
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

June 2015, Vol. 58 062401:1–062401:16

doi: 10.1007/s11432-014-5215-4

c© Science China Press and Springer-Verlag Berlin Heidelberg 2015 info.scichina.com link.springer.com

Fast RSA decryption through high-radix scalable

Montgomery modular multipliers

WU Tao1,3*, LI ShuGuo2* & LIU LiTian2*

1Department of Microelectronics and Nanoelectronics, Tsinghua University, Beijing 100084, China;
2Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
3Shanghai Fudan Microelectronics Group Company, Shanghai 200433, China

Received July 23, 2014; accepted September 3, 2014; published online March 17, 2015

Abstract This paper improves the quotient-pipelined high radix scalable Montgomery modular multiplier by

processing w-bit and k-bit words in carry save form instead of some (w + k)-bit length operands. It directly

reduces both the critical path and the area overhead of the original processing elements. Then based on this

improved high-radix scalable Montgomery modular multiplier, we propose an efficient hardware architecture

for RSA decryption with Chinese Remainder Theorem. With simple configuration logics, the hardware unit

works in three modes: (1) scalable modular reduction for precomputation, (2) scalable Montgomery modular

multiplication for modular exponentiation, where an approximation method is developed to reduce the expanded

result below the modulus, and (3) scalable multiplication for post-processing. Hardware implementation shows

that the proposed architecture is optimal with reference to the literature in terms of speed, area, and frequency.

A 4096-bit RSA decryption in XC2V6000-6 FPGA can be completed in 11.05 ms with 14041 slices/17409 LUTs,

128 16 × 16 multipliers, and 70 kbits of block RAMs. Finally, by the use of Montogmery powering ladder the

modular exponentiation unit based on the improved high radix scalable Montgomery modular multiplier can be

built resistant to fault and simple power attacks. A 1024-bit modular exponentiation unit with such resistances

costs about 255K NAND2 gates in .18 µm CMOS process, and one full modular exponentiation takes about

1.44 ms at 250 MHz.

Keywords RSA, high radix, scalable, Montgomery modular multiplication, CRT

Citation WU T, Li S G, Liu L T. Fast RSA decryption through high-radix scalable Montgomery modular

multipliers. Sci China Inf Sci, 2015, 58: 062401(16), doi: 10.1007/s11432-014-5215-4

1 Introduction

Public-key cryptography (PKC) can be used to exchange the secret keys for symmetric cryptography and

data signatures for e-commerce, both of which are quite important in network security. The usual PKCs

include RSA cryptography [1], elliptic curve cryptography [2], and the scheme based on coding theory [3],

among which RSA is the most widely used.

RSA computation is mainly composed of exponentiations or multiplications in a quite large prime

field. The encryption and decryption of RSA means applying RSA in the background of symmetric

cryptography, where a small key can be chosen for encryption and a much larger key is used for decryption.

This work targets the acceleration of RSA decryption, or any RSA computation with a large key.

*Corresponding author (email: twu03ster@gmail.com, lisg@tsinghua.edu.cn, liulitian@tsinghua.edu.cn)

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:2

In order to obtain high performance for multiprecision modular multiplications with limited hardware

resources, a tradeoff between area overhead and time complexity can be reached by scalable architecture

[4,5]. To continuously generate results with long-precision the processing elements (PEs) within a scalable

Montgomery modular multiplier can be reused or replicated, independent of the data path precision for

which the unit was originally designed [4]. Unlike the interleaved Montgomery algorithm [6,7], the parallel

words are allocated in a pipeline. The low-latency scalable architecture is efficient with limited hardware

and fast if sufficient resources are available [8–10]. Meanwhile, high-radix scalable architecture cuts down

the number of clock cycles for one scalable Montgomery modular multiplications, although it has a longer

critical path and latency between PEs [11, 12]. It was also noticed that if the scalable hardware units

did not work by the largest round of the algorithm, then the low latency between PEs will not play a

significant role in the whole multiprecision modular multiplication.

Meanwhile, the RSA implementation can be simplified by the Chinese Remainder Theorem (CRT)

[13–15]. In fact, RSA by CRT (CRT-RSA) cuts down about 3/4 computational complexity with formal

RSA decryption. Nevertheless, CRT-RSA is then vulnerable to the fault attacks and simple power analysis

(FA-SPA), which can be avoided by Montgomery powering ladder [16–18]. and parallel hardware units

for hardware implementation. If the cryptosystem works in a safe background, then the power analysis

attacks will not be a problem.

In this work, the quotient pipelined high-radix scalable Montgomery modular multiplier (HSCM) in [12]

is further optimized by us. First, the carry save addition is moved from the critical path, which reduces

the area overhead at the same time; second, the HSCM is reconfigured so as to perform scalable multipli-

cations and scalable modular reductions. These optimizations result in an efficient and relatively compact

hardware architecture for CRT-RSA. This FA-SPA-Resistant characteristic can also be implemented by

HSCM for modular exponentiation.

The rest of this paper is organized as follows. Section 2 briefly reviews the quotient-pipelined Mont-

gomery modular multiplication. Then in Section 3 the optimized HSCM is proposed for modular expo-

nentiation, with a reconfiguration for scalable multiplications and modular reductions. And in Section 4

the modular reduction after modular exponentiation is presented. Section 5 then gives hardware imple-

mentation results of our proposals. The last section concludes this paper.

2 Scalable Montgomery modular multiplication with quotient pipeline

Montgomery algorithm [6] is efficient for modular multiplications, since it replaces the original modular

reductions over M by that over 2n. Suppose A,B,M,R, n are all integers with R = 2n, 0 6 A < R,

0 6 B < R, R/2 < M < R, A ·B < R ·M and GCD(M, 2) = 1. Precompute µ = (−M−1) mod R, then

Montgomery shows that [6]

S = (A ·B + (A ·B · µ mod R) ·M)/R,

with S ≡ A · B · R−1(mod M) ∈ [0, 2M).

Usually, Montgomery modular multiplication is interleaved to reduce area overhead [7]. By scaling

one operand A as 2k · A and precomputing N = (µ · −M−1 mod (2k(d+1)) + 1)/2k(d+1), the quotient

pipelined Montgomery modular multiplication algorithm [19] is further improved in [7], as is shown in

Algorithm 1.

Apparently, the determination of the quotient digit qi gets simplified, while another iteration is required

to offset the scaling 2k · A.

The basic architecture of scalable Montgomery modular multiplier [4] is shown in Figure 1. The

multiplier digit bi is directly loaded in PEs from the shift-register, the quotient digit qi is generated

from the previous PE, and the multiplicand word Aj and Nj are transported through the PEs. It can

be noticed that the quotient digit qi can be stored in a small register rather than their entry into the

first-in-first-out registers (FIFOs). The redundant representation {S′
j, S

′′
j } denotes temporary results.

Algorithm 1 has been applied in a scalable architecture in [12] with d = 1 in Algorithm 2, where (Si)j,u
denotes the i-th loop, the j-th word, the u-th bit of S.

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:3

Algorithm 1 Improved quotient pipelined Montgomery modular multiplication [7]

Require: Integers A,B, M,µ, M̃, N , R, n, k,m, d, with n = k ·m, R = 2n = 2k·m, µ = −M−1 mod (2k(d+1)), M̃ = µ ·M ,

N = (M̃ + 1)/2k(d+1) . In addition, GCD(M, 2) = 1, 0 6 A < 2M̃ , 0 6 B < 2M̃ , B =
∑m+d

i=0 bi · 2ki, with bi = 0 for

i > m.

Ensure: S = A ·B · R−1 mod M , 0 6 S < 2M̃ .

1: S0 = 0, q−d = 0, q−d+1 = 0, . . ., q−1 = 0;

2: for i = 0 to m+ d do

3: qi = Si mod 2k;

4: Si+1 = ⌊Si/2
k⌋+ qi−d ·N + biA;

5: end for

6: S = 2kdSm+d+1 +
d−1
∑

i=0
qm+i+12ki;

7: return S.

PE 1 PE 2 PE L

Aj

Nj

qi

bi

{S 'j , S ''j }

out

ctrl

ctrl

FIFO

Figure 1 Scalable architecture of a Montgomery modular multiplier.

Algorithm 2 HSCM in [12]

Require: Integers A, B, M are between [0, 2n), with 2n−1 < M < 2n, GCD(M, 2) = 1. The multiplicand A is divided into

e words, with A = (Ae−1 · · ·A1A0)2w , e = ⌈n/w⌉+1. The multiplier B is divided into f digits, with B = (bf · · · b1b0)2k ,

f = ⌈n/k⌉ + 2, bf = 0. Integer M ′ satisfies (−MM ′) mod 22k = 1. Set M̃ = M(M ′ mod 22k), M̂ = (M̃ + 1)/22k ,

R = 2n+2·k.

Ensure: Sf ≡ A ·B · R−1(mod M), 0 6 Sf < 2M̃ .

1: S0 := 0

2: Q−1 := 0

3: for i = 0 to f do

4: C := 0

5: Qi := (Si)0;

6: for j = 0 to e do

7: (C, (Si)j) :=
(

(Si)j,k−1..0, (Si)j−1,w−1..k

)

+Qi−1Mj + bi ·Aj + C.

8: end for

9: end for

10: S := (Sf ≪ k) +Qf ;

11: return S.

3 Optimized HSCM

A scalable Montgomery modular multiplier consists of a group of PEs, RAMs, a FIFO, and the control

logics. The whole computation is interleaved and then broken into word-based operations, so that the

calculation of Si+1 starts only 2 or 1 clock cycles after computing the first word of Si.

High-radix scalable Montgomery modular multiplications indicates a large value of k in Algorithm 1.

Usually, when k > 2 it is called high radix, and typical high-radix scalable designs with k > 3 have

been reported in [11,12,20,21]. In scalable Montgomery modular multiplications, one usually divides the

multiplicand and the multiplier into a few words and digits, with the word size w and digit size k chosen

separately. In most cases, with high radix architectures they are usually chosen as the same [11, 12].

The optimized HSCM divides the original (w + k) serial bits into parallel w-bit operands. Also, the

quotient pipeline depth d = 1. The high-radix scalable Montgomery modular multiplication is shown in

Algorithm 3, in which the carries are denoted by (Ci)j collectively.

The PE with Algorithm 3 is shown in Figure 2, which consists of 3 full adders; 1 carry save adder

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:4

Algorithm 3 Optimized HSCM

Require: Integers A,B, M , µ, M̃ , D,n, k, m, f, e, with f = ⌊n/k⌋+ 3, R = 2k·f , e = ⌊n/w⌋+ 4, µ = −M−1 mod (22k),

M̃ = µ · M , N = (M̃ + 1)/22k =
f−2
∑

j=0
Nj · 2kj . In addition, GCD(M, 2) = 1, 0 6 A < 2n+2k+1, 0 6 B < 2n+2k+1,

B =
f+1
∑

i=0
bi · 2ki, with bi = 0 for i = f and i = f + 1.

Ensure: S = A ·B · R−1 mod M , 0 6 S < 2M̃ .

1: S′

0 = 0, S′′

0 = 0, T0 = 0, q−1 = 0, (C0)−1 = 0;

2: for i = 0 to f + 1 do

3: qi =
∣

∣(S′

i)0 + (S′′

i)0
∣

∣

2k
;

4: 2k · (Ci)0 + (S′

i+1)0 + (S′′

i+1)0 :=
(

⌊S′

i/2
w⌋

)

0
+

(

⌊S′′

i /2
w⌋

)

0
+ |qi−1N0|2w + |biA0|2w + (Ci)−1;

5: for j = 1 to e− 1 do

6: 2k(Ci)j + (S′

i+1)j + (S′′

i+1)j :=
(

⌊S′

i/2
w⌋

)

j
+

(

⌊S′′

i /2
w⌋

)

j
+ ⌊qi−1Nj−1/2w⌋ + ⌊biAj−1/2w⌋ + |qi−1Nj |2w +

|bi ·Aj |2w + (Ci)j−1;

7: end for

8: end for

9: S = 2k(S′

f+2 + S′′

f+2) + qf+1;

10: return S.

*

N j

A j

b i

q
i−1

*

CSA

q
i

fst

c0

N j

A j

''()ijS

'()ijS

'
1()ijS +

''
1()

ijS +

c1

c2

c3

fst
0 1

w

k

w

k

w

w

k

k

w

w

w k

w

w

w

w

k

c '1

k

Figure 2 PE with optimized HSCM.

(CSA), 2 multipliers, 1 multiplexor, and a few registers. The carry out c1 is of weight 2k and comes from

the previous PE. Since the latency between PEs are 2 clock cycles, the carry out c′1 should be buffered

by 2 clock cycles and then fed into the next PE as c1. The other carries are buffered for 1 clock cycle

and then used in the current PE. The carries 2w · (Ci)j include c′1 for all the words in the loops, which

makes the carry (Ci)−1 into the first word non-ignorable.

An n-bit modular exponentiation consists of continuous modular multiplications, and the input and

output range of Montgomery modular multiplications are in the same range [22]. This condition can be

met by selecting proper value of f , just referring to the choice of m+ d in Algorithm 1. In this work, it

is satisfied by setting f = ⌊n/k⌋+ 3, e = ⌈n/k⌉+ 4, as is explained below.

• With e. For i 6 f − 1 there is

Si 6 2n+3k+1 + 2n+k, (1)

where k > 2. By recursion, one gets

Si+1 6 (2n+2k+1 + 2n) + (2k − 1) · (2n − 1) + (2k − 1)(2n+2k+1 − 1)

< 2n+3k + 2n+k. (2)

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:5

Table 1 Optimized HSCM VS. the architecture in [12]

Reference Length (bits) Area Critical path Clock cycles

This work n 2L ·AMULT(w×w) +15wL ·AREG+4wL · AFA TMULT(w×w) 2n2/(Lw2)

[12] n 2L ·AMULT(w×w) +15wL ·AREG+8wL · AFA TMULT(w×w)+TCSA 2n2/(Lw2)

6
:2

 C
S

A

3
:2

 C
S

A

Optimization

u0

u1

u2

u3

u4

u5

v0

v1

v2

v3

v4

v5

Figure 3 Optimization of PE.

Thus, the length e = ⌈n/k⌉+4 is enough to store the temporary results of high-radix scalable Montgomery

modular multiplications.

• With f . The last two loops with Algorithm 3 should reduce the temporary results from e words to

f words, i.e.,

Sf+1 < (2n+3k + 2n+k)/2k + (2k − 1)(2n − 1)

= 2n+2k + 2n+k − 2k + 1,

Sf+2 6 2n+k + 2n − 1.

The final result reads

S 6 2n+2k + 2n+k − 2k + (2k − 1)

= 2n+2k + 2n+k − 1 < 2n+2k+1. (3)

Obviously, S can be denoted by n/k + 3 words, which leads to f = ⌊n/k⌋+ 3.

In Table 1, our optimized HSCM is compared with that in [12] in case of w = k, where L marks the

number of PEs. It can be found that the area overhead and the critical path are both reduced, while the

time complexity remains constant. The symbol AMULT(w×w) denotes the area of a w×w-bit multiplier,

while TMULT(w × w) denotes its critical path delay. The symbol ‘REG’ denotes a register, ‘FA’ denotes

a full adder, and ‘CSA’ denotes a carry save adder. The critical path is measured by ASIC gates, which

varies between Tw−bit FA+TCSA in FPGA devices.

The difference between the PE of this work and that in [12] is illustrated in Figure 3, where the

original 6:2 CSA is replaced by a 3:2 CSA and 3 full adders. Its optimization goal is to reduce critical

path, by separating the CSA from the multiplier. It will be shown in Section 5 the maximum frequency

for FPGA implementation has been greatly increased. While the FA-SPA resistant architecture increases

area overhead, and enlarges the room for further speedup when the hardware resources are abundant.

3.1 Modular exponentiation

Modular exponentiation can be performed by a left-to-right or right-to-left binary method, counting the

exponent bit one by one from left to right or vice versa. It breaks the exponentiation into serial modular

squaring and modular multiplications [23].

The sliding window method accelerates the modular exponentiation by reducing the number of modular

multiplications [24, 25], while requiring more memories to store precomputation results. The sliding-

window method is described in Appendix A.

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:6

PE

L +1

PE

L +2

PE

2L

A j

N j

q
i

q
i

{S 'j , S ''j }

out 2

ctrl

FIFO 2

PE 1 PE 2 PE L

N j

{S 'j , S ''j }

out 1

ctrl

FIFO 1

jA

α
i

0

1

Figure 4 Modular exponentiation by Montgomery ladder and two HSCMs.

output

CRT-RSA

input

Mode

selection

0: MRDC

1: MEXP

2: MULT

Control

HSCM 0

HSCM 1

Figure 5 Modes of CRT-RSA.

The sliding-window method applies many RAMs to accelerate modular exponentiations, which is suit-

able for the background with rich memory units.

Another idea is to apply the FA-SPA resistant modular exponentiation architecture, which performs all

n-bit modular exponentiations in the same time. For this case, one can employ two scalable Montgomery

modular multipliers in parallel, as is shown in Figure 4. The original multiplicand words Aj is still

represented as Aj on the top HSCM, or as Aj at bottom HSCM. Meanwhile, the multiplier digits bi is

replaced by αi, which is shared between two HSCMs in Montgomery ladder algorithm [18]. There are

two results out from the HSCMs in coherence, i.e., out2 = (out1 · C) mod M , where C is the base and

M is the modulus.

3.2 CRT-RSA

The critical point in CRT-RSA is to separate an n-bit modular exponentiation into 2 (n/2)-bit modular

exponentiations, which greatly decreases the computations [13]. Suppose p and q are the two secret RSA

moduli, ω is the message in binary form, dp = d mod (p − 1), dq = d mod (q − 1), ωp = ω mod p,

mq = ω mod q, then one can compute Sp = ω
dp

p mod p, Sq = ω
dq

q mod q, and obtain [13]

S = Sp · v · q + Sq · u · p− t ·N, (4)

where u = q−1 mod p, v = p−1 mod q, t = 0, 1, 2, 3. Obviously, the original modular exponentiation

S = ωd is not directly implemented in CRT-RSA.

In this work, the CRT-RSA is based on two HSCMs and the external controller. As is shown in

Figure 5, the operations of CRT can be divided into three sequential stages or modes, i.e., 0: modular

reduction (MRDC), 1: modular exponentiation (MEXP), 2: multiplication (MULT).

The modes except ‘MEXP’ are discussed below.

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:7

3.2.1 Scalable modular reduction

During RSA decryption, ω is received as a whole, so one has to compute ωp = ω mod p and ωq = ω

mod q before applying CRT-RSA. Each of them is an n−bitmodular reduction over a (n/2)-bit modulus,

which is cubersome due to the large value of n. In the literature, they are assumed to be available from

software environment, which is separate from the direct RSA decryption process in a hardware unit. The

separation not only increases the efforts in the high level of a computing system, but also raises the risk

of leaking the p and q values.

Therefore, it is beneficial to conduct the modular reduction together with RSA decryption in the

same hardware unit. Usually, modular reductions can be performed by ‘shift and subtract’, which may

deteriorate the critical path due to large moduli p and q. As what we did with modular multiplications,

a scalable modular reduction unit may avoid the path deterioration.

In fact, scalable modular reduction here can be embedded in the existing HSCM unit. The basic idea is

inspired by the Montgomery modular multiplications in [26,27], which compute Z = A ·B ·R−1 mod M

with R = 2n as follows:

• T = A ·B, T1 = ⌊T/R⌋, T0 = T mod R.

• Z = T1 + T0 · |R
2|M ·R−1.

The above procedures keep the Montgomery algorithm unchanged, but process the product T as two

separate parts. While the lower part needs further processing, the higher part only requires an addition.

The procedures in this work are shown in Eq. (5),

x = ω · R−1mod p,

(ω · R)mod p = x ·
∣

∣R3
∣

∣

p
·R−1mod p.

(5)

Eq. (5) just obtains ωp in the Montgomery domain with R = 2n+3k, where the first step can be assumed

as an Montgomery modular product as follows:

x = ω · R−1modp = ⌊ω/R⌋+ |ω|R · 1 · R−1mod p.

Notice that the two steps in Eq. (5) cannot be combined, otherwise the intermediate results may get

out of the definition ranges. So the modular reduction can be performed by two sequential scalable

Montgomery modular multiplications.

3.2.2 Scalable multiplication in CRT-RSA

Second, the combination of 2 modular exponentiation results by CRT will require large multipliers to

perform multiplications. Because modular exponentiations or multiplications are often carried out by

interleaved multiplications and reductions (or Horner’s rule), it seems impossible to carry out multipli-

cations in the existing hardware. In fact, large multipliers may consume larger overhead area or lead to

long critical path.

At the end of CRT-RSA, there are two multiprecision multiplications, which is hard for interleaved

Montgomery modular multiplications, where no separate large multipliers exist. In this work, we propose

a scalable multiplication method to deal with large multiplications. It computes the large multiplication

by small-size multiplications and accumulates results in a pipelined way. The proposed method is shown

in Algorithm 4, and another form of pipelined multipliers can be found in [28].

In Algorithm 4, the subscript j with (S′, S′′) denotes the j-th word, while the subscript i is used to

denote the i-th outer loop. Its dataflow is similar to scalable Montgomery modular multiplications. By

setting qi−1 ≡ 0 or Nj ≡ 0 in Figure 2, scalable multiplication in Algorithm 4 can be implemented in

HSCM with the same PEs.

The dataflow of the scalable multiplier can be considered similar to the scalable Montgomery modular

multiplier only for the higher half of the products. In order to collect the words with the lower half of

the products, a multiplexor should be used. As is shown in Figure 6, the words of the lower half (about

m + 3 words) are selected from PEs in sequence, while the higher words can be piped out from a fixed

PE.

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:8

Algorithm 4 Scalable multiplication

Require: A, B are both n-bit numbers. n = m · k, A =
m−1
∑

i=0
Ai · 2

k·i, B =
m−1
∑

j=0
bj · 2k·j .

Ensure: S = A ·B.

1: S−1 = 0;

2: for i = 0 to m− 1 do

3: 2w · (Ci)0 + (Si)0 = (Si−1/2k)0 + bi ·A0;

4: for j = 1 to m− 1 do

5: 2w · (Ci)j + (Si)j = (Si−1/2k)j + bi ·Aj + (Ci)j−1;

6: end for

7: end for

8: return S = ((Sm−1)m, . . . , (Sm−1)1, (Sm−1)0, (Sm−2)0, . . . , (S0)0).

PE 1 PE 2 PE L

Aj

bi

{S 'j , S''j }

ctrl

FIFO

M
U
X

Figure 6 Outputs from the scalable multiplier.

4 Reduction after modular exponentiation

The result obtained from high-radix scalable Montgomery modular multiplications is a (n + 2k + 1)-bit

number, requiring final modular reductions. In order to perform this modular reduction, we present an

approximation method in Appendix B. A similar bounding technique can be found in [29] for modular

multiplication.

In the modular reduction of modular exponentiation, we can reduce the final result Z by R1 = Z−q̃ ·M ,

with q̃ =
⌊

Y −1
M+1

⌋

. Meanwhile, let us suppose that the accurate result read R = Y mod M = Y − q ·M .

For modular exponentiation, the upper bound of q at output can be considered in detail as follows.

In modular exponentiation, the last Montgomery modular multiplication is HSCM(1, B), with B = S.

In the inner loop of HSCM, for i there are:

S1 = S0 + q0 ·N + b0 · 1

= 0 + 0 ·N + bi 6 (2k − 1),

S2 = ⌊S1/2
k⌋+ q0 ·N + b1 · 1

6 0 + (2k − 1) · (2n − 1) + (2k − 1)

6 (2k − 1) · 2n,

S3 = ⌊S2/2
k⌋+ q1 ·N + b2 · 1

6 (2n − 2n−k) + (2k − 1) · (2n − 1) + (2k − 1)

6 2n+k − 2n−k,

S4 = ⌊S3/2
k⌋+ q2 ·N + b3 · 1

6 (2n − 2n−2k) + (2k − 1) · (2n − 1) + (2k − 1)

6 2n+k − 2n−2k, . . . ,

. . . .

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:9

Mj

CSA

(−S)j

(−R1)j
qt

*k

w

w

w

Figure 7 Word-based operation for modular reduction: R′

1 = −S + qtM , with qt = qh or qt = ql.

The above equations can be sequentially written until Sf−1, i.e.,

Sf−1 = Sm+2 = ⌊Sm+1/2
k⌋+ qm ·N + bm+1 · 1

6 (2n − 2n−m·k) + (2k − 1) · (2n − 1) + (2k − 1)

6 2n+k − 1, (6)

where f = m+ 3, n = m · k is used. Next,

Sm+3 6 2n + (2k − 1) ·N + 0 · 1

6 2n + (2k − 1) · ((22k − 1)M + 1)/22k

= 2n + (2k − 1)M −
M − 1

22k
(2k − 1)

6 2n + (2k − 1)M − 2n−1−2k(2k − 1)

= 2n + (2k − 1) · (M − 2n−2k−1), (7)

where M > 2n−1 + 1 is assumed.

Then,

Sm+4 6 2n−k + (2k − 1) · (M − 2n−2k−1) ·
1 + 2k

2k
,

Sm+5 6 2n−2k + (2k − 1) · (M − 2n−2k−1) ·
1 + 2k + 22k

22k
.

According to Algorithm 3, the final result reads

S = 2k · Sf+2 + qf+1 = 2k · Sm+5 + qm+4

< 2n−k + (2k − 1)(2k + 1 + 2−k)(M − 2n−2k−1) + 2k − 1

= 2n−k + (22k − 2−k)(M − 2n−2k−1) + 2k − 1

= (22k − 2−k)M − 2n−1 + 2n−k + 2n−3k−1 + 2k − 1

< (22k − 2−k)M − 2n−2, (8)

where the final inequality is satisfied by considering k > 3 for high-radix Montgomery modular multipli-

cation. Now, dividing both sides of Eq. (8) by M yields

S

M
< 22k − 2−k −

2n−2

M
. (9)

As a result,

q =

⌊

S

M

⌋

6
S

M
< 22k − 2−k −

2n−2

M
< 22k. (10)

Therefore, q̃ 6 q 6 22k − 1, and both of them can be represented by 2k binary bits.

To avoid the signed multiplication −q̃ · M , we compute R′
1 = −R1 = q̃ · M + (−S). For the sake of

hardware implementation, we set q̃ = 2kqh+ql, with qh < 2k, ql < 2k. Then, R′
1 = 2kqh ·M+ql ·M+(−S).

These operations can be processed in a separate unit as is shown in Figure 7. The input to the multiplier

are the quotient digits and the digits with the original modulusMj (which is different from the transformed

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:10

Table 2 Hardware implementationx of HSCM

Reference
Length PEs Digit Word

Technology
Area Max freq. Cycles Time

(bits) (bits) (bits) (slices/Luts/Dsps) (MHz) (Clock) (µs)

This work 1024 16 16 16 0.18 µm CMOS 131K gates 263.17 354 1.35

This work 1024 16 16 16 0.13 µm CMOS 140K gates 312.5 354 1.13

This work 1024 16 16 16 90 nm CMOS 130K gates 526.32 354 0.62

This work 1024 32 16 16 0.18 µm CMOS 232K gates 263.17 218 0.72

This work 1024 32 16 16 0.13 µm CMOS 236K gates 303.03 218 1.06

This work 1024 32 16 16 90 nm CMOS 207K gates 526.32 218 0.41

This work 1024 16 16 16 XC2V-6 2096/1799/32 202 357 1.77

This work 1024 32 16 16 XC2V-6 3846/3126/64 202 218 1.09

This work 1024 16 16 16 XC2V-4 2096/1800/32 151 357 2.37

This work 2048 32 16 16 90 nm CMOS 234K gates 526.32 674 1.28

This work 2048 32 16 16 XC2V-6 3948/3375/64 202 677 3.35

This work 2048 32 16 16 XC2V-4 3948/3375/64 117 677 5.79

[30] 1024 65 1 16 0.13 µm CMOS 82K gates 675.68 1107 1.64

[10] 1024 65 2 16 0.13 µm CMOS 139K gates 584 590 1.01

[30] 1024 257 1 4 XC2V-6 5158/5430/0 254.55 1287 4.05

[30] 1024 257 1 4 XC2V-4 4647/4918/0 195.98 1287 5.26

[10] 1024 65 2 16 XC2V-6 11516 LUTs 217 − 2.7

[10] 1024 65 2 16 XC2V-4 11516 LUTs 174 − 3.37

[31] 1024 65 1 16 XC2V-4 9319 LUTs 116.4 1088 9.349

[8] 1024 64 2 16 XC2V-4 8310/11416/0 165 602 3.65

[8] 1024 64 2 16 XC2V-6 8268/11361 208 602 2.89

[32] 1024 − − − XC2V 11520 slices 111.32 1002 9.0

[31] 2048 129 1 16 XC2V-4 18535 LUTs 116.4 2176 18.698

[32] 2048 − − − XC2V 23108 slices 90.73 1002 11.03

modulus Nj). The product is then separated into two parts ZH and ZL, with 2k · ZH + ZL = qt · Mj,

and both of them are delayed by 2 clock cycles before computation. The carry outs are fed back to the

adders as carry ins in the next clock cycle. In addition, to save one multiplier in some FPGA devices,

such a unit can also be implemented by revising the logic in some PE.

At last, we compute R′
2 = R′

1 +M , and the final result can be covered in two cases:

• If R′
2 < 0, then M −R1 < 0, i.e., R1 > M . In this case, R = R1 −M = −R′

2.

• if R′
2 > 0, then M −R1 > 0, i.e., R1 6 M . In this case, R = R1 = −R′

1.

Since R′
1 = −R1 > −2M > −2n+1, R′

1 can be represented by an (n+ 2)-bit signed number. Also, since

R′
2 = M −R1 ∈ (−M,M], it can be represented by an (n+ 1)-bit signed number.

Finally, the output range will fall between (0,M], and it is a little different from expected bound of

[0,M). However, in cryptographic applications the modulus M is a prime (e.g., ElGamal Cryptography),

or a product of two primes (e.g., RSA cryptography), which makes the disparity negligible. Suppose it

appears that CE mod M = 0, then M |C, however that never occurs if C < M .

5 Hardware implementation

The HSCM, the modular exponentiation units based on HSCM and the CRT-RSA units based on HSCM

have all been described by Verilog HDL, simulated in Modelsim SE 6.2, and synthesized by Synopsys

Synplify Pro 9.6.2 targeting FPGA devices or Design Compiler targeting ASIC gates. All results for

FPGA devices are obtained after placing and routing to Xilinx ISE 10.1. The word ‘Counted’ in the

table denotes the corresponding units those have been counted as ASIC gates in the tatal area.

The hardware implementation of the HSCM is shown in Table 2, where the final result are kept in

[0, 22k+1M).

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:11

Table 3 Modular exponentiation by HSCM without sliding-window method

Reference Length Technology PEs
Digit Word Area RAM Max freq. Time

(bits) (bits) (slices/Luts/Dsps) (Kbits) (MHz) (ms)

This work 1024 0.18 µm CMOS 16 16 16 130K gates Counted 238.10 2.27

This work 1024 0.18 µm CMOS 32 16 16 222K gates Counted 232.56 1.42

This work∗ 1024 0.18 µm CMOS 32 16 16 255K gates Counted 250.0 1.44

This work∗ 1024 XC2V6000-6 32 16 16 6992/8862/64 ∼ 5 185 1.95

This work 1024 XC3S1400A-5 16 16 16 2397/2574/32 ∼ 5 158 3.45

This work 1024 XC2V1000-6 16 16 16 2635/2551/32 ∼ 5 195 2.80

This work 1024 XC2V2000-6 32 16 16 4404/3900/64 ∼ 5 196 1.70

This work 1024 XC4VSX25-10 32 16 16 3833/3865/64 ∼ 5 222 1.50

This work 1024 XC4VSX25-12 32 16 16 3837/3871/64 ∼ 5 280 1.19

This work 2048 0.18 µm CMOS 32 16 16 251K gates Counted 232.56 8.92

This work 2048 XC2V3000-6 32 16 16 5550/6198/64 ∼ 9 190 10.92

This work 2048 XC4VSX25-12 32 16 16 5012/6202/64 ∼ 9 260 7.98

This work 2048 XC4VSX25-12 64 16 16 8913/10714/128 ∼ 9 256.0 4.91

[33] 1024 90 nm CMOS − 32 11.2K gates − 471.70 7.27

[33] 1024 90 nm CMOS − 128 128 150K gates − 421.94 0.67

[12] 1024 XC2V2000-6 16 16 16 −/3825/32 ∼ 5 135.7 5.1

[9] 1024 XC2V6000-6 65 2 16 11611/18789/0 0 161 3.72

[35] 1024 XC4000-9 − 4 − 6633 CLBs/-/0 0 45.6 11.95

[36] 1024 XC2V3000-6 62 17 17 14334/-/62 − 90.11 2.33

Refs. [10, 30] present a radix-2 and radix-4 low-latency designs with similar algorithms and quotient

pipelines. It can be found that for ASIC implementations this work has about the same area overhead

and performance to that in [10], and higher performance than that in [30]. As expected, for FPGA

implementation this work then gets much faster than [10, 30] owing to dedicated multipliers.

The scalable Montgomery modular multipliers in [31] and [8] achieves similar performances to that

in [10, 30] in another low-latency architecture. Also due to dedicated multipliers, this work is faster

than [8, 31] on FPGA platforms.

The Montgomery modular multiplier with [32] does not possess scalable architecture. It uses long carry

save additions to perform interleaved Montgomery algorithm. As is seen from Table 2, this work is faster

than that for both 1024-bit and 2048-bit architectures.

Modular exponentiation based on HSCM without sliding-window method is shown in Table 3. Only a

left-to-right binary method is used, and the exponent is chosen as E = (2/3)× (2n − 1), with n = 1024

or 2048, which enjoys a Hamming weight of 0.5. The modular reduction at last step has been included.

This work with a superscript (*) is with the FA-SPA-Resistant modular exponentiation, which has two

HSCM located parallelly. As a result, its time for modular exponentiation is always about (n+2) ·THSCM,

where THSCM is the time to complete one n-bit Montgomery modular multiplication by HSCM. As was

expected if whole area overhead is considered, then this architecture will be less efficient in terms of

Area×Time than that by sliding-window method. This is a usual tradeoff between performance and

security in cryptosystems.

The modular exponentiation in [33] is performed by a high-radix Montgomery modular multiplier [34],

in which only one central arithmetic unit is employed to calculate the word-based modular multiplication.

While it obtains similar performance and scalability like this work, the combinational area overhead will

soon get much larger in case of very high radix multipliers. As is well-known, a large combinational

circuit will lead to a great increase in power consumption. By contrast, this work does not rely on much

large multipliers, and the combinational and non-combinational circuits keep a more average ratio. In

addition, the area overhead of [33] with Table 3 is only composed of the data path, with register files and

other memory units not taken into account. Finally, as long as FPGA implementations are concerned,

the design in [33] will get inconvenient due to the fixed sizes of DSPs.

In [12], the quotient pipeline is firstly applied in HSCM. As is shown in Table 3, this work completes

1024-bit modular exponentiation in 2.80 ms, which is 82.1% faster than 5.1 ms in [12], where both designs

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:12

Table 4 Modular exponentiation by HSCM and sliding-window method

Reference Length Technology PEs
Digit Word Area RAM Max freq. Cycles Time

(bits) (bits) (Slices/Luts/Dsps) (Kbits) (MHz) (Clock) (ms)

This work 1024 0.18 µm CMOS 16 16 16 159k gates Counted 232.56 454,648 1.95

This work 1024 0.18 µm CMOS 32 16 16 246k gates Counted 232.56 277,140 1.19

This work 2048 0.18 µm CMOS 32 16 16 303k gates Counted 232.56 1,714,940 7.37

This work 1024 XC4VLX15-10 16 16 16 2736/2987/32 12 222 454,648 2.05

This work 1024 XC2V1000-6 16 16 16 3025/2991/32 12 196 454,648 2.32

This work 1024 XC2V3000-6 32 16 16 4777/4317/64 12 192 277,140 1.45

This work 2048 XC2V1000-6 16 16 16 5020/6982/32 24 165 3,066,220 18.58

This work 2048 XC4VSX25-12 16 16 16 4737/6992/32 24 262 3,066,220 11.70

This work 2048 XC2V3000-6 32 16 16 6782/8324/64 24 177 1,714,940 9.69

This work 2048 XC4VSX25-12 32 16 16 6245/8322/64 24 271 1,714,940 6.33

[25] 1024 XC4VFX12-10 17 17 17 3937/−/17 18 400 684,000 1.71

[25] 2048 XC4VFX12-10 17 17 17 3937/−/17 18 400 5,040,000 12.6

employ 16 PEs .

In [9], a centrosymmetric modular exponentiation architecture based on common-multiplicand Mont-

gomery modular multiplication is described. It achieves high performance in terms of time, area and

security. Nevertheless, this work still obtains a significant speedup.

In [35], the high-radix Montgomery modular multiplier is performed in FPGA by precomputation

rather than multiplications. After computing and storing multiple of δ · A, the multiplication of n-bit

operand by 4-bit digits can be implemented by multiplexors in a series of PEs. Owing to much higher

radix of 216 with dedicated multipliers, this work is much faster.

In [36], the modular exponentiations are also performed by quotient pipelined high-radix Montgomery

modular. The architecture still performs serial computation of two partial products, with the multipli-

cations of qi · Nj and bi · Aj are not interleaved. Compared with this work, its performance is greatly

reduced due to a long critical path.

In Table 4, [25] presents a high-performance modular exponentiation unit by the use of FPGA DSPs,

which is faster than this work in the same platform. It is most likely because the design in [25] just

targets the FPGA devices and makes the best use of DSPs. For example, a 16-bit full addition and CSA

in FPGA will be always slower than the dedicated 16-bit multipliers with DSPs. In fact, this problem

directly constrains the circuit frequency in FPGA devices. By contrast, [25] employs a double-edge

triggered circuit to counter this problem, so the highest frequency keeps up with the DSP slice, which

reaches about 400 MHz. As a result, although our proposed circuit should function at a higher frequency

than that in [25] for ASIC implementation, its maximum frequency is more than 30% below that in [25]

in Xilinx IV devices. Other factors like a larger word size and sliding-window size also helps the unit

in [25] faster. It could be considered that the aforementioned problems causes a slowdown of about 40.5%.

Nevertheless, the advantages with [25] will disappear for ASIC implementation.

The CRT-RSA in Table 5 is based on modular exponentiation with sliding-window method. However,

it can be easily extended from the previous modular exponentiation by two parallel HSCMs, if the FA-

SPA-Resistant RSA is required. In this case, one may use sequential CRT-RSA to reduce area overhead.

In Table 5, the CRT-RSA in [35] is performed by two parallel 512-bit Montgomery modular multipliers,

both of which are implemented as radix-16 architectures. The result of CRT-RSA in [32] is obtained by

a few long carry save adders. If it is able to perform a 2048-bit RSA decryption with the same hardware,

then the time delay may be multiplied by a factor of 23, i.e., 2.73× 8 ≈ 21.8 (ms), which is much slower

than this work with the same FPGA device (below 3 ms).

The CRT-RSA in [37] is marked by a large number of memory units, which are not accounted in area

overhead. This work employs 35–70 Kbits of memory units, while the design in [37] instantiates about

1224 kbits of memory units, where Montgomery algorithm in residue number system is applied with

parallel multipliers. Since one bit of memory usually accounts for several ASIC gates, the area overhead

in [37] will be several times larger than this work. As the time delay for 2048-bit CRT-RSA is concerned,

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:13

Table 5 CRT-RSA decryption by different hardware architectures

Reference Length PEs Digit Word Technology Area RAM Max freq. Cycles Time

(bits) (bits) (bits) (Slices/Luts/Dsps) (Kbits) (MHz) (Clock) (ms)

This work 2048 32 16 16 0.18 µm CMOS 395K gates Counted 222.22 455,274 2.05

This work 4096 64 16 16 0.18 µm CMOS 699K gates Counted 222.22 1,724,369 7.76

This work 2048 32 16 16 XC2V6000-6 6645/7098/64 35 177 455,274 2.57

This work 2048 64 16 16 XC2V6000-6 10360/10246/128 35 160 278,496 1.74

This work 4096 32 16 16 XC2V3000-6 10674/15206/64 70 156 3,082,565 19.76

This work 4096 32 16 16 XC4VSX25-12 10162/15184/64 70 260 3,082,565 11.86

This work 4096 64 16 16 XC2V6000-6 14041/17409/128 70 156 1,724,369 11.05

This work 4096 64 16 16 XC4VSX35-12 11727/15013/128 70 252 1,724,369 6.84

This work 4096 128 16 16 XC4VSX55-12 18960/22854/256 70 238 1,045,271 4.69

[35] 1024 4 XC40250XV 6826 slices − 45.6 141,360 3.10

[32] 1024 XC2V6000 26136 slices − 97.08 265,028 2.73

[37] 2048 0.25 µm CMOS 333K gates 1244 80 712,000 8.9

this work is about 4.3 times faster, while the technology may contribute to about 1.4 times (.25/.18).

Therefore, this work is probably more efficient than [37] with respect to the same technology used.

6 Conclusion

This paper gives a brief introduction of the quotient pipelined high-radix Montgomery modular multiplier

in the background of public key cryptography. Then it shows a simple way of reducing the area overhead

and critical path to obtain higher performance. For the reduction after modular exponentiation that is

not considered in the literature before, an easy approximation method is also presented to tackle it. In

addition, the proposed high-radix Montgomery modular multipliers can be applied for FA-SPA-Resistant

modular exponentiation by the Montgomery powering ladder algorithm.

Then following the discussion of CRT-RSA, this paper for the first time demonstrates that the high-

radix scalable Montgomery modular multiplier can be configured for scalable modular reduction and

multiplication, and therefore gets quite suitable for CRT-RSA. In this way, the whole CRT-RSA can

divided into three macro-stages and implemented in just the same hardware. Such a configurable archi-

tecture is very efficient compared with state-of-the-art work in terms of area and time and works at much

lower frequency with about the same Time×Area.

Acknowledgements

This work was partly supported by the National High Technology Research and Development Program of China

(Grant No. 2012AA012402), the Tsinghua National Laboratory for Information Science and Technology (to be

granted in 2015), and the Independent Research and Development Program of Tsinghua University (Grant No.

2011Z05116). The authors would also like to thank the editor and reviewers for their comments. The first author

also appreciates the discussion with Jicheng Lu, Zhimin Zhang and Qing Li, and the technical support from Dong

Zhang, Yulan Fan, Juan Ling and Yeyang Zheng from Shanghai Fudan Microelectronics Group Company.

References

1 Rivest R, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems. Commun

ACM1978, 21: 120–126

2 Koblitz N. Elliptic curve cryptosystems. Math Comp, 1987, 48: 203–209

3 Eisenbarth T, Güneysu T, Heyse S, et al. Microeliece: Mceliece for embedded devices. In: Clavier C, Gaj K, eds.

CHES. 2009, 5747: 49–64

4 Tenca A, Koç Ç K. A scalable architecture for Montgomery multiplication. In: First International Workshop on

Cryptographic Hardware and Embedded Systems, Worcester, USA 1999. 94–108

5 Tenca A, Koç Ç K. A scalable architecture for modular multiplication based on montgomery’s algorithm. IEEE Trans

Comp, 2003, 52: 1215–1221

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:14

6 Montgomery P. Modular multiplication without trial division. Math Comp, 1985, 44: 519–521

7 Orup H. Simplifying quotient determination in high-radix modular multiplication. In: The 12th IEEE Symposium on

Computer Arithmetic, 1995. 193–199

8 Wu T. Improving radix-4 feedforward scalable Montgomery modular multiplier by precomputation and double Booth-

encodings. In: IEEE International Conference on Computer Science and Network Technology, Dalian, 2013. 596–600

9 Wu T, Li S, Liu L. Fast, compact and symmetric modular exponentiation architecture by common-multiplicand

Montgomery modular multiplications. Integ VLSI J, 2013, 46: 323–332

10 Wang S H, Lin W C, Ye J H, et al. Fast scalable radix-4 Montgomery modular multiplier. In: IEEE Symposium on

Circuits and Systems, Seoul, 2012. 3049–3052

11 Kelley K, Harris D. Parallelized very high radix scalable Montgomery multipliers. In: Proc. IEEE 39th Asilomar

Conference on Signals, Systems, and Computers, Asilomar, 2005. 1196–1200

12 Jiang N, Harris D. Quotient pipelined very high radix scalable Montgomery multipliers. In: The 40th Asilomar

Conference on Signals, Systems and Computers, Asilomar, 2006. 1673–1677

13 Quisquater J J, Couvreur C. Fast decipherment algorithm for RSA public-key cryptosystem. Electr Lett, 1982, 18:

905–907

14 Taylor F. Residue arithmetic: A tutorial with examples. Computer, 1984, 17: 50–62

15 Han L, Wang X, Xu G. On an attack on rsa with small crt-exponents. Sci China Inf Sci, 2010, 53: 1511–1518

16 Fournaris A. Fault and simple power attack resistant RSA using Montgomery modular multiplication. In: IEEE

Symposium on Circuits and Systems, Paris, 2010. 1875–1878

17 Giraud C. An RSA implementation resistant to fault attacks and to simple power analysis. IEEE Trans Comp, 2006,

55: 1116–1120

18 Joye M, Yen S. The montgomery powering ladder. In: International Workshop on Cryptographic Hardware and

Embedded Systems. Lect Notes Comp Sci, 2002. 2523: 291–302

19 Shand M, Vuillemin J. Fast implementations of RSA cryptography. In: The 11th IEEE Symposium on Computer

Arithmetic, Windsor, 1993. 252–259

20 Tenca A, Todorov G, Koç Ç K. High-radix design of a scalable modular multiplier. In: Koc C, Naccache D, Paar C,

eds. Third International Workshop on Cryptographic Hardware and Embedded Systems (CHES 2001). Lect Notes

Comp Sci, 2001, 2162: 185–201

21 Amberg P, Pinckney N, Harris D. Parallel high-radix Montgomery multipliers. In: 42nd Asilomar Conference on

Signals, Systems and Computers, Asilomar, 2008. 772–776

22 Walter C. Montgomery exponentiation needs no final subtractions. Electr Lett, 1999, 35: 1831–1832

23 Wu T, Li S, Liu L. A two-stage pipelined architecture for parallel modular exponentiation. In: International Conference

on Information Science and Technology, Wuhan, 2012. 215–218

24 Koç Ç K. Analysis of sliding window techniques for exponentiation. Comp Math Appl, 1995, 30: 17–24

25 Suzuki D. How to maximize the potential of FPGA resources for modular exponentiation. In: International Workshop

on Cryptographic Hardware and Embedded Systems (CHES). Lect Notes Comp Sci, 2007, 4727: 272–288

26 Oh J, Moon S. Modular multiplication method. IEEE Proc Comp Digital Tech, 1998, 145: 317–318

27 Su C, Hwang S, Chen P, et al. An improved Montgomery’s algorithm for high-speed rsa public-key cryptosystem.

IEEE Trans VLSI Syst, 1999, 7: 280–284

28 Senturk A, Gok M. Pipelined large multiplier designs on FPGAs. In: 15th Euromicro Conference on Digital System

Design (DSD), 2012. 809–814

29 Dhem J, Joye M, Quisquater J. Normalisation in diminished-radix modulus transformation. Electr Lett, 1997, 33:

1931

30 Shieh M D, Lin W C. Word-based Montgomery modular multiplication algorithm for low-latency scalable architectures.

IEEE Trans Comp, 2010, 59: 1145–1151

31 Huang M, Gaj K, El-Ghazawi T. New hardware architecture for Montgomery modular multiplication algorithm. IEEE

Trans Comp, 2011, 60: 923–936

32 McIvor C, McLoone M, McCanny J. Modified Montgomery modular multiplication and RSA exponentiation techniques.

IEEE Proc Comp Digital Tech, 2004, 151: 402–408

33 Miyamoto A, Homma N, Aoki T, et al. Systematic design of RSA processors based on high-radix Montgomery

multipliers. IEEE Trans VLSI Syst, 2011, 19: 1136–1146

34 Koç Ç K, Acar T, Kaliski B S. Analyzing and comparing Montgomery multiplication algorithms. IEEE Micro, 1996,

16: 26–33

35 Blum T, Paar C. High-radix Montgomery modular exponentiation on reconfigurable hardware. IEEE Trans Comp,

2001, 50: 759–764

36 Tang S, Tsui K, Leong P. Modular exponentiation using parallel multipliers. In: Proc. IEEE International Conference

on Field-Programmable Technology, Tokyo, 2003. 52–59

37 Nozaki H, Motoyama M, Shimbo A, et al. Implementation of RSA algorithm based on RNS Montgomery modular

multiplication. In: Third International Workshop on Cryptographic Hardware and Embedded Systems. Lect Notes

Comp Sci, 2001, 2162: 364–376

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:15

Appendix A Modular exponentiation algorithm with sliding-window method

Algorithm A1 Sliding window method for modular exponentiation

Require: C, M , E are all n-bit number, E =
∑m−1

i=0 Ei, Ei ∈ [0, 2k), Em−1 6= 0, n = k ·m. Precompute C2j+1 = C2j+1

for j = 0, 1, . . . , 2k−1 − 1.

Ensure: Z = CE(mod M).

1: S := C;

2: h = ⌊log2 Em−1⌋+ 1

3: if GCD(Em−1, 2k) = 2t then

4: S := S2h−t
mod M ;

5: S := S · CEm−1/2
t mod M ;

6: if t > 1 then

7: S := S2t mod M ;

8: end if

9: end if

10: for i = m− 2 downto 0 do

11: if Ei = 0 then

12: S := S2k mod M ;

13: else if GCD(Ei, 2
k) = 2t then

14: S := S2k−t
mod M ;

15: S := S · CEi/2
t mod M ;

16: if t > 1 then

17: S := S2t mod M ;

18: end if

19: end if

20: end for

21: return Z = S.

PE 1 PE i PE L

FIFO

A

N

M
U
X

S j

B

1

Reduction

output
R∙C

g
 mod M,

g=1, 3, 5, 7, 9, 11, ...M
U
X

C

M
U
X

R3 mod M

Figure A1 Modular exponentiation by sliding window method and Montgomery modular multiplications.

The system for modular exponentiation is shown in Algorithm A1 and Figure A1, which computes Ck mod M by sliding

window method and HSCMs.

Appendix B Modular reduction of multiprecision integers by approximation

Suppose X is an n1-bit number, and Y is an n2-bit number, with n1 > n2. In this work, n1 = 1057, n2 = 1024. Firstly,

we substitute floating numbers for X and Y , i.e., x = 2−n0X = x1 + δ1 < 2n1−n0 , y = 2−n0Y = y1 + δ2 < 2n2−n0 , where

x1 = ⌊x⌋, y1 = ⌊y⌋, δ1 ∈ [0, 1), and δ2 ∈ [0, 1). Furthermore, set t = n2 − n0, and n1 − n0 = (2t − h), with h > 3. For

example, we have set t = 36, h = 3 and n0 = 988 for this work. Figure B1 illustrates the substitution of x1 : y1 for x : y.

Then, set

q =

⌊

X

Y

⌋

=

⌊

x

y

⌋

=

⌊

x1 + δ1

y1 + δ2

⌋

, (B1)

Wu T, et al. Sci China Inf Sci June 2015 Vol. 58 062401:16

x

x1

y

y1

Figure B1 Approximate x/y by truncation.

Algorithm B1 Simple division

Require: P := x1 − 1 < 2t, U := y1 + 1 < 22t−h.

Ensure: Q = ⌊U/P ⌋.

1: Q = (qt−h · · · q1q0)2 = qt−h..0 := (0 · · · 00)2, T := u2t−h−1..t−h+1;

2: for i = t− h downto 0 do

3: C = 2T + ui, C′ = C − P ;

4: if C′ < 0 then

5: qi := 0, T := C;

6: else

7: qi = 1, T := C′;

8: end if

9: end for

10: return qt−h..0.

and

q1 =

⌊

x1 − 1

y1 + 1

⌋

. (B2)

According to Eq. (B2), q1 can be calculated by simple division, as is shown in Algorithm B1. In Algorithm B1, qi denotes

the i-th bit of Q, and they are obtained bit by bit through t-bit subtractions. The expression of 2T + ui can be seemed as

a concatenation of ui after T .

On the one hand, since
⌊

x

y

⌋

=

⌊

x1 + δ1

y1 + δ2

⌋

>

⌊

x1 − 1

y1 + 1

⌋

,

there is

q > q1. (B3)

On the other hand, there are 22t−h−1 6 x1 < 22t−h, 2t−1 6 y1 < 2t, h > 3, so

y21 > 22t−2 = 2 · 22t−3
> 2 · 22t−h > 2x1. (B4)

Meanwhile, there is

0 < ∆ =
x1 + δ1

y1 + δ2
−

x1 − 1

y1 + 1

<
x1 + 1

y1
−

x1 − 1

y1 + 1
=

x1 + 2y1 + 1

y1(y1 + 1)

<
y21 + 4y1 + 2

2y1(y1 + 1)
<

y21 + 4y1 + 3

2y1(y1 + 1)
=

y1 + 3

2y1

< 2−1 + 22−t = 2−1 + 2−34 < 1. (B5)

In the above relation, Eq. (B4) has already been used. Now, we have

q =

⌊

x1 + δ1

y1 + δ2

⌋

=

⌊

x1 − 1

y1 + 1
+∆

⌋

6

⌊

x1 − 1

y1 + 1
+ 1

⌋

6

⌊

x1 − 1

y1 + 1

⌋

+ 1

= q1 + 1. (B6)

Based on Eq. (B3) and (B6), there is

q − 1 6 q1 6 q. (B7)

As a result, X mod Y = r ≡ r1 = X − q1 · Y (mod Y), with r1 = r or r1 = r + Y . In order to determine the accurate

residue, one should further judge whether r1 is larger than Y .

