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Abstract The relation between rotation number and almost periodic motion for almost all C5 systems on T2 
which have no critical points is established. The result that every solution of such systems is a Liapunov stable and al- 
most periodic motion is proved. 
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1 Main results 

~irkhoff"' first introduced the concept of recurrent motion, and conjectured the existence of 

an analytical differential equation that has recurrent motions but has no almost periodic motions. 

 in^"] constructed a system on T' of the following form: 

that verifies Birkhoff's conjecture affirmatively. Here, we may call number A a Birkhoff number. 

More precisely, A is a Birkhoff number if there is an analytical function F such that system (1) 
on T' has recurrent motions but no almost periodic motion. On the other hand, it is well known 

that if the C' system on T' 

has neither critical points nor periodic motions, then every motion of (2)  is recurrent. 

From the above, it seems natural to ask the following questions: 

( i )  How many Birkhoff numbers are there ? What is the relation between Birkhoff number 
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and Liouville number1) ? 

(ii) Almost periodic motion, as the motional form between periodic motion and recurrent 

motion, exists widely in smooth systems (2 )  on T ~ ,  doesn't it? 

In this paper, we prove the following theorems. 

Theorem 1 . For a1 most all real numbers A ( i n  the sense o f  Lebesgue measure ) , i f  f ,  g 
E c5, gZO and the rotation number ,LL( f )  o f  

is A, then every motion of  ( 2 )  is Liapunov stable and almost periodic. 

Theorem 2.  A Birkhoff  number must be a Liouville number,  and the set of Birkhoff 

numbers is of Lebesgue measure zero. 

Remark . A real algebraic number is not a Liouville so it is not a Birkhoff num- 

ber either. 

2 Proofs of main results 

Lemma lL4]. Suppose M is a compact minimal  set o f  a d ~ n a m i c a l  system on M .  Then a 

necessary and sufficient condition for M to be an almost periodic minimal  set is that every mo- 

tion i n  M is Liapunov stable for M. 

Lemma 2[5v61 I f f ,  € c2, g # O  and p( f )  € R \Q , then T~ is the minimal  set o f  ( 2 )  
and ( 3 ) .  

Let v = H (  u ; p )  be the expression for the orbit of ( 2 )  and ( 3 )  passing through a point P - - 
= ( u , v )  . From ref. [ 7 ] ,  we know that there exists a unique function (mod 1 )  h : R +R which 

is continuous, increasing, such that for all u , v , p , 

where A = , L L (  f )  and W ( y ,  2 )  is periodic 1 in y ,  2 ,  in fact 

Define the subsets of irrational numbers A ,  Dg and D as follows:' 

1) A real number A is called a Liouville numberi3' if for every integer 6 2 1  there exist integers p and q with q > O  such that 
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Da = l A  3 C = C(A)(>  0) such that A + - 2 for all integers p and q I ,"I 9" 

where [ ao, a 1, ] is the non-terminating continued fraction of A ; 

Lemma 3[81. (i) A is a subset of D ,  and the Lebesgue measure of IR\ A is zero; 

with q > 0, where p ,  q E Z are relatively prime 

(ii) For 7223, 6 > 1  and I*( f ) E A ,  h is of class c " - ~ .  

; 

Lemma4. Suppose6>1, A E D 8 a n d k ( 6 ) = [ 6 ] + 1 + [ 2 { 6 t ] ,  where[c?]and 161 de- 

note the integer part and the fractional part of 6 ,  respectively. I f  F (  x , y )  is of class ck ( k = 

k ( 6 )  ) and periodic 1 i n  x ,  y ,  then 

uniformly for 0 E IR 

Proof. By the definition of k , we know that k 2 2 ,  2( 6 - k ) < - 1, therefore 

Denote a,,, = ~ : J ; F ( ~ ,  y)e-2"(m"*ny) dxdy .  hen[^] 

"2 n 

Since 
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and 

using ( l o ) ,  we have 

using ( 8 ) - ( l o ) ,  we have 

m n 

and using ( 11)  and ( 1 2 ) ,  we get 

On the other hand 

and 
I e2ni( mr+ ny) - e2xi( mzo+ nyo) I < 2 ,  lim I $xi( mz+ ny) - e2xi( m r o f  ny0) 

( ~ . Y ) - ( = ~ . Y , , )  
I = 0 ,  

hence, using ( 1 3 ) ,  we obtain the lemma. 

Proof o f  Theorem 1 .  By Lemmas 1-3, we only need to prove that system ( 2 )  is Lia- 

punov stable for T~ and for A E A .  

Denote ( U ( t  ; p ) ,  V ( t ;  p ) )  the motion of the system with ( ~ ( 0 ;  p ) ,  V ( O ;  p ) )  = P. 

Hence we have 

and by Lemma 3 ,  we have g ( u  , v ) =: 
1  

is C3 and periodic 1  in u  , v , SO by 
g ( u ,  v +  W ( u ,  v ) )  

( 6 ) ,  ( 1 4 )  and Lemma 4 ,  we have 
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and 

- - 
uniformly for B E R ,  where p o = ( u 0 ,  V O ) ,  p = ( ; , V ) .  

Let T (  0 ; p )  be the time along the orbit of the system from point p = ( u , i) to point ( L + 
0, H(; + 0 ; ~ ) ) .  Obviously, we have 

for all p E T ~ ,  and 

Thus, by (17) and (7 ' ) ,  we have 

uniformly for 0 € R , and by ( 16) and ( 18) ,  we have 

/ U ( t ; p )  - U ( t ; p o ) /  - - < I .  - u o I +  I [ U ( t ; p )  - u 1 -  [ U ( t ; p o )  - L o l l  - - 
< ) u  - u o / + m a x l g ) .  / T ( u ( ~ ; P )  - ;;PO) - T ( U ( t ; p o )  - G o ; p o ) /  

TZ 

= 1; - u o I + m a x I g J .  I T ( ~ ( t ; p )  - u ; p o )  - T ( U ( t ; p )  - ; ; p ) l ,  
T~ 

therefore we have 

( U ( t ; p )  - ~ ( t ; p o ) I  - - 
< ( u  - u o ( + m a x I g l .  I T ( u ( ~ ; P )  - u ; p )  - T ( U ( t ; p )  - i ; p o ) I .  

T2 
(20) 

Hence, by (19) and (20) ,  we have 

lim / U ( t ; p )  - ~ ( t ; p o ) /  = O 
P' Po 

uniformly for t € R , and by (6 ) ,  ( 14) and (21 ) , we have 

uniformly for t E R  . (21) and (22)  indicate that every motion of the system is Liapunov stable 

for T 2 .  The proof is completed. 

Remark . For V a E (0, I ) ,  the smoothness of f and g can be reduckd to c4"' and c3, re- 

spectively. 

Proof of Theorem 2 .  Let A0 be a Birkhoff number, i .  e.  there exists an analytical function 

F o (  u , v )  ( # 0 )  such that for system 
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T 2  is a minimal set but not an almost periodic minimal set. We prove that A. is a Liouville num- 

ber. Suppose that A. is not a Liouville number, then there exists a number 60 ( 3 1  ) such that A. 
E Dao. Similarly to the proof of Theorem 1 (here h ( s )  r r  , W ( s, y )  ~ 0 ,  Fa analytic), we 

can prove that system (1 ' )  is Liapunov stable for T'.  Using Lemma 1, this implies that the sys- 

tem has T2 as its almost periodic minimal set, yielding a contradiction to the fact that the system 

has T2 as its non-almost periodic minimal set. Similarly, we can prove that the set of Birkhoff 

numbers is a subset of R \ D. So by Lemma 3 ,  we know that the set of Birkhoff numbers is 

Lebesgue measure zero. Now the proof is completed. 

Let X be any system on T 2  of class Cn ( n 3 2 )  with no critical points. From refs. [ 7 ,  10, 

11 1, we know that X is Cn-conjugate to system ( 2 ) ,  where g#O. We call f )  a rotation num- 

ber of X .  Since T' is compact, one can easily prove that: 

( i )  if (2 )  has T 2  as its minimal set, so does X ; 

(ii) if (2) has a motion which is Liapunov stable for T 2 ,  SO does X 

By Theorem 1 and the above, we get the following theorem. 

Theorem 3 .  For almost a l l  real numbers A ( in the sense of Lebesgue measure), T 2  is the 

almost periodic minimal set of system X, where X is of class Cn ( n 2 5 )  with no critical points 

and  A is a rotation number of X .  
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