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Abstract This paper is concerned with the optimal fusion of sensors with cross-correlated sensor noises.

By taking linear transformations to the measurements and the related parameters, new measurement models

are established, where the sensor noises are decoupled. The centralized fusion with raw data, the centralized

fusion with transformed data, and a distributed fusion estimation algorithm are introduced, which are shown

to be equivalent to each other in estimation precision, and therefore are globally optimal in the sense of linear

minimum mean square error (LMMSE). It is shown that the centralized fusion with transformed data needs lower

communication requirements compared to the centralized fusion using raw data directly, and the distributed

fusion algorithm has the best flexibility and robustness and proper communication requirements and computation

complexity among the three algorithms (less communication and computation complexity compared to the

existed distributed Kalman filtering fusion algorithms). An example is shown to illustrate the effectiveness of

the proposed algorithms.
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1 Introduction

Estimation fusion, or data fusion for estimation, is the problem of how to best utilize useful informa-

tion contained in multiple sets of data for the purpose of estimating a quantity, e.g., a parameter or

process [1, 2]. It originated in the military field, and is now widely used in military and civilian fields,

e.g., target tracking and localization, guidance and navigation, surveillance and monitoring, due to its

improved estimation accuracy, enhanced reliability and survivability.

Most of the earlier researches were based on the assumption of cross-independent sensor noises. In

the practical applications, most of multisensor systems often have correlated noises when the dynamic

process is observed in a common noisy environment [3]. In this case, the traditional centralized fusion is

also applicable and is still optimal in the sense of LMMSE (linear minimum mean square error). However,

the computation complexity is huge.
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For most of practical cases, there is correlative between process and measurement noises (Correla-

tion I) and among measurement noises (Correlation II) [4]. Some people are working on the optimal

Kalman filtering fusion with cross-correlated sensor noises in recent years. In [3], Song et al. presented

the distributed fusion algorithms both without feedback and with feedback. While, augmentations of

some system parameters are existed. In [5], distributed sequential estimation of a nonrandom parameter

over noisy communication links was considered, where the observations are correlated spatially across

the sensor field, and a recursive algorithm for updating the sequential estimator was derived. By recon-

structing the measurements, Ref. [6] also deduced the distributed Kalman filtering fusion with feedback

and without feedback, in which the noise is decoupled in sequence by the method given in [7]. By these

methods, the augmentation of measurements and measurement matrices are needed. The fusion algo-

rithm given in [8] is similar. These methods have more complex form compared to [3], but they have

the advantage of capability of handling the correlation of measurement noise and system noise besides

decoupling the measurement noises. Ref. [9] studied the distributed fusion when the measurement noises

are correlated across sensors and with the system noise at the same time step. When the noise of different

sensors are cross-correlated and also coupled with the system noise of the previous step, we derive the

optimal sequential fusion and optimal distributed fusion algorithm in [10], and generate this result to

the fusion of multirate sensor cases [11,12]. When there is correlation between the process noise and the

measurement noise and among measurement noises, a distributed weighted robust Kalman filter fusion

algorithm is derived for uncertain systems with multiple sensors in [13]. A novel decentralized cubature

Kalman fusion algorithm is presented in [4] for nonlinear systems with noise Correlations I and II.

For fusion of the sensors with correlated noises, there are some literatures using linear transforms. Li et

al. first propose this idea in [1], where the optimal batch fusion and distributed fusion have been obtained

in a unified form. In [14, 15], correlated measurement fusion Kalman filtering algorithms are obtained

based on orthogonal transformation. By using the Cholesky factorization, the coupled noises can be

decoupled and the optimal state estimations were derived in [16–18]. In [19], the authors proved that the

sufficient condition of the lossless transform for distributed estimation with cross-correlated measurement

noises is the transformation matrix of full column rank.

To summarize, there are some literatures deal with optimal Kalman filtering fusion of the dynamic

systems with coupled noises. When the measurement noises are correlated, the centralized fusion can

still be used and it is optimal in the sense of LMMSE. However, the computation and power requirements

are too huge to be practical. Many people intend to generate the distributed fusion algorithm. While,

the distributed fusion algorithms are not given explicitly in [1, 17, 18]. The explicit distributed fusion

algorithms are presented in [3, 6, 7], but augmentations of some system parameters are existed, and

therefore it is not optimal when the computation performance is concerned.

With the development of internet, networked fusion become the hot topic in the field of information

fusion, in which the measurements or the local estimations are transmitted to the fusion center through

the communication channel. Constrained by the limited resources and communication bandwidth, the

computation and communication efficiencies are a problem to which we should pay much attention. For

networked state estimation, there are many algorithms could be effective, including the study conceren

random delay of the observations [20], faulty of the measurements [21], mismatch of the measurement

noise covariance [22]. Ref. [23] analyzed the observable degree of a mobile target tracking system for

wireless sensor networks, and pointed out that it is potentially hopeful to achieve an effective function

to study estimation performance of tracking estimators by directly using the observable degree. There

has been discussion about compression in the hope of reducing the communication requirements in the

literatures [24–27]. A sufficient condition and a necessary and sufficient condition were given in [24, 28],

respectively, for lossless of performance for distributed fusion with compressed data. A suboptimal and

optimal compression rules were derived in [25, 26], respectively, for estimation fusion. In WSNs, the

energy-saving related estimation algorithms are researched recently, the literatures include data compres-

sion methods [27,29], quantization based methods [30–32], and the methods to slow down the information

transmitting rate in the sensors [33–35]. For distributed Kalman filtering fusion of measurements with

cross-correlated noises, the simple form in considering of both optimality in accuracy as well as in com-
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putation and communication complexity, is still an open problem, and is the motivation of this paper.

This paper is organized as follows. Section 2 describes the problem formulation. In Section 3, the

Cholesky decomposition and the linear transformation are introduced. Section 4 provides the optimal

state fusion estimation algorithms, including the centralized fusion based on raw data, the centralized

and the distributed fusion estimation algorithms based on the transformed measurement models. Per-

formances, including the global optimization and the computation complexity and the communication

requirements of each algorithms, are also analyzed in Section 4. Section 5 is the simulation and Section

6 draws the conclusion.

2 Problem formulation

Consider the following generic linear dynamic system:

x(k + 1) = A(k)x(k) + w(k), k = 0, 1, . . . ; (1)

zi(k) = Ci(k)x(k) + vi(k), i = 1, 2, . . . , N, (2)

where x(k) ∈ R
n is the system state, A(k) ∈ R

n×n is the state transition matrix. w(k) is the system

noise and is assumed to be Gaussian distributed with
{

E{w(k)} = 0;

E{w(k)wT(j)} = Q(k)δij ,
(3)

where Q(k) > 0, and

δkj =

{

1, k = j;

0, k 6= j.
(4)

zi(k) ∈ R
mi is the measurement of sensor i at time k. Ci(k) ∈ R

mi×n is the measurement matrix. vi(k)

is the measurement noise, and is assumed to be white Gaussian distributed, and is independent of w(k),

i.e., for k, l = 1, 2, . . . , i, j = 1, 2, . . . , N , we have

{

E{vi(k)} = 0;

E{vi(k)v
T
j (l)} = Rij(k)δkl.

(5)

From the above formula we can see that the measurement noises of different sensors are correlated, i.e.,

vi(k) and vj(k) are cross-correlated for i 6= j at time k with E{vi(k)v
T
j (k)} = Rij(k) 6= 0. For simplicity,

we denote Ri(k)△Rii(k) > 0 for i = 1, 2, . . . , N .

The initial state x(0) is independent of w(k) and vi(k) for k = 1, 2, . . ., and i = 1, 2, . . . , N , and is

assumed to be Gaussian distributed with
{

E{x(0)} = x0;

cov{x(0)} = E{[x(0)− x0][x(0)− x0]
T} = P0,

(6)

where cov{x(0)} means the covariance of x(0).

The objective of this paper is to generate the optimal estimation of state x(k) by use of the measure-

ments zi(k) based on the above description.

3 Linear transformation

For the systems given in (1) and (2), let

z(k) = [zT1 (k), z
T
2 (k), . . . , z

T
N(k)]T, (7)
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C(k) = [CT
1 (k), C

T
2 (k), . . . , C

T
N (k)]T, (8)

v(k) = [vT1 (k), v
T
2 (k), . . . , v

T
N (k)]T, (9)

then we have



















E{v(k)} = 0m×1, m =
N
∑

i=1

mi;

E{v(k)vT(j)} = R(k)δkj ;

E{w(k)vT(j)} = 0,

(10)

where

R(k) = cov{v(k)} =















R11 R12 · · · R1N

R21 R22 · · · R2N

...
...

...

RN1 RN2 · · · RNN















(11)

is a symmetric positive definite matrix.

To decouple the measurement noises and to decrease the computation complexity, we now use Cholesky

decomposition to decompose R(k). Namely,

R(k) = LT(k)L(k), (12)

where L(k) is a lower triangular matrix with strictly positive diagonal entries.

Let

T (k) = L−T(k), (13)

z̄(k) = T (k)z(k), (14)

C̄(k) = T (k)C(k), (15)

v̄(k) = T (k)v(k). (16)

It follows that

z̄(k) = C̄(k)x(k) + v̄(k), (17)

where



















E{v̄(k)} = 0m×1, m =
N
∑

i=1

mi;

R̄(k) = cov{v̄(k)} = T (k)R(k)TT(k) = Im×m;

E{w(k)v̄T(j)} = 0.

(18)

Hence, the cross-correlated sensor noises is transformed into uncorrelated sensor noises, whose covariance

is identity matrix.

4 The optimal state fusion estimation algorithms

4.1 The centralized state fusion estimation with raw data

Based on systems (1) and (2), the optimal state estimation can be generated by use of the centralized

fusion algorithm.
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Theorem 1. Given the centralized fusion estimation x̂c(k − 1|k − 1) and Pc(k − 1|k − 1) at k − 1, the

optimal state fusion estimation at time k can be computed as follows:



































x̂c(k|k − 1) = A(k − 1)x̂c(k − 1|k − 1);

Pc(k|k − 1) = A(k − 1)Pc(k − 1|k − 1)AT(k − 1) +Q(k − 1);

x̂c(k|k) = x̂c(k|k − 1) +Kc(k)[z(k)− C(k)x̂c(k|k − 1)];

Kc(k) = Pc(k|k − 1)CT(k)[C(k)Pc(k|k − 1)CT(k) +R(k)]−1;

Pc(k|k) = [I −Kc(k)C(k)]Pc(k|k − 1),

(19)

where subscript “c” denotes the centralized algorithm, and z(k), C(k) and R(k) are computed by (7),

(8) and (11), respectively.

Proof. From the problem formulation and formula (10), it can be easily shown that v(k) is white

Gaussian noise and is uncorrelated with system noise w(k). Therefore, to generate the optimal state

estimation, the traditional centralized fusion can be used.

4.2 The centralized fusion with transformed data

From Section 3, systems (1) and (2) could be rewritten as

{

x(k + 1) = A(k)x(k) + w(k);

z̄(k) = C̄(k)x(k) + v̄(k),
(20)

where x(k) ∈ R
n is the system state, A(k) ∈ R

n×n is the state transition matrix, w(k) is zero-mean

white Gaussian process noises with covariance being Q(k) > 0, and the initial state meets E{x(0)} = x0

and cov{x(0)} = P0. z̄(k) ∈ R
m is the measurement at time k, and C̄(k) ∈ R

m×n is the measurement

matrix, where m =
∑N

i=1 mi. Measurement noise v̄(k) is zero-mean white Gaussian distributed and is

uncorrelated with w(k) and x(0), and cov{v̄(k)} = R̄(k) = I.

The optimal state estimation of x(k) could be generated by use of the following theorem.

Theorem 2. Based on system (20), given the centralized fusion estimation x̂ct(k − 1|k − 1) and the

estimation error covariance Pct(k − 1|k − 1) at time k − 1, the optimal estimation at time k can be

computed by



































x̂ct(k|k − 1) = A(k − 1)x̂ct(k − 1|k − 1);

Pct(k|k − 1) = A(k − 1)Pct(k − 1|k − 1)AT(k − 1) +Q(k − 1);

x̂ct(k|k) = x̂ct(k|k − 1) +Kct(k)[z̄(k)− C̄(k)x̂ct(k|k − 1)];

Kct(k) = Pct(k|k − 1)C̄T(k)[C̄(k)Pct(k|k − 1)C̄T(k) + R̄(k)]−1;

Pct(k|k) = [I −Kct(k)C̄(k)]Pct(k|k − 1),

(21)

where subscript “ct” denotes the centralized algorithm with the transformed data, and where z̄(k), C̄(k)

and R̄(k) are computed by (14), (15) and (18), respectively.

Proof. For the linear system (20), it is obvious that the system noise w(k) is zero-mean white Gaussian

distributed. The measurement noise v̄(k) is also zero-mean white Gaussian distributed, and is uncor-

related with w(k) and x(0). So, the optimal state fusion estimation can be generated by use of the

centralized fusion algorithm.

Theorem 3. The state estimation of the centralized fusion given in Theorem 2 with transformed data

is equivalent to the centralized fusion given in Theorem 1 with the original observations in the sense of

LMMSE.

Proof. From (19), we can rewrite Pc(k|k) and Pc(k|k− 1) by use of the information form of the Kalman

filter as follows:

Pc(k|k − 1) = A(k − 1)Pc(k − 1|k − 1)AT(k − 1) +Q(k − 1), (22)
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P−1
c (k|k) = P−1

c (k|k − 1) + CT(k)R−1(k)C(k). (23)

Similarly, from (21), we have

Pct(k|k − 1) = A(k − 1)Pct(k − 1|k − 1)AT(k − 1) +Q(k − 1), (24)

P−1
ct (k|k) = P−1

ct (k|k − 1) + C̄T(k)R̄−1(k)C̄(k). (25)

Obviously, Pc(0|0) = Pct(0|0) = P0. Assume that Pc(k − 1|k − 1) = Pct(k − 1|k − 1), then due to (22)

and (24), we obtain

Pct(k|k − 1) = Pc(k|k − 1). (26)

So due to (23) and (25), in order to prove Pct(k|k) = Pc(k|k), we just need to prove C̄T(k)R̄−1(k)C̄(k) =

CT(k)R−1(k)C(k).

In fact,

C̄T(k)R̄(k)C̄(k) = [T (k)C(k)]T[T (k)R(k)TT(k)]−1[T (k)C(k)]

= CT(k)TT(k)T−T (k)R−1(k)T−1(k)T (k)C(k)

= CT(k)R−1(k)C(k). (27)

Hence, we yield Pct(k|k) = Pc(k|k).

From Theorem 3, it can be seen that the state estimation based on system (20) and sytems (1) and

(2) is equivalent as far as the centralized fusion is concerned.

4.3 The optimal state estimation by distributed fusion

Rewriting z̄(k), C̄(k) and v̄(k) in (17) to block form, we have

z̄(k) = [z̄T1 (k), z̄
T
2 (k), . . . , z̄

T
N(k)]T, (28)

C̄(k) = [C̄T
1 (k), C̄

T
2 (k), . . . , C̄

T
N (k)]T, (29)

v̄(k) = [v̄T1 (k), v̄
T
2 (k), . . . , v̄

T
N (k)]T, (30)

where z̄i(k) ∈ R
mi×1, C̄i(k) ∈ R

mi×n and v̄i(k) ∈ R
mi×1. Then from (17), we have

z̄i(k) = C̄i(k)x(k) + v̄i(k), i = 1, 2, . . . , N. (31)

From formula (18), it can be easily obtained that v̄i(k) is uncorrelated across different sensors, which

is zero mean Gaussian distributed and is independent of system noise w(k) and the initial state x(0).

Therefore, based on (1) and (31), the optimal state estimation could be generated by use of the distributed

fusion algorithm.

Theorem 4. By use of the linear systems (1) and (31), the optimal state estimation can be generated

by use of the distributed fusion algorithm. For simplicity, we only give the one without feedback here,

P−1
d (k|k) = P−1

d (k|k − 1) +

N
∑

i=1

[P−1
d,i (k|k)− P−1

d,i (k|k − 1)], (32)

P−1
d (k|k)x̂d(k|k) = P−1

d (k|k − 1)x̂d(k|k − 1) +

N
∑

i=1

[P−1
d,i (k|k)x̂d,i(k|k)

−P−1
d,i (k|k − 1)x̂d,i(k|k − 1)], (33)

where the fused state prediction at time k is

x̂d(k|k − 1) = A(k − 1)x̂d(k − 1|k − 1), (34)

Pd(k|k − 1) = A(k − 1)Pd(k − 1|k − 1)AT(k − 1) +Q(k − 1), (35)
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and the local state estimations x̂d,i(k|k) and Pd,i(k|k) are computed by Kalman filter by use of















































x̂d,i(k|k) = x̂d,i(k|k − 1) +Kd,i(k)[z̄i(k)− C̄i(k)x̂d,i(k|k − 1)];

Pd,i(k|k) = [I −Kd,i(k)C̄i(k)]Pd,i(k|k − 1);

x̂d,i(k|k − 1) = A(k − 1)x̂d,i(k − 1|k − 1);

Pd,i(k|k − 1) = A(k − 1)Pd,i(k − 1|k − 1)AT(k − 1) +Q(k − 1);

Kd,i(k) = Pd,i(k|k − 1)C̄T
i (k)[C̄i(k)Pd,i(k|k − 1)C̄T

i (k) + R̄i(k)]
−1;

R̄i(k) = I.

(36)

Proof. Use the information form of Kalman filter, from (36), the update equations of sensor i at time

k can be rewritten as [36]

{

x̂d,i(k|k) = x̂d,i(k|k − 1) + Pd,i(k|k)C̄
T
i (k)R̄

−1
i (k)[z̄i(k)− C̄i(k)x̂d,i(k|k − 1)];

P−1
d,i (k|k) = P−1

d,i (k|k − 1) + C̄T
i (k)R̄

−1
i (k)C̄i(k).

(37)

Multiplying the first equation by the second equation in (37), we have

P−1
d,i (k|k)x̂d,i(k|k) = [P−1

d,i (k|k − 1) + C̄T
i (k)R̄

−1
i (k)C̄i(k)]x̂d,i(k|k − 1) + P−1

d,i (k|k)Pd,i(k|k)

·C̄T
i (k)R̄

−1
i (k)[z̄i(k)− C̄i(k)x̂d,i(k|k − 1)]

= P−1
d,i (k|k − 1)x̂d,i(k|k − 1) + C̄T

i (k)R̄
−1
i (k)z̄i(k). (38)

Then

C̄T
i (k)R̄

−1
i (k)z̄i(k) = P−1

d,i (k|k)x̂d,i(k|k)− P−1
d,i (k|k − 1)x̂d,i(k|k − 1). (39)

On the other hand, from (21), we have

{

x̂ct(k|k) = x̂ct(k|k − 1) + Pct(k|k)C̄
T(k)R̄−1(k)[z̄(k)− C̄(k)x̂ct(k|k − 1)];

P−1
ct (k|k) = P−1

ct (k|k − 1) + C̄T(k)R̄−1(k)C̄(k).
(40)

Since R̄(k) is a diagonal matrix, we can rewrite it as

R̄(k) = diag{R̄1(k), R̄2(k), . . . , R̄N (k)}, (41)

where R̄i(k) = Imi×mi
.

Substituting (28), (29) and (41) into (40), we have















x̂ct(k|k) = x̂ct(k|k − 1) + Pct(k|k)
N
∑

i=1

C̄T
i (k)R̄

−1
i (k)[z̄i(k)− C̄i(k)x̂ct(k|k − 1)];

P−1
ct (k|k) = P−1

ct (k|k − 1) +
N
∑

i=1

C̄T
i (k)R̄

−1
i (k)C̄i(k).

(42)

Multiplying the first equation by the second of (42), after reorganization, yields

P−1
ct (k|k)x̂ct(k|k) = P−1

ct (k|k − 1)x̂ct(k|k − 1) +

N
∑

i=1

C̄T
i (k)R̄

−1
i (k)z̄i(k). (43)

Substituting (39) to (43), we have

P−1
ct (k|k)x̂ct(k|k) = P−1

ct (k|k − 1)x̂ct(k|k − 1) +

N
∑

i=1

[P−1
d,i (k|k)x̂d,i(k|k)− P−1

d,i (k|k − 1)x̂d,i(k|k − 1)].(44)

From the second equation of (37), we have

C̄T
i (k)R̄

−1
i (k)C̄i(k) = P−1

d,i (k|k)− P−1
d,i (k|k − 1). (45)
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Substituting (45) to the second equation of (42), we have

P−1
ct (k|k) = P−1

ct (k|k − 1) +
N
∑

i=1

[P−1
d,i (k|k)− P−1

d,i (k|k − 1)]. (46)

Combined (44) and (46), we have



























P−1
ct (k|k)x̂ct(k|k) = P−1

ct (k|k − 1)x̂ct(k|k − 1) +
N
∑

i=1

[P−1
d,i (k|k)x̂d,i(k|k)

−P−1
d,i (k|k − 1)x̂d,i(k|k − 1)];

P−1
ct (k|k) = P−1

ct (k|k − 1) +
N
∑

i=1

[P−1
d,i (k|k)− P−1

d,i (k|k − 1)].

(47)

Comparing (32)–(35) with (21) and (47), deductively, we have























x̂d(k|k) = x̂ct(k|k);

Pd(k|k) = Pct(k|k);

x̂d(k|k − 1) = x̂ct(k|k − 1);

Pd(k|k − 1) = Pct(k|k − 1).

(48)

According to the derivation process of Theorem 4, the distributed fusion algorithm is generated from

the centralized fusion. So, we have the following corollary directly.

Corollary 1. The state estimation by use of the distributed fusion algorithm with Theorem 4 is equiv-

alent to the estimation by use of the centralized fusion algorithm given by Theorem 2.

Theorem 5. The state estimation by use of the distributed fusion algorithm of Theorem 4 with the

transformed measurements of (31) is equivalent to the estimation by use of the centralized fusion algorithm

with the original measurements of (2) given in Theorem 1.

Proof. From Theorem 3 and Corollary 1, we draw the conclusion.

From Theorem 5, we can see that by applying the linear transformation to the measurement equations

and then by use of the distributed fusion algorithm given in Theorem 4, we can get the optimal state

estimation, which is equivalent to the centralized fusion estimation based on the original observations

in estimation precision. While, the distributed algorithm with transformed data is more flexible and

applicable, and has much less computation complexity compared to the centralized fusion algorithm with

raw data. We will show this in the next subsection.

Remark 1. In Theorem 4, to generate the state estimation, the distributed fusion without feedback is

introduced. In fact, we should only change formula (36) to get the distributed fusion with feedback by

use of the following formulae:















































x̂d,i(k|k) = x̂d,i(k|k − 1) +Kd,i(k)[z̄i(k)− C̄i(k)x̂d,i(k|k − 1)];

Pd,i(k|k) = [I −Kd,i(k)C̄i(k)]Pd,i(k|k − 1);

x̂d,i(k|k − 1) = A(k − 1)x̂d(k − 1|k − 1);

Pd,i(k|k − 1) = A(k − 1)Pd(k − 1|k − 1)AT(k − 1) +Q(k − 1);

Kd,i(k) = Pd,i(k|k − 1)C̄T
i (k)[C̄i(k)Pd,i(k|k − 1)C̄T

i (k) + R̄i(k)]
−1;

R̄i(k) = I.

(49)

For the distributed fusion algorithm with feedback, it can be shown that it is equivalent to the distributed

fusion without feedback in estimation precision, and is therefore globally optimal in the sense of LMMSE,

which has better robustness [3, 13].
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Fusion center (remote estimator)

Q(k)

Figure 1 (Color online) Architecture of the centralized fusion by use of the raw measurements.

Fusion center (remote estimator)

Q(k)

Q(k)

Figure 2 (Color online) Architecture of the centralized fusion by use of the transformed measurements.

4.4 The complexity analysis

The architectures of the centralized Kalman filtering fusion, the centralized fusion by use of the trans-

formed measurements, and the optimal distributed fusion algorithms are shown in Figures 1–3, respec-

tively. For the centralized fusion, the system parameters A(k), Q(k), Ci(k), Rij(k) and the measurements

zi(k) for sensors i = 1, 2, . . . , N are sent to the remote fusion center directly. For the centralized fusion

with transform, the system parameters and the measurements are sent to the local processor first, and

after proper process (linear transform), the transformed data are sent to the remote fusion center. For

the distributed fusion, the transformed data are sent to the local estimators, and the local estimations

are sent to the remote fusion center. In the sequel, we will compare the computation and communication

complexity of the three algorithms.

First, let us compare the centralized fusion algorithms by use of the original system and the system

with transformed measurement equations.

It is known that to use the centralized fusion algorithm, besides the observations, it is necessary to send

the state transition matrix A(k), the measurement matrix C(k), the covariance of the system noise Q(k)

and the covariance of measurement noise R(k) to the fusion center. Nothing changes of A(k) and Q(k)

after the transformation, neither does the dimension of C(k). Let us check R(k). Before transformation,

the communication requirement to send the data of R(k) to the fusion center is m(m + 1)/2, where

m =
∑N

i=1 mi. However, as has been proven in (18), after the linear transformation, the measurement

noises covariance becomes an identity matrix. So there is no need to send R(k). This nice property

certainly help to reduce the transmission burden to the fusion center. Particularly, when m is very large,

the property will greatly reduce the communication demands and the computation complexity.

Next, let us compare the distributed fusion with the centralized fusion algorithm based on the system
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Fusion center (remote estimator)

Q(k)

Q(k)

Q(k)

Figure 3 (Color online) Architecture of the distributed fusion.

with transformed form. The centralized fusion algorithm should transmit A(k), C̄(k), Q(k), z̄(k) to the

fusion center at each moment k, and the communication requirement is 3
2n

2 + 1
2n + mn + m, where

m =
∑N

i=1 mi. For the distributed fusion however, the system model parameters and the local state

estimations should be transmitted to the fusion center, and the communication requirement is N(n2+3n).

It can be seen that when the state and the measurements dimensions are high, the centralized fusion

will occupy larger transmission bandwidth. As far as the computation complexity is concerned, it is well

known that the distributed fusion is more efficient compared to the centralized fusion algorithm, because

augmentation of measurements, measurement matrix, and measurement noises covariances are avoided.

Finally, let us compare the presented distributed algorithm with the distributed algorithm presented

in [3]. To make it clear, we list the distributed fusion formula (21) of paper [3] here by use of the same

notations as in this paper:

P−1
d (k|k)x̂d(k|k) = P−1

d (k|k − 1)x̂d(k|k − 1) + CT(k)

N
∑

i=1

R−1(k, i∗)R−1
i (k)C+

i (k)

·[P−1
d,i (k|k)x̂d,i(k|k)− P−1

d,i (k|k − 1)x̂d,i(k|k − 1)], (50)

where subscript “+” denotes the pseudo-inverse, and R−1(k, i∗) denotes the i-th submatrix column of

R−1(k).

While, in the current presented distributed fusion algorithm, from (33), we have

P−1
d (k|k)x̂d(k|k) = P−1

d (k|k − 1)x̂d(k|k − 1) +

N
∑

i=1

[P−1
d,i (k|k)x̂d,i(k|k)

−P−1
d,i (k|k − 1)x̂d,i(k|k − 1)]. (51)

The two algorithms are both proven to be equivalent to the centralized fusion in estimation precision,

and therefore are both optimal in the sense of LMMSE. While, from (50), it can be seen that to generate

the state fusion estimation, besides the necessary quantities of the presented distributed algorithm, Ci(k)

and R(k) are also required by the fusion center, which means it requires 1
2m(m + 1) + mn more data

transmission at each moment compared to the presented distributed fusion algorithm. Moreover, com-

paring (51) with (50), it can be seen that the computation complexity of the current presented algorithm

is much less than [3], since there is an augmentation of Ci(k), i.e., C(k), and the inverse of R(k) needed

to compute and to multiply in (50).
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To summarize, the centralized fusion with the transformed data reduced the communication burden

compared to the centralized fusion with raw data, and the distributed algorithm has even less computation

complexity compared to the centralized fusion algorithm when the transformed system is concerned.

While, as has been proven, the three algorithms are all globally optimal in the sense of LMMSE. Compared

to the distributed fusion algorithm presented in [3], the presented distributed algorithm has the same

estimation precision but less computation complexity and requires less communication bandwidth.

5 Numerical example

To illustrate the effectiveness of the proposed algorithms, a numerical example is provided in this section.

A target is observed by three sensors, which could be described by (1) and (2) with

A(k) =

[

1 T

0 1

]

· 0.95; (52)

Q(k) =

[

T 3

3
T 2

2
T 2

2 T

]

· q, (53)

where T = 1 s is the sampling rate, and q = 0.01 is the disturbance parameter. Sensors 1 and 2 observe the

first dimension of position, and sensor 3 observes the second dimension of velocity, i.e., the measurement

matrices are

C1(k) = [1 0], (54)

C2(k) = [1 0], (55)

C3(k) = [0 1]. (56)

The measurement noises covariances is given by

R(k) =









0.25 0.125 0.00125

0.125 0.25 0.00125

0.00125 0.00125 0.0025









. (57)

The initial conditions are

x0 =

[

10

0.5

]

, P0 =

[

1 1
T

1
T

2
T 2

]

. (58)

The Monte Carlo simulation results are shown in Figures 4–6, where “CF” denotes the centralized

fusion algorithm by using the original observations as shown in Theorem 1, “CTF” denotes centralized

fusion by use of the transformed data as shown in Theorem 2, “DF” denotes the distributed fusion

presented by [3] and “DTF” denotes the presented distributed fusion by use of the transformed data

given in Theorem 4.

In Figure 4, the measurements of sensors 1 through 3 are shown in red dotted line, where sensors 1

and 2 observe the position dimension, and sensor 3 observes the velocity. For comparison, we use blue

line to show the original signal of the corresponding dimensions. It can be seen that the measurements

are corrupted by noises.

Figure 5 is the state estimation errors of different algorithms. The red dotted line in Figure 5(a) and

(c) is the estimation errors of CTF, DT and DTF, respectively, and the estimation error of CT is shown

in each subfigures in blue real line for comparison. It can be seen that the estimation errors of CTF, DT,

and DTF are exactly the same as that of CT, which means the four algorithms are equivalent in state

fusion estimation.
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Figure 4 (Color online) First dimension of the original

signal and the measurements.

Figure 5 (Color online) State estimation errors.
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Figure 6 (Color online) Trace of the covariances of the state estimation errors.

Figure 6 shows the trace of the covariances of the state estimation errors, it can be seen that they are

coincided, which further verify the conclusion drawn from Figure 5.

The simulation in this section shows that in state estimation precision, the presented distributed

fusion algorithm based on linear transform is equivalent to the centralized fusion with and without linear

transformation, and is also equivalent to the distributed fusion algorithm presented by [3]. In fact, the

MMSEs of each algorithms are 0.0192 in this simulation. As far as the running time is concerned, the

average time for 100 runs for each algorithms, namely, CF, CTF, DF and DTF are 0.0468, 0.0156, 0.0780

and 0.0624, respectively. It can be seen that the centralized fusion after transformation is faster than

the centralized fusion with raw data. The distributed fusion by use of the transformed data is more

efficient than the distributed fusion presented in [3]. However, the running time of the distributed fusion
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algorithms are longer than the centralized fusion algorithms. By our analysis, it may rely on the following

reasons: (1) The dimensions of states and measurements in this simulation are not large, the advantages

of the distributed fusion algorithms are not obvious. (2) The computing of the inverse of the state

estimation error covariances of the local estimations and the state prediction error covariances are really

time cost. By comparing the distributed or the centralized fusion with and without linear transform,

respectively, it can be seen that linear transformation is really an efficient way to reduce computation

complexity, let alone the communication or network transmission of data is concerned, which can show

even more advantages of linear transformation.

Briefly, the simulation results in this section illustrate the effectiveness of the presented algorithms.

When the dimensions of the measurements and the states are not high, the centralized fusion is fine.

While, when the dimensions of the measurements are high, the distributed fusion with transformed data

has potential advantages.

6 Conclusion

When the sensor noises are cross-correlated, a linear transformation is presented to decouple the noises

into cross-independent. Then, the centralized fusion and the distributed fusion with transformed data are

presented and proven to have the same optimality as the centralized fusion with the original observations,

while have lower computation complexity in computing and are more efficient in communication or data

transmission, which is very useful in networked environments. A numerical example is shown to verify

the effectiveness of the proposed algorithms.
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