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Abstract Let L/F,(T) be a tame abelian extension of type (I, /,-'1). The ratio of the degree zero
divisor cass number (as well as the ideal dass number) of L to the product of corresponding dass numbers
of all cydic subfields of L is dearly determined.
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Among the number theorists, there are incessant efforts to clarify the class groups and the
class numbers of the algebraic number fields, which have presented a large quantity of unsolved
problems. In algebraic function fields, concerning the same sort of problems, a lot of work has
been done. Around 1974, Hayes' successfully established the reciprocity law over k=F (T),
the rational function field of one variable over finite constant fields F,, where g is a power
of a prime number p. In fact, he constructed the maximal abelian extension of k, using the
so-called cyclotomic function fields. In this paper, our interest lies in a special type of abelian
field L over k, whose Galois group Gal(L/k)=(Z/lZ)", where [ is a different prime from p.
Such L over k is called nfold of type (I, I, -=-, I). We first give the definitions of the class
numbers. For any field extension L/k, let S be the set of infinite primes of K lying over the

unique infinite prime o =(LT) of k. Let Z be the group generated by the primes of K outside

of S (thus < is the group of fractional ideals of K), and let Z(K) 2%K), #(K)and Z be the
groups generated by the divisors of K, the degree zero divisors of K, the principal divisor of K
and the finite parts of the principal divisors of K, respectively. Let R=F [T] and O, be the
integral closure of R in K Then, conventionally, h(K)=|2Z%YK)/#(K)| and h(0,) =|Z/Z| are
called the class number of degree zero divisors and the ideal class number, respectively. Finally,
we set
wK)=g.c.d. {degp:pES} m

and the regulator

R(K)=(2%K) () 2(S): FK))2(S)), )
where Z(S) is the group generated by divisors in S. From the exact sequence

LB 2ES) | 2%K) fmpn G ode Z
2Kz  HK 2 W(K)Z
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we have

h(K)u(K) =h(O)R(K). )

Now, Let L/k be ndold of type (I, I,*:, ). When n=1, the only cydic subfields are L and
k, so we assume n=>2 throughout this paper. Since constant field extensions are cydic, it is
easy to see that L/k is tame (i. e. all primes are tamely ramified) iff /# p, which we also assume
unless we point out otherwise.

1 I-functions
It is well known” that for any finite extension K/k, the {function defined by

(K= JTI (A-NPH"' (Re(s)>1)

B: K-prime
can be expressed by

___Fw
UK, 9= =t e @

where u=q~* and F,(u) is a polynomial in # such that F,(1)=h(K). So, to establish the class

number relations between L and its cyclic subfields, we begin by revealing a relation between
their {functions.

Proposition 1. Let L/k be a tame n-fold of type (I, -, ), and let {K:vE®D} be the set of
cyclic subfields of L. Then we have

L9 _p LKy )
Uk, s) veo ((k, s)

To prove this proposition, we need a complete description of the decomposition of every
prime in L/k, which we will obtain in the next section. .

2 Prime decomposion in L/k

Let ¢ be a primitive [4h root of unity and y a fixed generator of F;. If {€F, then
there exist m,,*',m €R=m,€R=F[T], such that L=k(/m,, ", {/m,). Let R,={a€R\{0}: a
has no [-th power factor in R\F, and the leading coefficient of a is y for some i such that
0<isI—1}. Then we can assume mER, without loss of generality. Define

2. ={(e, ", ) 0seg<I—1}, )
and an equivalence relation in £2=2\{(0, ---, 0)} as follows: for any (e, -, ¢) and (f], "y
e,
(el’ T en)~(f]$-..’fu)
&die{l, -+, 1-1} such that e;=if, (mod I) for all 1<j<n.

We define the projective space of €2 by
P)=027/~ . (6)
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For any v=(e, -, ¢)€E, we select the unique element m€R, so that
bm,=[|m" for some beR. )
i=1

For any k-prime P, we define a symbol (_j';) as follows:

1 if P splits in k(/m),
m . e
(—P-')= 0 if P ramifies in k(}/ m),
n if pm)en'H, 1<i<I—1,

where p:R — (R/(P))=G is a canonical map, n is a generator of G* and H={g"g€G"} (if P=

(LT) is the infinite prime, we set G=IF,, 7=y and p(m) as the leading coefficient of m). It is ele-

mentary to prove that (-}5—) is multiplicative, and there exist v, v,€ @ such that L=k(/m, ,

{/"m:) with (( ';"' ) ( '; )) being one of the following four types:

C% @, 1, 0 Ch(m, 1, 1), C:O, 1, 1) C:(@n,1, 1.

If v, ", v,€4, have been chosen as above, then we say L=k(/m,, -, {/m,) is standard.
If there are exactly a (respectively b, c) cyclic subfields of L such that P splits (respectively
is inert, ramified) in them, then we condense this information by Sp(L, P)=1%°0".

Lemma 1. Let L be the same as in Proposition 1, L'=L(E) and k'=K¢). For any k-prime
P, let D be a k'-prime lying over P. We further take m,, ‘-, m,€F ({)[T] such that L' =
k'=({/;l, i {/;n) is standard. Then, according to the decomposition of P in L, L can be
divided into four classes as shown in table 1, where t,=('—1)/(I—1), and g, e and [ denote
the splitting degree, the ramification index and the residue class degree, respectively.

Table 1
Type ((%) (l;-) (ip"—)) Sp(L, P)=Sp(L’, p) log(g, ¢, f)
o (a1 -1 1™ . (n, 0, 0)
c (1, 1) 1=ty ! (n=1,1, 0)
c? © 1, - 1) 1n-igf” X (n=1,0, 1)
- a—1
c? © g, 1, = 1) 1=t o (n-2,1, 1)

Proof. If the I-th root of unity £¢k, then (€F-1 by Fermat’s little theorem. Thus [K"
k) divides I—1 which is prime to /. Hence Sp(L, P)=Sp(L’, p) since all of g, ¢ and f are
powers of I. Moreover, we have: for any L-prime 8 and L-prime " over P and p respectively,
g(B/Py=g(B'/v), f(B/P)=f(B'/p) and e(P/P)=e(P'/p). Thus, to prove the lemma, we can
assume <€k without loss of generality. The rest of the proof is easy, and the readers may
refer to ref.[3] and its references. This concludes our proof of the lemma.
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Proof of Proposition 1. We only need to check the Euler factors for any k-prime P. Let
u=q°, d=degP, then we have

. »”

(- if (L, P) €C°,
A= 0 pec
ng(l—N?B") _ 1—i° &, P) >
1-NP™* Q-7 i (@, P) e
n—2
where B is L-prime over P. And using the preceding lemma we can compute
(=)= -y if (L, P) €C°,
NG, [ 1 " _a=eyt |
T nv.w(l“N‘B._‘): (=) ( 1-4 11— if (L, P) &C',
=5 n—
we  1-N (o R T (B if (L, P) €C?,
- 1-2\"_ (=)™
5 (=)D (1_“,) =(lf?., if (L, P) €C,
where P, is K-prime over P. Thus
[lg (1 -NB™) 1 [T5:0=NB,™)
1-NP~* =0 1—NP~*
for any k-prime P, and Proposition 1 follows at once.
Remark 1. For any finite set S of k-primes viewed as infinite primes, let S(K) be the set
of Kprimes over S for any finite extension K/k. Define
U0w 9= TT A=NEH" Re(9>1).
BESK)
By the proof of Proposition 1, we also have
{0 3) _ {0k, )
{©p 5) ws O )
For any finite extension K/k, let V(K) be the free part of the group of unit of K
x Proposition 2. Let L/K be n-fold of type (I, I, -, I) (here we allow l=p). Let Q=(WL).

H,E,V(Kn)) be the unit index. Then

Qlf(ﬂ' ()~ 1),

where g(®) is the splitting degree of 00:(—;,—) in L.
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Proof. If n=1, then we have nothing to prove since Q=1. Suppose n=2, and o, o€
Gal(L/k) such that {o,, 0,)=(Z/IZf. Let L,and L, (1<i<I—1) be the fixed fields of &, and
0io,, respectively, and let E; be the group of units of L, (1<i<[). For any units  of L, we
have
= nEi=o Li(gig y _ [Tz dehen’y |

no-oligia)  yEd Tileien)

Clearly, n=0¢“i’eE for 0<i<I—~1 since they are fixed by d'c,. For any fixed i, j such that
0<i</—1, and 1<j<I-1, there exists a unique i’ with 0<i’ </—1 such that

j+1=i’j (mod].
Thus _
,,zi:&z}_:k«‘.«»g o, (n%%i= (¢i0,) ) EE,
and consequently '€ [/ E. When n=2, {L;: 0<i<I} is the set of cyclic subfields of L. By
Dirichlet Unit Theorem V(L)=Z°“"' and Propositon 2 are true in this case.

Assume that if L is (n—1)-fold of type (, 1, -, I), then #" €] LeoV(K) for any n€V(L).
Now, let L/k be an extension of n-fold of type (I, [, ==, ). Then {L:0<i<I1} are the set of
subextensions of (n—1)-fold of type (I, I, -, I), and we have shown that y'€[].,E' for
any unit 7 of L. By inductive assumption, we have

" =(,,:):"-EE£! VIK,).
Thus, Proposition 2 follows from the Dirichlet Unit Theorem.

Remark 2. The above result is also true when L is nfold of type (I, I---, {) over rational
number field Q. To prove this, one can follow our proof word for word.

Main Theorem. Let L be a tame Galois extension of k with Galois group G(L/k)=(Z/1Z).
Let {K,: vE®} be the set of all cyclic subfields of L. Then we have

HL)=TIA(K) ®)
hop=0r" [1hOy), O

where t= %I:(—I—_IT +2n-—l-—1)(1*-1)—-1:|, A=log,g(®), Q and g(©) are the same as in
Proposition 2.
Proof. By eq.(4) and Proposition 1, we get

F L(u) — qu(u)
Fu) s Ffu)

Since F(1)=1 and F(1)=h(K) for any finite extension of K/k, eq.(8) follows immediately. By

2
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eq.(3) this gives rise to
hOp)=uL)RL)™ ’]:[. [A(Ox) WK)™'R(K)). (10)

As in Lemma 1 let L'=k'¢/m, ‘-, </m,) be standard for some k“prime P over ©©. Reversing
the order of m,, -, m, we may assume that the splitting field of p in L' is L' =k'/m, ‘-,
/my), where A=log,g(<0) and () is as in Propositon 2. Let r=1" r,= "E‘ll" n=r—1,L*=
- L'*(\L, £, and P(f2) as defined in (5) and (6). We may choose v, ‘", v, in £, as a set of
representatives of projective space P(£2) such that v,=(0, ---, 0, 1, 0, ---, 0) with 1 at the i<th
coordinate of 1<i<Ai. In the following we view P,={p€P(2): 1<i<ry} as an orderd set.

For any a€&={1, -, -1} and v=(e, ", ¢) €L, we define av={(e}, ", ;) €02, such that
e/ = ae,(mod ) for 1<i<A Next, we define two more ordered sets 2' and £’ as follows:

Q2'=0Q: Put v, in order where i runs from 1 to r, Then after each v, insert /—2 elements
jv, where j runs from 2 to I-1.

2*=(: Put y, in order as above. After each v, insert /—2 elements j 'v, where j runs
from 2 to I—1. Here, by j~' we mean the unique number in & such that j~j=1 (mod [).

Note that 2‘=0Q*=0Q as sets, but they may be different as ordered sets.

Now, let £ be an Ith root of unity in the algebraic dosure of F,, k'=k'({) and L' =k’
m, -, Ym,). Let 6/€Gal(L’* k), 1<i<Ai, such that

oO=¢ o/ m)=¢"(/m), 1<j<A,
where J, ;is the Kronecker symbol. Then, for any u=(e, *",e)€42, we write
o/ = jIf[l(f.:r,.')".
Now we give an inner product on £2; with images in &U{0}: for any u=(e, &), v=(f,,
=, f)EQR,, define

@U{O}Gu-v=geiﬂ (mod ).

For any m, defined as eq.(7), we see that 0, ({/m)=¢"({/m,), and o(()=¢. Seto,=o]|L’'€

Gal(L*/k). Then it is easy to check that Gal(L*/k)=<a,) X ‘-~ X{0,>, and for any v, V'€

such that veu=v"+ u we have

Gp'lx,z' aulK‘, = G'.:[x,,s (1)

where K, =k'({/m) L. Also :
0|k, =idu- v=0, Yu, veQ,. amn

Let {n, v€L’} be a system of fundamental units of L, and let {K; v€P,} be the set of
real cydic subfields of L (also of L*). For each v€P,, let {¢,,: x€3) be a system of fund:-
mental units of K, and then put all of them into an ordered set {¢; vE€£2?. Let «, be an L-
prime over © and e=e(%,/©) the ramification index. Then for any K -prime p, over <,
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dividing 0, we have e(,/p,) = e. Denote the additive valuations corresponding to a,'())
o,'(©)) and p, by w/ and w,, respectively. Then by definition

(n e H detfw (&)

0= | Ceved || Gettmitnol|

By definition of the regulator (see eq.(2)) we have

R(L)=\det[w,(n,)]= Q" '[detiw,(0.£)]| = Q ~'|det[ord. (a,¢)]|

=Q'|det[eord, (0,e)]l =Qe"|det[w,(0,6)]|ucat, ver]
=Q"e"|det[w,(0,6.)) e0, uea?]- (13)

For any u€P,, set
ﬁuzlwu(aj"u)]jeg’ %ur'[wu(ain‘ejalu)]gjeﬁ'
Let

A =[0(0.8)]ca, uer?- (14)
In the above matrices, i and v are indices for rows, j and u are indices for columns. Let
eq.(11) for every fixed u and any v such that v+ u=1, %, are all equal, which we denote by
,. By the definition of the regulator, R(K,)=|det%Z|. In what follows, we will omit the symbols
for absolute value and only consider the equations up to signs. In order to compute det._#;

we set
L B B L, B,
0 -1
a= | - | o | (15)
: “"{ : "9?':["@: _"@u Iu.UEPA
0 -1

where we get the equation by carrying out the following operations on the first determi-
ant: Ist rowX(—1)+other rows. Since Ny ,(¢)=1, adding all rows but the first, we get a row

p-v ~rvg, - ~I‘ﬁu,o]. (16)
In obtaining eq. (16), we use the following elementary result which can be found in reference [4].

Lemma 2. For any fixed v€EQR], x+v=0 has I""'—1 solutions in 2. If €S, then x*v=a
has 1*™" solutions in Q.

Adding eq. (16) to {*X(Ist row) we can get
det#=A=I"det B, B=[R" ~ H],.rer. 17

where u is the index of columns, and v the index of rows. For each u€P,, let % denote the I 1
columns of ¢ corresponding to u. By eq.(11), we can permute the rows of .Z so that the

result is
[(1 =8 0. NP, — B0 e, -

This operation on .# is called u4rans. Under u4rans, the element of .# at the (iv, j 'u)-th
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position remains fixed if ¥+ v=0 or moves to the (i(u-v)v, j 'u)-th position by egs. (12)
and (11). Now, viewing det(#,—. %) as an element, we can bring it outside of det % and the
element at the (i(u* v)v, j 'u)-th position of the remaining matrix is 4., , Then, taking
the inverse transformation of u<drans, we sce that except for the /—1 columns corresponding
to u€P,, the other columns remain the same as those before we take u-trans while the (iv, j ~'w)-th
element becomes 4,,.,,. Going through the above procedures for each u€P, we amive at

det F=det. [] det(Z—A), (18)

uEP;

‘-Mz[éu-n,l]usﬂz, vEHX‘
Set &' =(b,,), where " is the transposition of o Then

b= 2;‘5,_,,.16,.“‘1=#{w€.()1: usw=vew=l1}
we ]
If u=v, then b,=1""" from Lemma 2. If u=jv for some jé& and j#1, then b,,=0. Wheni=1,
b,,=0 for u#v. When 4122, we set u=(e, -, ¢) and v=(f;, -, f)). then u#jv for all j€S
iff there exist i#j and 1<i, j<A such that ef 5kef, (mod /), and therefore b, ,=!*2 by
an easy computation. thus

I.E - E
E Ul - E

deto?=detalar' =142 P (19
E E 1

where I is the unit matrix of rank /-1, and each entry of E is 1. It is not difficult to com-
pute det & by elementary transformations and to find

det_jx’z — fr] (J.— Til:l—)h'(‘ (20)
Since Ng,(e)=1, we get
det(#,— £))=Idet £ =IR(K). (#2))

From egs. (13)—(21), we have

-1

P R

wEP(@;)

R(L)=Q-1e"1?[(
But for imaginary field K over k (i.e. © does not split in K), R(KK)=1. So we get
R(L)=Q-'e~ﬁ[('_-l" ““)"“]H‘R(K,). )

From eq.(1) and e=e(%,/0) we have
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1 if (L, c'yc?,
#(L)"H#(K.F{ (L, <) el @3)
ved I if (L, %) EC’UC3,

and

dl:{ 1 if (L, ®)ec’UC!, 4)

" if (L, ©)eC?UC,

Combining egs. (8), (18)—(20), we can obtain desired equation (9) at last. This completes our
proof of Main Theorem.

Remark 3. When [=2, our Main Theorem is stated as in the author’s another paper
(Th. 6 of Chap. IV)".

Corollary 1. For any tame abelian extension L/k of type (I, I, -, [), where | is a prime, the
ratio h(0)/ l_[,“h(OKo) is an l-power, where {K :v€®} is the set of all cyclic subfields of L.

Proof We only need to show that Q is an [-power, which readily follows from
Proposition 2.

Added note in Proof. There is a gap in the poof of Main Theorem: If K/k has a con-
stant field extension, then we need to replace u by ' in eq. (4). But since constant field
extension is cyclic, there is only one cyclic constant field subextension of L of degree [ in
Main Theorem if L contains a constant field extension. Then it is easy to see that eq.(8) is
also true.
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