こと コード・コート サンアン・・ ## Class number relation between type (l, l, \dots, l) function fields over $\mathbb{F}_{\sigma}(T)$ and their subfields* ZHAO Jianqiang (赵健强)** (Department of Mathematics, University of Science and Technology of China, Hefei 230026, China) Received January 6, 1994 Abstract Let $L/\mathbb{F}_q(T)$ be a tame abelian extension of type $(l, l, \dots l)$. The ratio of the degree zero divisor class number (as well as the ideal class number) of L to the product of corresponding class numbers of all cyclic subfields of L is clearly determined. Keywords: function field, class number, prime decomposition, ζ-function. Among the number theorists, there are incessant efforts to clarify the class groups and the class numbers of the algebraic number fields, which have presented a large quantity of unsolved problems. In algebraic function fields, concerning the same sort of problems, a lot of work has been done. Around 1974, Hayes^[1] successfully established the reciprocity law over $k = \mathbb{F}_a(T)$, the rational function field of one variable over finite constant fields \mathbb{F}_q , where q is a power of a prime number p. In fact, he constructed the maximal abelian extension of k, using the so-called cyclotomic function fields. In this paper, our interest lies in a special type of abelian field L over k, whose Galois group $Gal(L/k) \cong (\mathbb{Z}/l\mathbb{Z})^n$, where l is a different prime from p. Such L over k is called n-fold of type (l, l, \dots, l) . We first give the definitions of the class numbers. For any field extension L/k, let S be the set of infinite primes of K lying over the unique infinite prime $\infty = \left(\frac{1}{T}\right)$ of k. Let \mathcal{D}_s be the group generated by the primes of K outside of S (thus \mathcal{D}_s is the group of fractional ideals of K), and let $\mathcal{D}(K)\mathcal{D}^0(K)$, $\mathcal{F}(K)$ and \mathcal{F}_s be the groups generated by the divisors of K, the degree zero divisors of K, the principal divisor of K and the finite parts of the principal divisors of K, respectively. Let $R = \mathbb{F}_a[T]$ and O_k be the integral closure of R in K. Then, conventionally, $h(K) = |\mathcal{D}^0(K)/\mathcal{P}(K)|$ and $h(O_K) = |\mathcal{D}_S/\mathcal{P}_S|$ are called the class number of degree zero divisors and the ideal class number, respectively. Finally, we set $$\mu(K) = g. c. d. \{ \deg \mathfrak{p} : \mathfrak{p} \in S \}$$ (1) and the regulator $$R(K) = (\mathcal{D}^{0}(K) \cap \mathcal{D}(S): \mathcal{P}(K) \cap \mathcal{D}(S)), \tag{2}$$ where $\mathcal{D}(S)$ is the group generated by divisors in S. From the exact sequence $$0 \to \frac{\mathcal{D}^0(K) \cap \mathcal{D}(S)}{\mathcal{P}(K) \cap \mathcal{D}(S)} \to \frac{\mathcal{D}^0(K)}{\mathcal{P}(K)} \xrightarrow{\text{fin. part}} \frac{\mathcal{D}_s}{\mathcal{P}_s} \xrightarrow{\text{deg}} \frac{\mathbb{Z}}{\mu(K)\mathbb{Z}} \to 0$$ ^{*} This work was done at USTC when the author was a graduate student in a special program of Nankai University. ^{**} Current address: Department of Mathematics, Brown University, Providence RI02912, USA. we have $$h(K)\mu(K) = h(O_K)R(K). \tag{3}$$ Now, Let L/k be n-fold of type (l, l, \dots, l) . When n=1, the only cyclic subfields are L and k, so we assume $n \ge 2$ throughout this paper. Since constant field extensions are cyclic, it is easy to see that L/k is tame (i. e. all primes are tamely ramified) iff $l \ne p$, which we also assume unless we point out otherwise. ## 1 ζ-functions It is well known^[2] that for any finite extension K/k, the ζ -function defined by $$\zeta(K, s) = \prod_{\mathfrak{B}: K-prime} (1 - N\mathfrak{P}^{-s})^{-1} \qquad (Re(s) > 1)$$ can be expressed by $$\zeta(K, s) = \frac{F_K(u)}{(1-u)(1-qu)},$$ (4) where $u=q^{-s}$ and $F_K(u)$ is a polynomial in u such that $F_K(1)=h(K)$. So, to establish the class number relations between L and its cyclic subfields, we begin by revealing a relation between their ζ -functions. **Proposition 1.** Let L/k be a tame n-fold of type (l, \dots, l) , and let $\{K_v : v \in \Phi\}$ be the set of cyclic subfields of L. Then we have $$\frac{\zeta(L, s)}{\zeta(k, s)} = \prod_{v \in \Phi} \frac{\zeta(K_v, s)}{\zeta(k, s)}.$$ To prove this proposition, we need a complete description of the decomposition of every prime in L/k, which we will obtain in the next section. ### 2 Prime decomposion in L/k Let ξ be a primitive l-th root of unity and γ a fixed generator of \mathbb{F}_q^{\times} . If $\xi \in \mathbb{F}_q$, then there exist $m_1, \dots, m_n \in \mathbb{R} = m_n \in R = \mathbb{F}_q[T]$, such that $L = k(\sqrt[l]{m_1}, \dots, \sqrt[l]{m_n})$. Let $R_1 = \{a \in R \setminus \{0\}: a \text{ has no } l$ -th power factor in $R \setminus \mathbb{F}_q$ and the leading coefficient of a is γ' for some i such that $0 \le i \le l-1$. Then we can assume $m_i \in R_1$ without loss of generality. Define $$\Omega_n = \{ (e_1, \dots, e_n): 0 \le e_i \le l - 1 \},$$ (5) and an equivalence relation in $\Omega_n^{\times} = \Omega_n \setminus \{(0, \dots, 0)\}$ as follows: for any (e_1, \dots, e_n) and $(f_1, \dots, f_n) \in \Omega_n^{\times}$, $$(e_1, \dots, e_n) \sim (f_1, \dots, f_n)$$ $\Leftrightarrow \exists i \in \{1, \dots, l-1\} \text{ such that } e_j = if_j \pmod{l} \text{ for all } 1 \le j \le n.$ We define the projective space of Ω_n by $$P(\Omega_n) = \Omega_n^{\times} / \sim . \tag{6}$$ For any $v=(e_1, \dots, e_n) \in \Omega_n^{\times}$, we select the unique element $m_v \in R_1$ so that $$b^{l}m_{v} = \prod_{i=1}^{n} m_{i}^{e_{i}} \quad \text{for some } b \in R.$$ For any k-prime P, we define a symbol $\left(\frac{1}{P}\right)$ as follows: $$\left(\frac{m}{P}\right) = \begin{cases} 1 & \text{if } P \text{ splits in } k(\sqrt[l]{m}), \\ 0 & \text{if } P \text{ ramifies in } k(\sqrt[l]{m}), \\ \eta^i & \text{if } \rho(m) \in \eta^i H, \ 1 \le i \le l-1 \end{cases}$$ where $\rho: R \to (R/(P)) = G$ is a canonical map, η is a generator of G^{\times} and $H = \{g^{!}: g \in G^{\times}\}$ (if $P = \left(\frac{1}{T}\right)$ is the infinite prime, we set $G = \mathbb{F}_q$, $\eta = \gamma$ and $\rho(m)$ as the leading coefficient of m). It is elementary to prove that $\left(\frac{1}{P}\right)$ is multiplicative, and there exist $v_1 \cdots, v_n \in \Omega_n$ such that $L = k(\sqrt[l]{m_{v_1}}, \cdots, \sqrt[l]{m_{v_n}})$ with $\left(\left(\frac{m_{v_1}}{P}\right), \cdots, \left(\frac{m_{v_n}}{P}\right)\right)$ being one of the following four types: $$C^0$$: (1, 1, ..., 1); C^1 : (η , 1, ...,1); C^2 : (0, 1, ..., 1); C^3 : (0, η , 1, ...,1). If $v_1, \dots, v_n \in \Omega_n$ have been chosen as above, then we say $L = k(\sqrt[l]{m_{v_1}}, \dots, \sqrt[l]{m_{v_n}})$ is standard. If there are exactly a (respectively b, c) cyclic subfields of L such that P splits (respectively is inert, ramified) in them, then we condense this information by $Sp(L, P) = 1^a \eta^b 0^c$. **Lemma 1.** Let L be the same as in Proposition 1, $L' = L(\xi)$ and $k' = k(\xi)$. For any k-prime P, let \mathfrak{P} be a k'-prime lying over P. We further take $m_1, \dots, m_n \in \mathbb{F}_q(\xi)[T]$ such that $L' = k' = (\sqrt[l]{m_v}, \dots, \sqrt[l]{m_n})$ is standard. Then, according to the decomposition of P in L, L can be divided into four classes as shown in table 1, where $\tau_i = (l^i - 1)/(l - 1)$, and g, e and f denote the splitting degree, the ramification index and the residue class degree, respectively. Table 1 | Туре | $\left(\left(\frac{m_1}{P}\right), \left(\frac{m_2}{P}\right), \cdots, \left(\frac{m_n}{P}\right)\right)$ | $\operatorname{Sp}(L, P) = \operatorname{Sp}(L', p)$ | $\log(g, e, f)$ | |--------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------| | C^0 | (1, 1,, 1) | 1,7 | (n, 0, 0) | | $C^{\mathfrak{l}}$ | $(\eta, 1, \cdots, 1)$ | $1^{\tau_{n-1}}\eta^{n-1}$ | (n-1, 1, 0) | | C^2 | (0, 1, …, 1) | $1^{\tau_{n-1}}O^{t^{n-1}}$ | (n-1, 0, 1) | | C^3 | $(0, \eta, 1, \cdots, 1)$ | $1^{\pi n-2} \eta^{l^{n-2}} 0^{l^{n-1}}$ | (n-2, 1, 1) | **Proof.** If the *l*-th root of unity $\xi \notin k$, then $\xi \in \mathbb{F}_q^{k-1}$ by Fermat's little theorem. Thus [k': k] divides l-1 which is prime to l. Hence $\operatorname{Sp}(L, P) = \operatorname{Sp}(L', \mathfrak{p})$ since all of g, e and f are powers of l. Moreover, we have: for any L-prime \mathfrak{P} and L'-prime \mathfrak{P}' over P and \mathfrak{p} respectively, $g(\mathfrak{P}/P) = g(\mathfrak{P}'/\mathfrak{p})$, $f(\mathfrak{P}/P) = f(\mathfrak{P}'/\mathfrak{p})$ and $e(\mathfrak{P}/P) = e(\mathfrak{P}'/\mathfrak{p})$. Thus, to prove the lemma, we can assume $\xi \in k$ without loss of generality. The rest of the proof is easy, and the readers may refer to ref. [3] and its references. This concludes our proof of the lemma. Proof of Proposition 1. We only need to check the Euler factors for any k-prime P. Let $u=q^{-s}$, $d=\deg P$, then we have $$\frac{\prod_{|\mathbf{p}|P}(1-N\mathfrak{P}^{-s})}{1-NP^{-s}} = \begin{cases} (1-u^d)^{l^{n-1}} & \text{if } (L, P) \in \mathbb{C}^0, \\ \frac{(1-u^d)^{l^{n-1}}}{1-u^d} & \text{if } (L, P) \in \mathbb{C}^1, \\ (1-u^d)^{l^{n-2}-1} & \text{if } (L, P) \in \mathbb{C}^2, \\ \frac{(1-u^d)^{l^{n-2}}}{1-u^d} & \text{if } (L, P) \in \mathbb{C}^3, \end{cases}$$ where \mathfrak{P} is L-prime over P. And using the preceding lemma we can compute $$\prod_{v \notin \Phi} \frac{\prod_{v \in P} (1 - N\mathfrak{B}_{v}^{-s})}{1 - NP^{-s}} = \begin{cases} (1 - u^{d})^{(l-1) \cdot \tau_{n-1}} \cdot \left(\frac{1 - u^{dl}}{1 - u^{d}}\right)^{l^{n-1}} & \text{if } (L, P) \in \mathbb{C}^{0}, \\ (1 - u^{d})^{(l-1) \cdot \tau_{n-1}} \cdot \left(\frac{1 - u^{dl}}{1 - u^{d}}\right)^{l^{n-1}} & \text{if } (L, P) \in \mathbb{C}^{1}, \\ (1 - u^{d})^{(l-1) \cdot \tau_{n-1}} = (1 - u^{d})^{l^{n-1} - 1} & \text{if } (L, P) \in \mathbb{C}^{2}, \\ (1 - u^{d})^{(l-1) \cdot \tau_{n-2}} \cdot \left(\frac{1 - u^{dl}}{1 - u^{d}}\right)^{l^{n-2}} & \text{if } (L, P) \in \mathbb{C}^{3}, \end{cases}$$ where \mathfrak{p}_{v} is K_{v} -prime over P. Thus $$\frac{\prod_{\mathfrak{P}|P}(1-N\mathfrak{P}^{-s})}{1-NP^{-s}} = \prod_{v=0}^{\infty} \frac{\prod_{\mathfrak{P}_{v}|\mathfrak{P}}(1-N\mathfrak{P}_{v}^{-s})}{1-NP^{-s}}$$ for any k-prime P, and Proposition 1 follows at once. Remark 1. For any finite set S of k-primes viewed as infinite primes, let S(K) be the set of K-primes over S for any finite extension K/k. Define $$\zeta(O_K, s) = \prod_{\Re \in S(K)} (1 - N\Re^{-s})^{-1} \quad (\text{Re}(s) > 1).$$ By the proof of Proposition 1, we also have $$\frac{\zeta(O_L, s)}{\zeta(O_k, s)} = \prod_{v \in \Phi} \frac{\zeta(O_K, s)}{\zeta(O_k, s)}.$$ For any finite extension K/k, let V(K) be the free part of the group of unit of K. **Proposition 2.** Let L/K be n-fold of type (l, l, \dots, l) (here we allow l=p). Let $Q=(V(L), \prod_{v\in \Phi}V(K_v))$ be the unit index. Then $$Q|l^{(n-1)(g(\infty)-1)},$$ where $g(\infty)$ is the splitting degree of $\infty = \left(\frac{1}{T}\right)$ in L. **Proof.** If n=1, then we have nothing to prove since Q=1. Suppose $n \ge 2$, and σ_1 , $\alpha_2 \in \operatorname{Gal}(L/k)$ such that $\langle \sigma_1, \sigma_2 \rangle \cong (\mathbb{Z}/l\mathbb{Z})^2$. Let L_i and L_i $(1 \le i \le l-1)$ be the fixed fields of σ_1 and $\sigma_1^i \sigma_2$, respectively, and let E_i be the group of units of L_i $(1 \le i \le l)$. For any units η of L, we have $$\eta^{i} = \frac{\eta^{\sum_{i=0}^{l-1}\sum_{j=0}^{l-1}(\sigma_{1}^{i}\sigma_{2})^{j}}}{\eta^{\sum_{i=0}^{l-1}\sum_{j=1}^{l-1}(\sigma_{1}^{i}\sigma_{2})^{j}}} = \frac{\prod_{i=0}^{l-1}(\eta^{\sum_{j=0}^{l-1}(\sigma_{1}^{j}\sigma_{2})^{j}})}{\eta^{\sum_{i=0}^{l-1}\sum_{j=1}^{l-1}(\sigma_{1}^{i}\sigma_{2})^{j}}}.$$ Clearly, $\eta^{\sum_{j=0}^{l-1}(\sigma_i^j\sigma_j)^j} \in E_i$ for $0 \le i \le l-1$ since they are fixed by $\sigma_i^j\sigma_2$. For any fixed i, j such that $0 \le i \le l-1$, and $1 \le j \le l-1$, there exists a unique i' with $0 \le i' \le l-1$ such that $$ij+1 \equiv i'j \pmod{l}$$. Thus $$\eta^{\sum_{i=0}^{l-1}\sum_{j=1}^{l-1}(\sigma_1^i\sigma_2)^j} = \sigma_1(\eta^{\sum_{i=0}^{l-1}\sum_{j=1}^{l-1}}(\sigma_1^i\sigma_2)^j) \in E_l$$ and consequently $\eta' \in \prod_{i=0}^{l} E_i$. When n=2, $\{L_i: 0 \le i \le l\}$ is the set of cyclic subfields of L. By Dirichlet Unit Theorem $V(L) \cong \mathbb{Z}^{g(\infty)-1}$ and Proposition 2 are true in this case. Assume that if L is (n-1)-fold of type (l, l, \dots, l) , then $\eta^{l^{n-2}} \in \prod_{o \in \Phi} V(K_o)$ for any $\eta \in V(L)$. Now, let L/k be an extension of n-fold of type (l, l, \dots, l) . Then $\{L_i: 0 \le i \le 1\}$ are the set of subextensions of (n-1)-fold of type (l, l, \dots, l) , and we have shown that $\eta^l \in \prod_{i=0}^l E^i$ for any unit η of L. By inductive assumption, we have $$\eta^{l^{n-1}} = (\eta^l)^{l^{n-2}} \in \prod_{v \in \Phi} V(K_v).$$ Thus, Proposition 2 follows from the Dirichlet Unit Theorem. Remark 2. The above result is also true when L is n-fold of type $(l, l \dots, l)$ over rational number field \mathbb{Q} . To prove this, one can follow our proof word for word. **Main Theorem.** Let L be a tame Galois extension of k with Galois group $G(L/k) \cong (\mathbb{Z}/l\mathbb{Z})^n$. Let $\{K_v: v \in \Phi\}$ be the set of all cyclic subfields of L. Then we have $$h(L) = \prod_{v \in \mathbf{G}} h(K_v) \tag{8}$$ $$h(O_L) = Ql^{-t} \prod_{n \in \mathcal{B}} h(O_{K_n}),$$ (9) where $t = \frac{1}{2} \left[\left(\frac{1}{l-1} + 2n - \lambda - 1 \right) (l^{\lambda} - 1) - \lambda \right]$, $\lambda = \log_l g(\infty)$, Q and $g(\infty)$ are the same as in Proposition 2. Proof. By eq. (4) and Proposition 1, we get $$\frac{F_L(u)}{F_L(u)} = \prod_{v \in \Phi} \frac{F_{K_v}(u)}{F_L(u)}.$$ Since $F_k(1) = 1$ and $F_k(1) = h(K)$ for any finite extension of K/k, eq. (8) follows immediately. By eq.(3) this gives rise to $$h(O_L) = \mu(L)R(L)^{-1} \prod_{v \in \Phi} [h(O_{K_v})\mu(K_v)^{-1}R(K_v)].$$ (10) As in Lemma 1 let $L'=k'(\sqrt[l]{m_p}, \dots, \sqrt[l]{m_n})$ be standard for some k'-prime $\mathfrak p$ over ∞ . Reversing the order of m_1 , ..., m_n , we may assume that the splitting field of $\mathfrak p$ in L' is $L'^+=k'(\sqrt[l]{m_p}, \dots, \sqrt[l]{m_k})$, where $\lambda=\log_l g(\infty)$ and $g(\infty)$ is as in Proposition 2. Let $r=l^\lambda$, $r_0=\frac{r-1}{l-1}$, $r_1=r-1$, $L^+=L'^+\cap L$, Ω_{λ} and $P(\Omega_{\lambda})$ as defined in (5) and (6). We may choose v_1 , ..., v_{λ} in Ω_{λ} as a set of representatives of projective space $P(\Omega_{\lambda})$ such that $v_i=(0,\dots,0,1,0,\dots,0)$ with 1 at the *i*-th coordinate of $1 \le i \le \lambda$. In the following we view $P_{\lambda} = \{v_i \in P(\Omega_{\lambda}): 1 \le i \le r_0\}$ as an orderd set. For any $\alpha \in \mathfrak S = \{1,\dots,l-1\}$ and $v=(e_1,\dots,e_n) \in \Omega_{\lambda}$, we define $\alpha v = (e_1',\dots,e_{\lambda}') \in \Omega_{\lambda}$ such that $e_i' \equiv \alpha e_i \pmod{l}$ for $1 \le i \le \lambda$. Next, we define two more ordered sets Ω^1 and Ω^2 as follows: $\Omega^1 = \Omega_{\lambda}^1$: Put v_i in order where *i* runs from 1 to r_0 . Then after each v_i insert l-2 elements jv_i where *j* runs from 2 to l-1. $\Omega^2 = \Omega_3^2$: Put v_i in order as above. After each v_i insert l-2 elements $j^{-1}v_i$ where j runs from 2 to l-1. Here, by j^{-1} we mean the unique number in \mathfrak{S} such that $j^{-1}j \equiv 1 \pmod{l}$. Note that $\Omega^4 = \Omega^2 = \Omega_{\lambda}^{\times}$ as sets, but they may be different as ordered sets. Now, let ξ be an *l*-th root of unity in the algebraic closure of \mathbb{F}_q , $k' = k'(\xi)$ and $L' = k'(\sqrt[l]{m_1}, \dots, \sqrt[l]{m_1})$. Let $\sigma_i' \in \operatorname{Gal}(L'^+/k)$, $1 \le i \le \lambda$, such that $$\sigma'_i(\xi) = \xi, \quad \sigma'_i(\sqrt[l]{m_i}) = \xi^{\delta_{i,j}}(\sqrt[l]{m_i}), \quad 1 \le j \le \lambda,$$ where $\delta_{i,j}$ is the Kronecker symbol. Then, for any $u = (e_1, \dots, e_k) \in \Omega_k$ we write $$\sigma_{u}' = \prod_{i=1}^{\lambda} (\sigma_{i}')^{e_{i}}.$$ Now we give an inner product on Ω_{λ} with images in $\mathbb{S} \cup \{0\}$: for any $u = (e_i, \dots, e_{\lambda})$, $v = (f_1, \dots, f_{\lambda}) \in \Omega_{\lambda}$, define $$\mathfrak{S} \bigcup \{0\} \in u \cdot v = \sum_{i=1}^{\lambda} e_i f_i \pmod{l}.$$ For any m_v defined as eq. (7), we see that $\sigma_u'(\sqrt[l]{m_v}) = \xi^{u \cdot v}(\sqrt[l]{m_v})$, and $\sigma_u'(\xi) = \xi$. Set $\sigma_v = \sigma_v' | L^+ \in \operatorname{Gal}(L^+/k)$. Then it is easy to check that $\operatorname{Gal}(L^+/k) = \langle \sigma_1 \rangle \times \cdots \times \langle \sigma_k \rangle$, and for any $v, v' \in \Omega$ such that $v \cdot u = v' \cdot u$ we have $$\sigma_{v'}|_{K_{\mathbf{u}}} = \sigma_{v}|_{K_{\mathbf{u}}} = \sigma_{v}'|_{K_{\mathbf{u}}},\tag{11}$$ where $K_u = k'(\sqrt[l]{m_u}) \cap L$. Also $$\sigma_{v}|_{K_{u}} = id \iff u \cdot v = 0, \quad \forall u, v \in \Omega_{\lambda}.$$ (12) Let $\{\eta_v: v \in \Omega^2\}$ be a system of fundamental units of L, and let $\{K_v: v \in P_\lambda\}$ be the set of real cyclic subfields of L (also of L^+). For each $v \in P_\lambda$, let $\{\varepsilon_{\alpha^{-1}v}: \alpha \in \mathfrak{S}\}$ be a system of fundamental units of K_v , and then put all of them into an ordered set $\{\varepsilon_v: v \in \Omega^2\}$. Let ∞_1 be an L-prime over ∞ and $e = e(\infty_1/\infty)$ the ramification index. Then for any K_v -prime \mathfrak{p}_v over α , À dividing ∞_1 , we have $e(\infty_1/p_u) = e$. Denote the additive valuations corresponding to $\sigma_u^{-1}(\infty_1)$ $\sigma_u^{-1}(\infty_1)$ and p_u by w_u' and w_u , respectively. Then by definition $$Q = \left| \frac{\langle \eta_v : v \in \Omega^2 \rangle}{\langle \varepsilon_v : v \in \Omega^2 \rangle} \right| = \left| \frac{\det[w_u'(\varepsilon_v)]}{\det[w_u'(\eta_v)]} \right|.$$ By definition of the regulator (see eq. (2)) we have $$R(L) = |\det[w_{u}(\eta_{v})]| = Q^{-1} |\det[w_{u}(\sigma_{v}\varepsilon_{u})]| = Q^{-1} |\det[\operatorname{ord}_{\omega_{1}}(\sigma_{u}\varepsilon_{v})]|$$ $$= Q^{-1} |\det[e \operatorname{ord}_{v_{v}}(\sigma_{u}\varepsilon_{v})]| = Q^{-1}e^{r_{1}} |\det[w_{v}(\sigma_{u}\varepsilon_{v})]|_{u \in \Omega^{1}, v \in \Omega^{2}}|$$ $$= Q^{-1}e^{r_{1}} |\det[w_{u}(\sigma_{v}\varepsilon_{u})]_{v \in \Omega, u \in \Omega^{2}}|.$$ (13) For any $u \in P_{\lambda}$, set $$\beta_{u} = [w_{u}(\varepsilon_{i^{-1}u})]_{i \in \mathfrak{S}}, \quad \mathscr{R}_{u}^{v} = [w_{u}(\sigma_{iv}\varepsilon_{i^{-1}u})]_{i,i \in \mathfrak{S}}.$$ Let $$\mathscr{M} = [v_{u}(\sigma_{u}\varepsilon_{u})]_{v \in \Omega^{1}, u \in \Omega^{2}}. \tag{14}$$ In the above matrices, i and v are indices for rows, j and u are indices for columns. Let eq.(11) for every fixed u and any v such that $v \cdot u = 1$, \mathcal{R}_u^v are all equal, which we denote by \mathcal{R}_u . By the definition of the regulator, $R(K_u) = |\det \mathcal{R}_u|$. In what follows, we will omit the symbols for absolute value and only consider the equations up to signs. In order to compute $\det \mathcal{M}$, we set $$A = \begin{pmatrix} 1 & \beta_{v_1} \cdots & \beta_{v_0} \\ 0 & & & \\ \vdots & & \mathscr{M} \\ 0 & & & \end{pmatrix} = \begin{pmatrix} 1 & \beta_{v_1} \cdots & \beta_{v_{n_0}} \\ -1 & & & \\ \vdots & \mathscr{R} = [\mathscr{R}_u^v - \mathscr{R}_u^0]_{u, v \in P_\lambda} \end{pmatrix}, \tag{15}$$ where we get the equation by carrying out the following operations on the first determiant: 1st row×(-1)+other rows. Since $N_{K_0/k}(\varepsilon_u)=1$, adding all rows but the first, we get a row $$[1-l^{\lambda} - l^{\lambda}\beta_{v_1} \cdots - l^{\lambda}\beta_{v_{r_0}}]. \tag{16}$$ In obtaining eq. (16), we use the following elementary result which can be found in reference [4]. **Lemma 2.** For any fixed $v \in \Omega_{\lambda}^{\times}$, $x \cdot v = 0$ has $l^{\lambda-1} - 1$ solutions in $\Omega_{\lambda}^{\times}$. If $\alpha \in \mathfrak{S}$, then $x \cdot v = \alpha$ has $l^{\lambda-1}$ solutions in $\Omega_{\lambda}^{\times}$. Adding eq. (16) to $l^{\lambda} \times (1st \text{ row})$ we can get $$\det \mathcal{M} = A = l^{-\lambda} \det \mathcal{B}, \ \mathcal{B} = \left[\mathcal{B}_{u}^{v} - \mathcal{B}_{u}^{0} \right]_{u \cdot v \in P_{2}}, \tag{17}$$ where u is the index of columns, and v the index of rows. For each $u \in P_i$, let \mathcal{B}_u denote the l-1 columns of \mathcal{B} corresponding to u. By eq. (11), we can permute the rows of \mathcal{B}_u so that the result is $$[(1-\delta_{0,u})(\mathcal{R}_{u}-\mathcal{R}_{u}^{0})]_{v\in R_{\lambda}}.$$ This operation on \mathcal{B} is called u-trans. Under u-trans, the element of \mathcal{B} at the $(iv, j^{-1}u)$ -th position remains fixed if $u \cdot v = 0$ or moves to the $(i(u \cdot v)v, j^{-1}u)$ -th position by eqs. (12) and (11). Now, viewing $\det(\mathcal{R}_u - \mathcal{R}_u^0)$ as an element, we can bring it outside of $\det \mathcal{R}$ and the element at the $(i(u \cdot v)v, j^{-1}u)$ -th position of the remaining matrix is $\delta_{i(u \cdot u), j}$. Then, taking the inverse transformation of u-trans, we see that except for the l-1 columns corresponding to $u \in P_\lambda$, the other columns remain the same as those before we take u-trans while the $(iv, j^{-1}u)$ -th element becomes $\delta_{i(u \cdot v), j}$. Going through the above procedures for each $u \in P_\lambda$, we arrive at $$\det \mathscr{B} = \det \mathscr{A} \prod_{u \in P_1} \det (\mathscr{R}_u - \mathscr{R}_u^0), \tag{18}$$ where $$\mathscr{A}=[\delta_{u\cdot v,\,1}]_{u\in\Omega^2,\,v\in\Omega^1}.$$ Set $\mathscr{A}^{t} = (b_{u,v})$, where \mathscr{A}^{t} is the transposition of \mathscr{A} . Then $$b_{u,v} = \sum_{w \in \Omega_{\lambda}^{x}} \delta_{u \cdot w, 1} \delta_{v \cdot w, 1} = \# \{ w \in \Omega_{\lambda} : u \cdot w = v \cdot w = 1 \}.$$ If u=v, then $b_{up}=l^{\lambda-1}$ from Lemma 2. If u=jv for some $j\in \mathbb{S}$ and $j\neq 1$, then $b_{up}=0$. When $\lambda=1$, $b_{up}=0$ for $u\neq v$. When $\lambda\geq 2$, we set $u=(e_1,\cdots,e_{\lambda})$ and $v=(f_1,\cdots,f_{\lambda})$. #hen $u\neq jv$ for all $j\in \mathbb{S}$ iff there exist $i\neq j$ and $1\leq i,\ j\leq \lambda$ such that $e_if_j\neq e_jf_i\pmod{l}$, and therefore $b_{u,v}=l^{\lambda-2}$ by an easy computation. #hus $$\det \mathscr{A}^{2} = \det \mathscr{A}^{1} = l^{r_{1}(\lambda-2)} \begin{vmatrix} lI & E & \cdots & E \\ E & lI & \cdots & E \\ \vdots & \vdots & & \vdots \\ E & E & \cdots & lI \end{vmatrix}, \tag{19}$$ where I is the unit matrix of rank l-1, and each entry of E is 1. It is not difficult to compute det \mathscr{A}^2 by elementary transformations and to find $$\det \mathscr{A}^2 = l^{r_1 \left(\lambda - \frac{l}{l-1}\right) + \lambda}.$$ (20) Since $N_{K_{k}/k}(\varepsilon_{k}) = 1$, we get $$\det(\mathcal{R}_{u} - \mathcal{R}_{u}^{0}) = \det \mathcal{R}_{u} = lR(K_{u}). \tag{21}$$ From eqs. (13)—(21), we have $$R(L)=Q^{-1}e^{r_1}l^{\frac{1}{2}\left[\left(\frac{1}{l-1}+\lambda-1\right)r_1-\lambda\right]}\prod_{u\in P(\Omega_2)}R(K_u).$$ But for imaginary field K over k (i. e. ∞ does not split in K), R(K)=1. So we get $$R(L) = Q^{-1}e^{r_1}l^{\frac{1}{2}\left[\left(\frac{1}{l-1} + \lambda - 1\right)r_1 - \lambda\right]} \prod_{u \in \Phi} R(K_v).$$ (22) From eq. (1) and $e = e(\infty, \infty)$ we have Ä $$\mu(L)^{-1}\prod_{v\in\Phi}\mu(K_v)=\left\{\begin{array}{ll}1 & \text{if } (L, \infty)\in C^0\bigcup C^2,\\ l^{r_1} & \text{if } (L, \infty)\in C^1\bigcup C^3,\end{array}\right. \tag{23}$$ and $$e^{r_1} = \begin{cases} 1 & \text{if } (L, \infty) \in C^0 \cup C^1, \\ l^{r_1} & \text{if } (L, \infty) \in C^2 \cup C^3, \end{cases}$$ (24) Combining eqs. (8), (18)—(20), we can obtain desired equation (9) at last. This completes our proof of Main Theorem. Remark 3. When l=2, our Main Theorem is stated as in the author's another paper (Th. 6 of Chap. IV)¹⁾. **Corollary 1.** For any tame abelian extension L/k of type (l, l, \dots, l) , where l is a prime, the ratio $h(O_l)/\prod_{v \in \Phi} h(O_{K_v})$ is an l-power, where $\{K_v : v \in \Phi\}$ is the set of all cyclic subfields of L. *Proof.* We only need to show that Q is an l-power, which readily follows from Proposition 2. Added note in Proof. There is a gap in the poof of Main Theorem: If K/k has a constant field extension, then we need to replace u by u^l in eq. (4). But since constant field extension is cyclic, there is only one cyclic constant field subextension of L of degree l in Main Theorem if L contains a constant field extension. Then it is easy to see that eq. (8) is also true. ### References - 1 Hayes, D., Trans. Amer. Math. Soc., 1974, 189:77. - 2 Weil, A., Basic Number Theory, New York: Springer-Verlag, 1968. - 3 Zhang, X., On number fields of type (l, l, ···, l), Scientia Sinica, Ser. A, 1984, 27(10): 1018. - 4 Hua, L.-K., Introduction to Number Theory, Berlin: Springer-Verlag, 1982. ¹⁾ Zhang, X., Doctoral thesis, University of Science and Technology of China (in Chinese), 1985.