ..., ag]la1] as

h = ho —+ hloq —+ -4 hnl_lo/fl_l.

Denote o1 = (1,0,...,0) € G = Gal(K/F). Note that h is integral over Ox, so are a1 (h),...,o!"* " (h)
because o; fixes A and F. Now we see that the elements

h, oi(h), ..., ol (h) (7)
are linear transformations of
ho, hior, ..., hn,_1aftTl (8)
and the transformation matrix is the Vendermonde matrix of (1,&1,...,£ ™). So (8) can be expressed
linearly by (7). Hence h;a! is integral over K for any i.
We can do the same process for h;a} with respect to aw,... It is easy to see that the proposition can
be proved eventually. a

Theorem 3.1. The integral closure B of B in its fraction field K is freely generated over A by the

generators
k i
{ o = [lioiof
g k gi/ni
Proof.  According to Proposition 3.1, we see that B is generated over A by the elements of the form
kga?. Let N = Hle n;. Then

g:(gl,...,gk)eG}.

k k
(kga?)V = kN [T o™ = kN [ 7™ e K

i=1 i=1

is integral over A, so it must be in A because A is a UFD. Namely, for any prime p in A,

k k
order,, (kzév Hff“N/"i) = N -ordery(kg) + N - orderp<Hfigi/m> >0,
i=1 i=1
ie.,
k
orderp(kgl) < orderp(H figi/"i’).
i=1
Because kg0 is a generator,
k
orderp(k';l) = [orderp ( H flg’/mﬂ ,
i=1
we have k! = e, ff/"] N
Therefore, the generators form an integral base of B over A. m|

Theorem 1.1 is just the globalization of Theorem 3.1. By using Riemann-Roch theorem for surfaces,
we get

Corollary 3.2.  Assume that X is a smooth surfaces. Denote

k k
i=1 i=1 "

Q

S
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Then

X(Ov) = 6] X(Ox) + 3 L (I3~ LyKx).
geG

Theorem 3.2.  Let P be an irreducible and reduced hypersurface in X, let P = w~*(P) be the reduced
preimage of P in'Y, and let a; be the multiplicity of P in D; = div(f;). Then

* |G| D
p=1p
m dp s

where

e = e (|61 112 . 612 )
nq Nng

is the number of points in the preimage of a generic point on P.

Proof. At a generic point p of P, P is smooth and is defined locally by a coordinate x = 0. So the
cover is defined locally by
2t =M, L, g =atk,
Now, we prove the theorem by using induction on k. In fact, we only need to prove that 7=1(p) consists
of dp distinct points.
When k = 1, the result can be found in [7, p. 31, Lemma].

Assume that it is true for k — 1. We factorize the cover 7 : Y — X as 7 : Y 5 Z & X, where ¢ is
defined by 2" = 2%, and 7’ is defined by

zy? =% (x)*, ..., 2yt =% (x)™.

Note that ¢*(z) = y™/%, where d; = ged(ni,a1). p € P is generic, so ¢~ !(p) consists of d; smooth
points of ¢~1(P) = P’. Hence the number of points in 7~ !(p) is d; - dps. By the induction hypothesis,

G| |G d G d
i = (191, Gl (6l
nt N N2 ny Nk
|G| as ay
=ged | —, |G oo |Gl——
wea (2 6152l ).
SO
dp = dydp: :gcd(|G|, G4, |G“2,...,|G|“’“).
n1 o ng
This proves the formula. o

4 Applications

In this section, we give some applications of our method. At first, we construct a new ball quotient
surface. See Example 4.1. Secondly, we compute the irregularity of Hirzebruch’s example which is the
only one of Hirzebruch’s ball quotient surfaces whose irregularity has never been computated as far as the
author knows. See Example 4.2. Thirdly, we can also compute the invariants of the surface constructed
by Hirzebruch [9, 10], which has been computed by Ishida [11], Libgober [13] and Zuo [19] by using
different methods.

Example 4.1.  This new ball quotient surface is an abelian cover over P? whose branch locus is the
following line configurations as Figure 1.
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Figure 1 Branch locus
The surface Y is defined by the following equations,
Z? = €2£3€5€§, Zg = £1£254€§, Zg = £1€3€i€6'

Let o : X — P2 be the blowing up of P? at P;, P,, P; and P, L = div(¥¢;) be the strict transform of
L;, and E; be the exceptional curve over P;. Then we get 15 double points. At each double point, the
cover is defined locally by

5__ ,a1,b 5 __ _.as,b 5 __ _.a3,b
zl—xlyl, 22_x2y27 23_x3y3

It is easy to see that there exist some ¢, j such that a;b; — a;b; =1 (mod 5). So one can prove that ¥’
is smooth.

Denote by /; the strict image of ¢; and by e; = 0 the defining equation of the exceptional curve E;.
The abelian cover 7 : Y — X is defined by the following equations,

5 _ 7 7.7 72,2,2.3.3 5_7.7.7 3 5_ 7 7727 .3,2,2.3
27 = bolslslgeiesesey, 2z = {1l 646561626364, 23 = U103l lseiesezey.

According to Theorem 3.2, the ramification indices of the curves over H;, = div(gi) and F; are 5. So

4

4 6
Ky:’ir (0 (_BH)+;E2+(1_5>;HZ+<1_5>l_1EZ>
9 3o

It implies K2 = 225. Due to Corollary 3.2, we get x(Oy) = 25. By Noether’s formula, ytop(Oy) = 75.
So the surface Y satisfies ¢7 = 3cs.

Via Theorem 1.1, we can compute L, for all g € Z??’, where L, is the same notation as Theorem 1.1.
Then

ql 92,93) — ZQZL + {Z 97 }

* + *
=—(g1+92+g3)0"H+ [92593](0 H— E, — Es3)

[ g1 + . + .
+ 91592](0 H—E — E3) + {91593}(0 H— Ey — Ey)

5 5

2 2 -
g1 + gz +393}E1

(g2 +2 . +2 .
+ M}(a H-E —E))+ [M](a H— By — Ey)

[2g1 + g:
+ gl5gdi|(0'*H—E3—E4)+|:
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Table 1 Classification of g

Type Ky —Lg= x(Lg) RY(X, Lg)
1) 0 1 0
2) E; 0 0
3) —E; 0 0
4) o*(H) — E; — Ej — Ey 0 0
5) —o*(H) + E; 0 0
6) —o*(H) + E; + E; 0 0
7) —0*(H)+ E;i + Ej + Ej, 0 0
8) —o*(H)+ E; + E; + E;, — E -1 1
9) —20*(H) + E; + Ej + Ey, 0 0

10) —20*(H)+ Y1 B 0 0
11) —30*(H)+ X1 B 1 0

291 + 3g2 + 2 391 + 292 + 2
+ g1 g2 g3 E, + g1 g2 gs o
5 5
391+ 392 + 3
+ [ g1 gz 93}E4,

where = means linear equivalent.

Let £, = Ox(L,). It is easy to check that L, is not effective, so h%(X,L,) =0 for all g # 0, g € Z?g.
And Ly = 0, therefore, h%(X, Lo) = 1, h?(X, Ly) = 0 and x(Lo) = 1. So h'(X, L) = 0.

Using Riemann-Roch theorem, we can compute x(£4). Then

R X, Ly) = hO(X, L) + h3(X, L) — x(Ly) = h°(X, L) + h° (X, Ox(Kx — Ly)) — x(L,).

After the computation, the elements g € G can be classified as Table 1, where {4, j, k, 1}={1, 2, 3,4}.
We take g = (1,2,3) € G for example. By the computation, L 23y = —20*(H) + 2E1, then

KX — L(172’3) = —O'*<H) —E]_ +E2 +E3 +E4

So g = (1,2,3) is type 8).

If g is of the types 1), 2) or 3), obviously h%(X,Ox(Kx — L)) = 1.

For the type 4), h°(X, Ox(Kx —Ly)) = 0 because no 3 triple points are collinear. Then h'(X, L,) = 0.
For E; being the exceptional curve, it cannot be moved. So Kx — L, is not effective for the types 5)-11).
Therefore, h°(X,O0x(Kx — Ly)) = 0. Then h*(X,L,) =1 for the type 8) and h'(X,L,) = 0 for other

types.
In addition, there are 6 elements of the type 8). So

q(Y) =h'(Y,0y) = h'(X,mOy) = > h'(X,L,) =6.
geG

As far as the author knows, only one of Hirzebruch’s example satisfies ¢? = 3¢, = 225. We will show
that the irregularity of Hirzebruch’s surface is different from ours. So they are not isomorphic.
Example 4.2. In [9, p. 68, Example 9], Hirzebruch constructed a surface with ¢ = 3¢y by using
Kummer covers of degree 5 ramified over the configuration in Figure 1. He gave a geometrical description
of his example. We can see that it is defined by the following equations,

Z? = 6143&3&21(566, Zg = g%f2£3£4€51€27 Zg) = €1€2€§€4€§£6

Using the same method as the above, we get ¢ = 3¢y = 225.
In this case, g € G can be classified as Table 2.
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Table 2 Classification of g

Type Kx —Lg = x(Lg) RY(X, Lg)
1) 0 1 0
2) E; 0 0
3) E; — Bj 0 0
4) —E; 0 0
5) o*(H) — E; — E; 1 0
6) o*(H) — E; — Ej — Ey, 0 0
7) —o*(H) + E; 0 0
8) —O’*(H)+Ei+Ej 0 0
9) —o*(H) + E; + E; + E}, 0 0

10) *20’*(H)+E7;+Ej + Ey, 0 0
11) —20*(H)+ 31 B 0 0
12) —3c*(H)+ X1, B 1 0

Similarly, h* (X, L,) = 0 for all types. So

g=>Y h'(X,Ly)=0.

geG

Example 4.3.  The authors of [11], [13] and [19] computed the irregularities of Hirzebruch’s examples.
The surface Y is an abelian covering of degree 5° branched over the former line configurations on P? (see
Figure 1). Y is defined by the following equations,

20 =008, 25 =00y, 25 =3l 25 = 0408, 22 = t50p.
Using the same method, we get ¢ = 3¢y = 5625, and

g=Y_ h'(X,Ly) = 30.

geG
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