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Abstract In recent years, the growing volume of data in numerous clustering tasks has greatly boosted the

existing clustering algorithms in dealing with very large datasets. The K-means has been one of the most popular

clustering algorithms because of its simplicity and easiness in application, but its efficiency and effectiveness

for large datasets are often unacceptable. In contrast to the K-means algorithm, most existing grid-clustering

algorithms have linear time and space complexities and thus can perform well for large datasets. In this paper,

we propose a grid-based partitional algorithm to overcome the drawbacks of the K-means clustering algorithm.

This new algorithm is based on two major concepts: 1) maximizing the average density of a group of grids

instead of minimizing the minimal square error which is applied in the K-means algorithm, and 2) using grid-

clustering algorithms to thoroughly reformulate the object-driven assigning in the K-means algorithm into a

new grid-driven assigning. Consequently, our proposed algorithm obtains an average speed-up about 10–100

times faster and produces better partitions than those by the K-means algorithm. Also, compared with the

K-means algorithm, our proposed algorithm has ability to partition any dataset when the number of clusters is

unknown. The effectiveness of our proposed algorithm has been demonstrated through successfully clustering

datasets with different features in comparison with the other three typical clustering algorithms besides the

K-means algorithm.
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1 Introduction

Clustering analysis has been recognized as a primary data mining tool for knowledge discovery in nu-

merous application fields such as pattern recognition, image processing, and market research. However,

because of fast technological progress, the amount of data stored in the database increases rapidly. Al-

though various algorithms have been proposed to address this problem, only few of them show preferable

efficiency for large datasets. And the problem of memory availability arises when using a clustering algo-

rithm to deal with very large datasets. Inefficient usage of the limited CPU processing time and memory

space can degrade the behavior of a clustering algorithm considerably. The K-means algorithm proposed

by MacQueen is a well accepted clustering method for various uses. However, the K-means algorithm is

∗Corresponding author (email: shyue1999@tju.edu.cn)



1346 YUE ShiHong, et al. Sci China Inf Sci July 2010 Vol. 53 No. 7

difficult to be applied to very large datasets due to inefficient CPU processing time large memory needs,

low efficiency for noisy data, unknown number of clusters, initialization dependence, etc. [1–5].

In order to overcome the above problems, many clustering algorithms have been proposed in the

literature. For example, the feature weighting K-means algorithm (FWKA) proposed by Huang [6]

integrates many merits of conventional partitional clustering methods and has been successfully applied

to text classification [7, 8]. Recently, the general K-means algorithm proposed by Yu [9] presents a unified

framework for most variants of the K-means algorithm. Commonly speaking, these algorithms do not

aim at clustering very large datasets.

Different from the K-means algorithm, some clustering algorithms start with partitioning the data

space into a set of hypercubes (we call them grids, hereinafter, for convenience). Therefore, we term

these algorithms grid-based algorithms. Most of the grid-based clustering algorithms have linear time

and space complexities and have ability to cluster very large datasets. The main problem of the grid-based

algorithms is how to choose the optimal grid parameters as an independent data organization. In fact,

in order to efficiently find all concerned clusters, the grid-based algorithms have to solve the following

three problems: 1) how to select grids or generate a group of grids for data assignments, 2) how to

combine these collected grids to find concerned clusters, and 3) how to extract a robust data partitioning

from these combined grids. Any issue discussed above may significantly degrade the performances of a

grid-clustering algorithm. So far, these problems remain unsolved.

A remarkable representative of the grid-based algorithms is the DENCLUE (DENsity-based CLUs-

tEring) developed by Hinneburg et a1. [10]. The DENCLUE, which takes into consideration both grid

partition and density, has a firm mathematical foundation, and is able to generalize other clustering meth-

ods such as CURE [4], Shift Grid [11], CLIQUE [12], K-means, etc. Recently, we have proposed a general

grid-clustering approach (GGCA) [13]. The resulting grids partitioning the data space are clustered via

a topological neighbor search, with each grid characterized by not only the populated object number but

also the neighborhood information [14–16]. The grid-clustering method has proven as a valuable tool for

analyzing the structural information of very large datasets. Some ideas of the proposed grid-clustering

method were adopted in this study. In [17] we presented a new fuzzy cover-based clustering (FCC) algo-

rithm. In the FCC algorithm, the concept of the cover is employed to build up the backbones of the final

clusters. The involved two ideas, namely cover and average density maximization, in FCC are useful to

our results in this paper.

2 Grid-based K-means algorithm for clustering

2.1 Key ideas

In this paper we propose a grid-based K-means (G-K-MEANS) algorithm for clustering. The key ideas

of the G-K-MEANS algorithm are to take advantage of the high efficiency in the class of grid-based

algorithmsOur considerations include:

1) Maximizing the average density of a group of grids to represent the objective functions in place of

minimizing the minimal square error in the K-means algorithm. Such reformulation bridges the K-means

algorithm to the grid-clustering algorithm, and thus leads to a better match to dataset.

2) Replacing the computation of pairs (center, objects) in the K-means algorithm by grid-based par-

titions. This makes a significant reduction in time requirement. In fact, clustering a group of grids that

contain all data objects rather than all data objects in the data space is the main reason why the class

of grid-based algorithms can deal with very large datasets with linear computational complexity.

3) Applying grid movement and grid updating to estimate all cluster centers. Each cluster will be

assigned a grid at least to guarantee that any cluster can be found. All grids that are assigned to the

same cluster move to the same cluster center and overlap. Consequently, only the most high-density grid

in the same cluster is kept and the other grids are removed. This guarantees that each cluster is finally

represented only by a grid. Consequently, the number of clusters and all cluster centers are efficiently

determined.
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2.2 Algorithm description

Let A = {A1, A2, . . . , Ad} be a set of domains under a metric space. The input S is a set of d-dimensional

data objects x1, x2, . . . , xn. Let GRID=A1 ×A2 × · · ·×Ad be the minimum bounding grid that contains

all data objects. Hereinafter, the sign | · | indicates the number of objects related to the set in the bracket

(e.g., |S| = n). The steps of the proposed algorithm are summarized as follows:

1) Successively bisect GRID in the following ways:

• The first (initial) round of bisecting: Bisect an edge of GRID into two halves. Accordingly, the GRID

is bisected into two new volume-equal grids, denoted by G11 and G12.

• The jth round of bisecting: At the (j − 1)th round, bisect every grid into two volume-equal new

grids and denote all 2j obtained grids at the jth round of bisecting by Gj1, Gj2, Gj3, . . . , and Gj2j

.

2) Find an optimal grid size. All generated nonempty grids in the jth round of bisecting are ordered

into three grid number-equal sets: D(t, j), t = 1, 2, 3, satisfying the requirement that the object number

of any grid in D(t, j) is larger than that of any other grid in D(t+1, j), t = 1, 2. The round corresponding

to optimal grid size, say J , is determined by minimizing the ratio of |D(3, j)| and |D(1, j)|; that is,

J = argminj{|D(3, j)|/|D(1, j)|}, (1)

where |D(3, j)|/|D(1, j)| is called a partitioning index.

3) Stop bisecting process when the optimum of (1) is determined.

To illustrate the G-K-MEANS algorithm, some definitions are introduced as follows.

Definition 1. Mean center and geometric center. The mean center of a cluster is the arithmetic

average of all object vectors in the cluster while the geometric center of a cluster is the center of a

minimal hypersphere that encloses all objects in this cluster.

Usually, the geometric center and the mean center of any cluster are different but are very close to

each other if the cluster is symmetric (e.g., sphere(ellipsoid)-shaped).

Definition 2. Online grid and offline grid. Let J be an integer and S be a set of 2J grids. A grid is

called an online grid if the grid is one of top K high-density grids in S; any grid that is not an online

grid in S is called an offline grid.

In the above bisecting process, we order the obtained 2J grids and assign them into two sets X1 =

{G1, G2, . . . , GK} and X2 = {GK+1, GK+2, . . . , G2J } such that

|G1| > |G2| > · · · > |GK | > |GK+1| > |GK+2| > · · · > |G2J |. (2)

Thus X1 is the set of online grids and X2 is the set of offline grids.

In light of the basic idea that maximizes the average density of a group of grids, we propose the

objective function of the G-K-MEANS algorithm in Table 1. To compare the differences between the

G-K-MEANS algorithm and the K-means algorithm, we illustrate their basic steps in one-to-one way as

follows.

In Table 1 the belongingness of any object xi to the j-cluster/grid is shown by a Boolean vector such

that uij=1 if xi belongs to the cluster/grid, i = 1, 2, . . . , n; otherwise to 0. Equation (Gi−G1−· · ·−Gi−1)

indicates the set of objects in Gi not in G1, G2, . . . , or Gi−1. The volume Vi of ith grid is the product of

all its edge sizes, for i = 1, 2, . . . , K.

Definition 3. Regular cluster. A cluster is called a regular cluster if the geometric center and the mean

center of the cluster are identical.

In the sense of geometric presentation, the concept of regular cluster generalizes not only the most used

sphere-shaped clusters, but also center-symmetrical clusters such as ellipse-shaped cluster, hyperplane-

shaped clusters, etc. Assuming that any cluster is regular, the basic steps of the G-K-MEANS algorithm

are illustrated as follows.

• Objective function: The objective functions in the above two algorithms satisfy

K
∑

i=1

n
∑

j=1

uijdij → min 7→

K
∑

i=1

|Gi − G1 − · · · − Gi−1|/Vi → max . (3)
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Table 1 The proposed G-K-MEANS algorithm

Algorithm: K-means Algorithm: G-K-MEANS

Objective function: Objective function:

Min
∑K

i=1

∑n
j=1 uijdij , s.t.

∑K
i=1 uij = 1 Max

∑K
i=1 |Gi − G1 − G2 − · · · − Gi−1|/Vi

Input: The number of clusters K and a database Input: The number of clusters K and a database

containing n objects. containing n objects.

Output: A set of K clusters that minimizes Output: A set of K clusters that maximizes

the above objective function. the above objective function.

Method: Method:

1. Arbitrarily choose K objects as the initial cluster 1. Choose K geometric centers of online grid as

centers, v1, v2, . . . , vK . the initial mean centers, v1, v2, . . . , vK .

2. Repeat. 2. Repeat.

3. (Re)assign each object to the most similar 3. (Re)assign objects to Gi that is centralized on

cluster based on similar measure. vi, for i = 1, 2, . . . , K.

4. Update cluster centers by 4. Update cluster centers by

vi =
∑n

j=1 uijxj/uij , i = 1, 2, . . . , K. vi =
∑|Gi|

j=1 uijxj/uij , i = 1, 2, . . . , K.

5. Stop if a convergence criterion is met; 5. Go to step 6 if a convergence criterion

otherwise, go to step 2. is met; otherwise, go to step 2.

6. Stop if there are no overlapping grids in X1;

otherwise, add the offline grid with highest

density into X1; go to step 2.

In (3), the objective function of the K-means algorithm is reformulated by a grid-based form in the G-K-

MEANS algorithm. Consequently, the minimization of the objective function in the K-means algorithm

is replaced by the maximization of the average density of a group of online grids in X1, Gi, i = 1, 2, . . . , K.

Thus the objective function in the K-means algorithm is directly data object-based while the one in the

G-K-MEANS algorithm is grid-based.

• Object assigning principle: Let each cluster be surrounded by a separate minimal hypersphere. When

an object falls in a hypersphere, the object usually is closer to the geometric center of the hypersphere

than geometric centers of any other clusters. In the K-means algorithm, the object is assigned to the

cluster based on the hyperspheres. Consequently, the object assigning principle is to iteratively find K

minimal hyperspheres that enclose K clusters such that the geometric centers of these hyperspheres can

be well determined. Contrarily, the G-K-MEANS algorithm iteratively applies K online grids that are

centralized on v1, v2, . . . , vK in place of K hyperspheres in the K-means algorithm. Namely an object

is assigned to the ith cluster if the object uniquely falls into the grid Gi that stands for the cluster, for

i = 1, . . . , K. Finally the G-K-MEANS algorithm assigns any remaining object that is not in any grid to

their closest center.

• Center updating: any new cluster center in the G-K-MEANS algorithm is locally computed by these

objects limited to the grid that stands for the cluster. In contrast, the mean center in the K-means

algorithm may be affected by any object no matter how far it is from the associated mean center.

• Online grid updating and stop criterion: If the distance between two mean centers of any two online

grids is less than a threshold ε, the two online grids are considered as belonging to the same cluster

and as the same online grid. The low-density one in the two online grids is removed from X1 and the

most high-density offline grid in X2 is added into X1 to proceed in the next iteration. In the G-K-

MEANS algorithm, the iteration is terminated if the difference in the objective function values between

two consecutive iterations is smaller than the threshold ε.

2.3 Algorithm analysis

In this section the G-K-MEANS is analyzed based on the basic steps, objective function, object assigning,

efficiency in iterations, and converegence.

We use a dataset with three normally distributed clusters A, B, and C to illustrate the basic steps of

the G-K-MEANS algorithm in Table 1 (see Figure 1).
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In the example, sixteen initially partitioned nonempty grids numbered 1–16 are obtained according to

(1). These grids can be partitioned into online grid and offline grid by (2) (see Figure 1(a)). Initially,

G6, G7, and G9 are three online grids while the other grids are offline grids, but none of the online grids

is assigned to cluster B. First, the geometric centers of the three online grids are chosen as the mean

centers (see step 1 in the G-K-MEANS algorithm). An object is assigned to one of the three online grids

if it is within the grid (see step 3). Iteratively (step 2) all objects are reassigned into the associated grid

(step 3) after the updates of the online grid center (step 4). Moreover, the mean centers of G6 and G7

move to the same cluster center of cluster A (step 4) and then are combined (step 6). Consequently, the

G-K-MEANS algorithm chooses the offline grid G11 with highest density into the set of online grids (step

6) (see Figure 1(b)). Iteratively (step 2) G11 and G7 get overlapped (steps 3 and 4). Similarly, once G10

is chosen as an online grid (step 6), it iteratively moves to overlap with G7 (steps 2, 3 and 4). Finally, an

online grid G16 is assigned to cluster B. The three cluster centers of cluster A, cluster B, and cluster C

are accurately determined (step 5). This example demonstrates that the grid-moving process can obtain

the optimal solutions of the G-K-MEANS algorithm and that given two online grids are assigned to the

same regular cluster, the two grids must move to the same cluster center and overlap. Meanwhile, any

cluster can be assigned to at least one online grid.

The G-K-MEANS algorithm originates from the K-means algorithm that mainly is designed for

hypersphere-shaped clusters. For a set of K hypersphere-shaped clusters, if K mean centers suggested by

the K-means algorithm accurately coincide with K geometric centers, the K minimal hyperspheres cen-

tered on the K mean centers can accurately partition all data objects. However, the K-means algorithm

usually cannot attain its optimum at K geometric centers due to the limitations of its objective function,

essentially for density-diverse, size-diverse and noisy data-contained clusters [3, 5, 9, 16, 17]. We further

examine the objective function in the K-means algorithm by the following two noisy data-contained and

object distribution-diverse datasets (see Figure 1).

The three cluster-contained dataset contains two tangential clusters and a separate cluster (see Figure

2(a)). It is clear that the three minimal circles centered on the related geometric centers can perfectly

partition all objects into three parts (clusters) except those noisy objects. However, the three mean

centers suggested by the K-means algorithm are very different from these geometric centers. Hence, the

K-means algorithm must lead to numerous incorrect partitioned objects. The difference between the

geometric center and mean center can also be observed in the second dataset (see Figure 2(b)), where

the cluster A has evenly-distributed data objects while the cluster B consists of two half-circle, and the

number of objects in a half-circle is twice that of the other. Indeed, the objective functions of the K-

means algorithm attain their global minimums in the two datasets, respectively, but these minimums by

no means lead to these geometric centers. In fact, in each dataset when we take these geometric centers

into the objective function, the values of the objective function are larger than its global minimum (Table

2).

This demonstrates that the objective function in the K-means algorithm is not a good optimization

criterion. In contrast, the average density of the group of minimal circles centered on the geometric

centers always is their minimum in terms of the second equation in (3). Consequently, a reasonable and

general assumption is to use the average density of K minimal hyperspheres in place of the objective

function in the K-means algorithm. In the FCC algorithm [17], we have demonstrated that when the

K minimal covers (e.g., hyperspheres, grids, etc.) centralized on K geometric centers enclose K regular

clusters the average density of the K covers must be globally maximal. However, the determination of

K minimal hyperspheres has to involve a very expensive distance computation across all objects, and

hardly leads to time and space complexity reduction. Hence, in the G-K-MEANS algorithm we apply K

grids for this purpose. Consequently, to maximize the equation
∑K

i=1 |Gi − G1 − · · · − Gi−1|/Vi actually

is to maximize the average density of all grids centralized on v1, v2, . . . , vK individually. The grid-based

average density in the G-K-MEANS algorithm is computed much more easily than the hypersphere-based

objective function in the K-means algorithm. Besides, a cluster actually is a local description rather than

a global one [3, 5]. In the G-K-MEANS algorithm each grid corresponds to a cluster coinciding with the

notation. In contrast, the K-means algorithm globally assigns all objects to the K current mean centers



1350 YUE ShiHong, et al. Sci China Inf Sci July 2010 Vol. 53 No. 7

4

2

0

−2

−4

−6

−8

−8 −8

−6 −4 −2 0 2 4 6

4

2

0

−2

−4

−6

−8 −6 −4 −2 0 2 4 6

4

2

0

−2

−4

−6

−8

−8

−6 −4 −2 0 2 4 6

A A A

BBB
C C C

1 2 3

5

4 1 2 3 4 1 2 3 4

6 7 8 5 56 6
8 8

9 10 11 12 9 10 11 12
9 12

13 14 15 16 13 1314 1415 1516 16

(a) (b) (c)

Figure 1 The iterative and updating processes of three online grids. Each red arrow indicates the moving direction of a

grid, while each red symbol “·” in the figures refers to the final position that a grid moves to. (a) Initial partitions of data

space and three online grids; (b) online grid G7 that is overlapped with G6 is removed and G11 becomes an online grid; (c)

each cluster finally is uniquely assigned to an online grid that stands for the corresponding cluster, respectively.
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Figure 2 Two synthetic datasets with diverse characters. The points in each circle stand for the ones suggested by the

K-means algorithm correctly, except that the objects colored in red are incorrectly partitioned by the K-means algorithm.

(a) Three clusters in noisy objects (outside the three black circles); (b) two density-diverse clusters. Each black circle

indicates the boundary of the minimal circles centered on the geometric center of the involved cluster and encloses all data.

Table 2 Objective function values in the K-means algorithm and the G-K-MEANS algorithm

Dataset
K-means G-K-MEANS

Geometric centers Mean centers Geometric centers Mean centers

Set 1 176.2 108.3 97.3 85.7

Set 2 96.9 80.4 93.1 90.6

at each iteration, no matter how far these objects depart from the K mean centers. This may lead to

the fact that the K-means algorithm cannot assess these high-density areas that usually contain cluster

prototypes.

The G-K-MEANS and the K-means algorithms employ the same optimization way for determining

new centers (step 4) and thus their effects on optimization are the same. However, in the G-K-MEANS

algorithm, the density of a grid will increase as the grid center tends to the cluster center For a regular

cluster, if the geometric center of a grid and a cluster center are identical, the number of objects in the

grid will be the largest among all grids related to the cluster. Otherwise, the grid will iteratively move to

the cluster center in the direction from its geometric center to the mean center until the distance of the

two centers is less than the threshold ε. This moving process will be completed in finite steps and thus all

online grids independently converge to their individual cluster centers in finite steps. On the other hand,

an irregular cluster can approximately consist of a number of regular clusters [3, 13, 17], and any grid

will move to one of these regular clusters. Consequently, the convergence of the G-K-MEANS algorithm

is guaranteed.

For n objects distributed in K clusters the computation of the G-K-MEANS algorithm mainly consists

of three parts: 1) bisecting the data space for a number of rounds to a set of grids, 2) assigning n objects

to K grids, and 3) computing all mean centers in iterations. The runtime of the second part is the
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longest, which is similar to the K-means algorithm. Thus we compare the runtime of the second part of

the K-means and the G-K-MEANS algorithms. The G-K-MEANS algorithm assigns n objects to K grids

by data object inquiring c×n times. The K-means algorithm assigns n objects to K centers by distance

computations which require c × n times computations followed by ordering these distances to find the

nearest center of each object. In addition, according to the computational complexity conversion theory

[12], the Euclidian distance computation of a pair of objects (vectors) in d-dimensional data space consists

of about 1000d basic computational operations, while the inquiry of a pair of objects consists of 10 d basic

computational operations. Therefore, the runtime of one iteration in the K-means algorithm is about

10–100 times more than that of the G-K-MEANS algorithm. It is apparent that G-K-MEANS algorithm

has the great advantage of computation time. Thus the time complexity of the G-K-MEANS algorithm

is O(ctn) after t iterations while that of the K-means algorithm is O(100ctn) at least. Furthermore, the

G-K-MEANS algorithm does not need the computation to order all distances to find the nearest center of

each object in the K-means algorithm. This further reduces its computational load. The G-K-MEANS

algorithm and the K-means algorithm store n objects into memory for estimating each mean center and

finding the nearest center for every object. Consequently, their maximal space complexities are O(n).

3 Experiments

In this study, all the results are calculated by a desktop computer with 3.2 GHz CPU, 512 MB of RAM

and Windows XP professional version 2002. We apply the G-K-MEANS algorithm to cluster three real

high-dimensional datasets and six synthetic low-dimensional datasets of diverse cluster characters (e.g.,

density, size, and shape), and compare their clustering results with those suggested by the K-means, the

DENCLUE, the GGCA, and the FWKA algorithms.

3.1 Sythetic datasets

Each cluster in the six synthetic datasets is generated by a “randn()” in the Matlab R©toolbox. Thus

each cluster is regular, and is centralized on the center of related “randn()” function. As a result, after

labeling the above “randn()” functions, the correct cluster label of any data is just the label of the

“randn()” function that generates these data. These original cluster labels in the above three datasets

are not given in any clustering process, but they are used to examine the accuracy of algorithms after

the clustering process is completed. The above six synthetic datasets are indicated by Set 1–Set 6.

All the above datasets consist of two-dimensional data except that Set 6 consists of three-dimensional

data. Consequently, the six artificial datasets all is low-dimensional but contains the most encountered

characters in many datasets. Set 1 contains 6000 data in three clusters. One is a high-density cluster

with 4000 data and the other two are low-density clusters with 1000 data each (see Figure 3(a)). These

clusters are density-diverse and two of them are slightly overlapped. Set 2 contains 6000 data in three

ellipse-shaped clusters, but is added with 1000 noisy data in random bivariate normal distributions with a

large variance. Thus Set 2 is used to simulate a noisy dataset (see Figure 3(b)), and is applied to test the

robustness of a clustering algorithm. Set 3 contains 6000 data with three size-diverse clusters, where the

larger cluster has a diameter twice that of the two smaller clusters (see Figure 3(c)). In Set 4, there are

20000 data in 20 sphere-shaped and partially overlapping clusters (see Figure 3(d)). We use this dataset

to test the runtime and space needs. Set 5 contains 366 data in five low-density ellipsoidal clusters and

one high-density line-like cluster (see Figure 3(e)). The data in the six clusters are all evenly distributed.

Set 6 consists of two clusters with 200 three-dimensional data in three mutually vertical coordinates.

One cluster is distributed in the plane parallel to xoy plane and the other to yoz plane (see Figure 3(f)).

Hence, the two clusters are distributed in two diverse subspaces of partial attributes respectivley.

3.2 Five real datasets

We have evaluated the efficiency of the G-K-MEANS algorithm by five real datasets from the UCI

machine learning repository, Iris, Satimage, Cancer, Letter, and Texture. This three-cluster dataset
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Figure 3 Synthetic datasets with diverse characters and grids in these datasets at the first iteration. (a) Density-diverse

clusters; (b) clusters with noisy data; (c) size-diverse clusters; (d) low-dimensional and large-size clusters; (e) six arbitrary-

shaped clusters; (f) two clusters in different subspaces.

Iris contains 150 data with 4 attributes. Each cluster has 50 data equally. Two clusters are overlapped

and one cluster is separated from those two clusters. In the past decades, the dataset has been frequently

applied to evaluate the effectiveness of clustering algorithms [16].

The Satimage dataset consists of data from earth resource satellite-generated multi-spectral imaging

scan (MSS), and each frame in MSS contains 4 different frequency components of the digital image in

the same scene. Each datum in the Satimage dataset is a 36-dimensional data sample. The Satimage

dataset, denoted by Satimage, contains 6435 data samples that belong to 6 different clusters.

The Cancer dataset contains 699 instances that originally belong to two hyperplane-shaped clusters

named “Benign” and “Malignant”, and each instance has ten attributes plus the cluster attribute. In

the Cancer dataset the two clusters are regular. There are 16 missing instances in the original dataset,

which we removed.

The Letter dataset contains twenty-six clusters with 20000 records and 16 attributes. Hence, the

Letter dataset is a representative of high-dimensional and very large datasets. However, the Letter

dataset itself is inappropriate evaluate a clustering algorithm since there are no clear boundaries among

different clusters in it [13]. Hence, we modify the Letter dataset by deleting any two records whose

cluster labels are different and mutual distance is less than a small threshold 0.02. The modified dataset

is denoted by M -Letter that contains 18360 records.

The Texturedataset consists of 4000 patterns in a 19-dimensional feature space, and represents an

image with 4 distinct textures (clusters). This is a difficult data set due to the overlap between nonlinear-

seperated clusters.

The original clustering labels are not used for the clustering, instead, the labels are used to evaluate

the accuracy of the algorithm.

3.3 Applied algorithms

We cluster the above datasets by six algorithms: K-means, G-K-MEANS, DENCLUE, SHIFT, FWKA

and GGCA, where the GGCA algorithm, which was proposed by us previously, is the representative of

the grid-based clustering approaches [13]. Apriori number of clusters for each dataset is suggested to all

the above algorithms and a commonly acceptable error 10−5 is used to measure the difference between the

result of the previous iteration and that of the current iteration. To determine the optimal grid size for a

given dataset, the G-K-MEANS algorithm first finds its global minimum from (1) after implementing a
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number of rounds of bisecting, and then searches for the corresponding round J along with the minimum.

The values of D(3, j)/D(1, j) in each dataset are shown in Figure 4. The number of initial grids in the

G-K-MEANS algorithm is 2T subject to K < 2T < 2J , where J is determined by (1). Thus we use 16,

16, 16, 64, 64, and 4 initial grids for Set 1–Set 6, respectively. In the DENCLUE algorithm we partition

the data space and obtain the set of grids whose number is forty times more than the number of clusters

in the corresponding dataset. To minimize the impacts from various initial setting, the best result from

all possible initial settings is chosen for both K-mean and FWKA algorithms.

In case of five real datasets such as Iris, Satimage, Cancer, MLetter, and Texture, we use (1) to

get the optimal grid size (see Figure 4(b)). Consequently, the numbers of their initial grids are 4, 16,

16, 64 and 32, respectively. To efficiently cluster the high-dimensional data, the G-K-MEANS algorithm

uniformly transforms each in the above 2J grids to an edge-equal grid which has the same center as the

original grid, and has edge width e, satisfying

e = d

√

λV/2J , for i = 1, 2, . . . , 2J . (4)

Here λ is a ratio of the volume of all nonempty grids after bisecting the GRID to a group of grids in

which each contains only one object, and V is the volume of the GRID.

In all experiments, we coded the DENCLUE algorithm according to the basic steps available in [10].

The normalized attribute space is partitioned along each numerical dimension with width σ= 0.02 for

the DENCLUE algorithm. The GGCA and SHIFT algorithms are implemented in house. We apply the

K-means and the FWKA algorithms to implement the clustering analysis in the data mining workshop:

AlphaMiner 2.0 [18].

3.4 Clustering results

The clustering results of the above algorithms are evaluated by four indices: accuracy, CPU possessing

time (seconds), robustness, and initialization, where the accuracy is measured by the percentage of

correctly-partitioned data in each dataset. For the G-K-MEANS algorithm, the CPU possessing time for

list in each dataset includes the time of all rounds of bisecting for the optimal grid size and the iterative

processing to seek for optimal solutions. All the clustering results are listed in Table 3, and the clustering

results of Set 1–Set 6 are further shown in Figure 5.

We explain these results as follows.

(1) Accuracy. The G-K-MEANS algorithm is better than the other four algorithms in Set 1–Set 4,

and Satimage, but is worse than those in Set 5, Set 6, Cancer and M -Letter. Figures 5(a)–5(f) show

that the mean centers suggested by the K-means algorithm in Set 1–Set 6 partially deviate from their

actual geometric centers due to very density-diverse and tangential clusters in Set 1, noisy data in Set 2,

size-different clusters in Set 3, overlapped clusters in Set 4, shape-different clusters in Set 5, and attribute-

different clusters in Set 6. Thus the K-means algorithm has the lowest accuracy among the above five

algorithms. In contrast, the mean centers obtained by the G-K-MEANS algorithm coincide with the true

geometric centers of the clusters in the datasets. Consequently, a majority of the clusters in Set 1–Set 4

are partitioned correctly. However, in Set 5, the G-K-MEANS algorithm is capable of finding six mean

centers correctly, with some objects in the sixth clusters not satisfying the nearest neighbor assigning

principle. Take Set 6 as an example. The grid centers in the G-K-MEANS algorithm gradually move to

the two hyperplanes of clusters A and B (see Figure 5(f)), yet the results are not better than those of

the GGCA and FWKA algorithms. In contrary, the DENCLUE and GGCA algorithms get the better

clustering results for Set 5 and Set 6 than the other three algorithms, since they can identify arbitrarily

shaped clusters. Specifically, the clustering results of the FWKA algorithm show that it performs well at

locating clusters distributed in different subspaces.

The Iris, Satimag and Cancer all are approximately regular cluster-contained dataset but the M -

Letter and the Texture are not. The difference leads to very different accuracies of the G-K-MEANS

algorithm. In the Satimag each regular cluster is spherical, and the G-K-MEANS algorithm outperforms

the other four algorithms. In the Cancer with regular but non-spherical cluster-contained datasets, the
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Figure 5 Clustering results of the six synthetic datasets. (a)–(f) correspond to Set 1–Set 6 respectively. Each red symbol

“•” indicates a grid center by the G-K-MEANS algorithm, each black symbol “◦” indicates a cluster center by the K-means

algorithm, and each red square indicates an online grid (hypercube) when iterative stop condition is satisfied.

Table 3 Clustering results of the experimental datasetsa

Algorithms K-means DENCLUE FWKA SHIFT GGCA G-K-MEANS

Datasets A(%)/C(s) A(%)/C(s) A(%)/C(s) A(%)/C(s) A(%)/C(s) A(%)/C(s)

Set 1 86.2/11.62 88.3/8.78 89.2/14.57 89.2/14.57 88.3/0.26 97.3 /0.15

Set 2 91.9/12.32 89.2/0.78 92.6/13.72 92.6/13.72 89.2/0.95 93.1 /0.19

Set 3 87.8/14.15 93.3/1.78 91.4/18.53 91.4/18.53 93.3/2.11 95.2 /0.26

Set 4 65.3/12.26 87.6/19.72 90.8/23.21 90.8/23.21 87.6/8.02 93.2 /0.38

Set 5 72.1/0.61 90.4/2.18 87.3/1.87 87.3/1.87 93.7 /3.88 88.7/0.87

Set 6 64.3/0.63 76.3/1.19 86.3/1.83 86.3/1.83 94.3 /2.33 80.3/0.27

Iris 90.1/0.11 93.4/1.02 92.7/0.13 90.3/0.12 96.2 /0.28 95.3/0.16

Satimage 44.3/18.23 66.3/12.17 58.7/13.53 58.7/13.53 70.2/10.64 73.5/6.46

Cancer 70.4/0.33 89.2/1.19 88.9/8.13 88.9/8.13 96.1 /4.19 74.5/1.46

M -Letter 34.3/114.63 87.9/83.41 76.3/172.3 76.3/172.3 92.9 /8.11 44.7/3.28

Texture 76.8/7.23 95.3 /10.21 85.4/11.15 88.7/14.13 94.2/5.64 86.5/6.46

a) For any clustering algorithm, “A(%)” indicates accuracy (percentage), “C(s)” CPU runtime (second). The underlined

item is the best result in any corresponding row.

G-K-MEANS algorithm can find the cluster centers better than the other five algorithms except the

GGCA. However, these well-determined cluster centers cannot lead to the highest accuracy since the
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object assigning principle of the G-K-MEANS algorithm naturally regards all clusters as spherical ones.

In the M -Letter and Texture with irregular and arbitrary-shaped clusters, the G-K-MEANS algorithm

is worse than the DENCLUE, GGCA and FKWA algorithms, but still is better than the K-means

algorithm.

The performance of the G-K-MEANS algorithm is summarized as follows. First, if all clusters in a given

dataset are regular in sphere geometry, the G-K- MEANS algorithm has the best accuracy among the four

algorithms without considering the dimensionality of the dataset. In this case, the G-K-MEANS algorithm

outperforms the K-means algorithm significantly. Second, if all clusters are approximately regular but

not spherical, the G-K-MEANS algorithm can find correct cluster centers, but partial objects that are

against the nearest neighbor principle may be assigned to cluster centers/labels incorrectly. Finally, if

some of the clusters in the dataset are irregular, the merit of the G-K-MEANS algorithm is to find the

objects distributed in high-density areas of clusters. However, other objects that are not located in high-

density area may be difficult to be partitioned correctly. Essentially, the G-K-MEANS algorithm cannot

efficiently handle arbitrarily geometric shapes compared with the existing grid-clustering algorithms. For

example, the accuracy of the G-K-MEANS algorithm is 86.5%. The accuracy of K-means algorithm with

fixed k= 4 (i.e., four prototypes) is 768%. But the SHIFT, DENCLUE and GGCA have higher accuracies

of 88.9%, 95.3% and 942%, respectively. Thus for arbitrary-shape clusters the existing grid-clustering

algorithms with the necessary apriori knowledge may outperform the G-K-MEANS algorithm.

(2) CPU processing time. For the largesize datasets Set 4 and M -Letter, Table 3 shows that the time

cost of the G-K-MEANS algorithm is less that of the other five algorithms In the M -Letter dataset, the

runtime of the K-means algorithm for different initial conditions are almost 10–100 times more than that

of the G-K-MEANS algorithm. However, for the smallsize datasets such as Set 5, Set 6 and Cancer, the

CPU processing time of the G-K-MEANS algorithm is longer than those of the other four algorithms

since a number of rounds of bisecting are performed to find the optimal grid size. In general, the runtime

of the G-K-MEANS algorithm is directly proportional to the number of initial grids rather than that of

data in a dataset.

(3) Initialization and the estimation of the number of clusters. Table 4 shows the clustering results

with different initializations for the five algorithms. The result is measured by the differences between

the worst and the best accuracies after applying 1) different initial cluster centers in the K-means and

FWKA algorithm; 2) different parameter pairs of p and q in the GGCA; 3) different parameter settings

of σ in the DENCLUE; 4) all combinations of the chosen dimensionalities in each round of bisecting in

the G-K-MEANS algorithm.

Table 4 shows that the clustering results of the G-K-MEANS algorithm can be affected by different

bisecting dimensions in each round of bisecting to some extent, but the affection is smaller than the

K-means and the FWKA algorithms. In Cancer and M -Letter, the G-K-MEANS algorithm is inferior

to the DENCLUE algorithm. However, the performance of G-K-MEANS is much improved when (4)

is applied at each round of bisecting. In addition, the GGCA and SHIFT algorithms are impacted by

different initial conditions mostly compared with the G-K-MEANS algorithm, and are not capable of

resolving the common issue existing in the grid-based clustering algorithms.

If the number of clusters is unknown apriori, the G-K-MEANS algorithm can use all initial grids as

online girds to partition any given dataset. In this case, each cluster will be assigned a grid at least so

that none of all clusters is missed. At the same time, all grids that are assigned to the same cluster move

to the same center of the cluster, so that these grids overlap and only the most high-density grid in them

is kept and the other grids are removed. Consequently, the clustering accuracies of all datasets by the

G-K-MEANS algorithm are comparable to those shown in Table 3. Since (1) can determine the number

of initial grids, the clustering does not require any user-determined parameter. However, to use all initial

grids as online grids we have to increase the CPU possessing time in every dataset, as shown in the final

column in Table 4. This will decrease the efficiency of the G-K-MEANS algorithm in the CUP processing

time to some extent.
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Table 4 Additional accuracy under diverse initializations and extra CPU processing time for the number of clustersa)

Algorithm K-means FWKA DENCLUE GGCA SHIFT G-K-MEANS

Datasets A(%) A(%) A(%) A(%) A(%) A(%)/C(%)

Set 1 10.8 8.4 12.1 10.7 13.8 1.4 /112.7

Set 2 10.2 6.7 8.2 11.3 13.2 5.2 /341.2

Set 3 9.4 10.8 8.8 61 93 2.8 /234.2

Set 4 11.3 9.2 14.2 17.2 181 6.2 /145.6

Set 5 11.8 15.7 12.1 10.1 13.5 4.1 /238.4

Set 6 19.2 8.2 11.3 134 122 6.9 /278.3

Satimage 15.8 15.1 7.1 8.1 7.3 5.1 /137.2

Cancer 12.2 10.6 8.2 19.2 17.7 11.3/763.2

M -Letter 19.4 15.3 11.3 22.3 20.6 15.3/549.8

a) For any clustering algorithm, the symbol “A(%)” indicates the additional accuracy (percentage) of any dataset

between the best and the worst results, and “C(%)” the extra runtime (percentage) of the G-K-MEANS algorithm to find

the unknown number of clusters. The underlined item is the best result in any corresponding row.

4 Conclusions

We focus on the integration of the grid-based mechanism to the K-means algorithm and thus develop a

grid-based K-means (G-K-MEANS) algorithm. The G-K-MEANS algorithm tends to find cluster centers

in high-density areas while the K-means cannot guarantee this point. Therefore, the cluster quality

should be better from a density viewpoint. Moreover, the G-K-MEANS algorithm assigning objects

to grids needs much less computation time than existing algorithms such as the K-means algorithm,

and hierarchical algorithm of large datasets [18, 19] which requires computing the Euclidean distances.

Thus the G-K-MEANS algorithm is more efficient. Besides, the G-K-MEANS algorithm can provide a

fast and efficient initial partition for the data space. This is very helpful for further cooperation with

other clustering algorithms such as PCM (probabilistic clustering method) [20], etc. Compared to the

existing grid-based clustering algorithms, the G-K-MEANS algorithm is not involved in the three main

problems regarding the determination of grid parameters mentioned in section 1. Our study reveals that

the objective function of the K-means algorithm is not the best optimal criterion for a given pattern set,

while the one of the G-K-MEANS algorithm is a better candidate. Due to these promising performances,

we believe that the G-K-MEANS algorithm is quite reasonable and applicable to solving very large

datasets.
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