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Abstract This paper is concerned with the optimal fusion of sensors with cross-correlated sensor noises.
By taking linear transformations to the measurements and the related parameters, new measurement models
are established, where the sensor noises are decoupled. The centralized fusion with raw data, the centralized
fusion with transformed data, and a distributed fusion estimation algorithm are introduced, which are shown
to be equivalent to each other in estimation precision, and therefore are globally optimal in the sense of linear
minimum mean square error (LMMSE). It is shown that the centralized fusion with transformed data needs lower
communication requirements compared to the centralized fusion using raw data directly, and the distributed
fusion algorithm has the best flexibility and robustness and proper communication requirements and computation
complexity among the three algorithms (less communication and computation complexity compared to the
existed distributed Kalman filtering fusion algorithms). An example is shown to illustrate the effectiveness of
the proposed algorithms.
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1 Introduction

Estimation fusion, or data fusion for estimation, is the problem of how to best utilize useful informa-
tion contained in multiple sets of data for the purpose of estimating a quantity, e.g., a parameter or
process [1,2]. It originated in the military field, and is now widely used in military and civilian fields,
e.g., target tracking and localization, guidance and navigation, surveillance and monitoring, due to its
improved estimation accuracy, enhanced reliability and survivability.

Most of the earlier researches were based on the assumption of cross-independent sensor noises. In
the practical applications, most of multisensor systems often have correlated noises when the dynamic
process is observed in a common noisy environment [3]. In this case, the traditional centralized fusion is
also applicable and is still optimal in the sense of LMMSE (linear minimum mean square error). However,
the computation complexity is huge.
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For most of practical cases, there is correlative between process and measurement noises (Correla-
tion I) and among measurement noises (Correlation II) [4]. Some people are working on the optimal
Kalman filtering fusion with cross-correlated sensor noises in recent years. In [3], Song et al. presented
the distributed fusion algorithms both without feedback and with feedback. While, augmentations of
some system parameters are existed. In [5], distributed sequential estimation of a nonrandom parameter
over noisy communication links was considered, where the observations are correlated spatially across
the sensor field, and a recursive algorithm for updating the sequential estimator was derived. By recon-
structing the measurements, Ref. [6] also deduced the distributed Kalman filtering fusion with feedback
and without feedback, in which the noise is decoupled in sequence by the method given in [7]. By these
methods, the augmentation of measurements and measurement matrices are needed. The fusion algo-
rithm given in [8] is similar. These methods have more complex form compared to [3], but they have
the advantage of capability of handling the correlation of measurement noise and system noise besides
decoupling the measurement noises. Ref. [9] studied the distributed fusion when the measurement noises
are correlated across sensors and with the system noise at the same time step. When the noise of different
sensors are cross-correlated and also coupled with the system noise of the previous step, we derive the
optimal sequential fusion and optimal distributed fusion algorithm in [10], and generate this result to
the fusion of multirate sensor cases [11,12]. When there is correlation between the process noise and the
measurement noise and among measurement noises, a distributed weighted robust Kalman filter fusion
algorithm is derived for uncertain systems with multiple sensors in [13]. A novel decentralized cubature
Kalman fusion algorithm is presented in [4] for nonlinear systems with noise Correlations I and II.

For fusion of the sensors with correlated noises, there are some literatures using linear transforms. Li et
al. first propose this idea in [1], where the optimal batch fusion and distributed fusion have been obtained
in a unified form. In [14, 15], correlated measurement fusion Kalman filtering algorithms are obtained
based on orthogonal transformation. By using the Cholesky factorization, the coupled noises can be
decoupled and the optimal state estimations were derived in [16-18]. In [19], the authors proved that the
sufficient condition of the lossless transform for distributed estimation with cross-correlated measurement
noises is the transformation matrix of full column rank.

To summarize, there are some literatures deal with optimal Kalman filtering fusion of the dynamic
systems with coupled noises. When the measurement noises are correlated, the centralized fusion can
still be used and it is optimal in the sense of LMMSE. However, the computation and power requirements
are too huge to be practical. Many people intend to generate the distributed fusion algorithm. While,
the distributed fusion algorithms are not given explicitly in [1,17,18]. The explicit distributed fusion
algorithms are presented in [3,6, 7], but augmentations of some system parameters are existed, and
therefore it is not optimal when the computation performance is concerned.

With the development of internet, networked fusion become the hot topic in the field of information
fusion, in which the measurements or the local estimations are transmitted to the fusion center through
the communication channel. Constrained by the limited resources and communication bandwidth, the
computation and communication efficiencies are a problem to which we should pay much attention. For
networked state estimation, there are many algorithms could be effective, including the study conceren
random delay of the observations [20], faulty of the measurements [21], mismatch of the measurement
noise covariance [22]. Ref. [23] analyzed the observable degree of a mobile target tracking system for
wireless sensor networks, and pointed out that it is potentially hopeful to achieve an effective function
to study estimation performance of tracking estimators by directly using the observable degree. There
has been discussion about compression in the hope of reducing the communication requirements in the
literatures [24-27]. A sufficient condition and a necessary and sufficient condition were given in [24, 28],
respectively, for lossless of performance for distributed fusion with compressed data. A suboptimal and
optimal compression rules were derived in [25, 26|, respectively, for estimation fusion. In WSNs; the
energy-saving related estimation algorithms are researched recently, the literatures include data compres-
sion methods [27,29], quantization based methods [30-32], and the methods to slow down the information
transmitting rate in the sensors [33-35]. For distributed Kalman filtering fusion of measurements with
cross-correlated noises, the simple form in considering of both optimality in accuracy as well as in com-
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putation and communication complexity, is still an open problem, and is the motivation of this paper.

This paper is organized as follows. Section 2 describes the problem formulation. In Section 3, the
Cholesky decomposition and the linear transformation are introduced. Section 4 provides the optimal
state fusion estimation algorithms, including the centralized fusion based on raw data, the centralized
and the distributed fusion estimation algorithms based on the transformed measurement models. Per-
formances, including the global optimization and the computation complexity and the communication
requirements of each algorithms, are also analyzed in Section 4. Section 5 is the simulation and Section
6 draws the conclusion.

2 Problem formulation

Consider the following generic linear dynamic system:

z(k+1)=Ak)z(k) +w(k), k=0,1,...; (1)

where x(k) € R™ is the system state, A(k) € R"*" is the state transition matrix. w(k) is the system
noise and is assumed to be Gaussian distributed with

{ E{w(k)} = 0; 5
E{w(k)w" (j)} = Q(k)di;,

where Q(k) > 0, and

1, k=7;
bij = ! (4)
0, k #j.

zi(k) € R™ is the measurement of sensor ¢ at time k. C;(k) € R™*" is the measurement matrix. v;(k)
is the measurement noise, and is assumed to be white Gaussian distributed, and is independent of w(k),
ie., for k,i=1,2,...,7,7=1,2,..., N, we have

{E{w(kz)} =0;

' (5)
Efvi(k)vf (1)} = Rij (k).

From the above formula we can see that the measurement noises of different sensors are correlated, i.e.,
v;(k) and v;(k) are cross-correlated for i # j at time k with E{v;(k)v] (k)} = Ry;(k) # 0. For simplicity,
we denote R;(k)AR;;(k) >0fori=1,2,...,N.

The initial state x(0) is independent of w(k) and v;(k) for k = 1,2,..., and i = 1,2,..., N, and is
assumed to be Gaussian distributed with

{ E{z(0)} = ;

6
cov{z(0)} = E{[z(0) — z0][z(0) — 20]T} = P, ()

where cov{z(0)} means the covariance of z(0).
The objective of this paper is to generate the optimal estimation of state x(k) by use of the measure-
ments z;(k) based on the above description.

3 Linear transformation

For the systems given in (1) and (2), let

2(k) = [21 (K), 23 (), .., 2y (0], (7)
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C(k) = [CL(k),Cq (k),...,On(R)]", (8)
U(k) = [UIT(k)aUg(k)a'"aU%(k')]Ta (9)
then we have
N
E{v(k)} = Oppx1, m = Z:lmi;
E{u(k)" (1)} = R(k)j; (10)
E{w(k)v"(j)} =0,
where
Ry Rip -+ Rin
Ro1 Rao -+ Ron
R(k) = cov{v(k)} = | . . . (11)

Ry1 Rn2 -+ Ryn

is a symmetric positive definite matrix.
To decouple the measurement noises and to decrease the computation complexity, we now use Cholesky
decomposition to decompose R(k). Namely,

R(k) = L (k)L(k), (12)

where L(k) is a lower triangular matrix with strictly positive diagonal entries.
Let

It follows that

zZ(k) = C’(k):c(k) + u(k), (17)
where
N
E{’L_)(k)} = 0m><17 m = ;mz,

R(k) = cov{o(k)} = T(R)R(K)T (k) = Loncns
E{w(k)o" (j)} = 0.

Hence, the cross-correlated sensor noises is transformed into uncorrelated sensor noises, whose covariance
is identity matrix.
4 The optimal state fusion estimation algorithms

4.1 The centralized state fusion estimation with raw data

Based on systems (1) and (2), the optimal state estimation can be generated by use of the centralized
fusion algorithm.
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Theorem 1. Given the centralized fusion estimation Z.(k — 1|k — 1) and P.(k — 1]k — 1) at k — 1, the
optimal state fusion estimation at time k can be computed as follows:

Ze(klk —1) = A(k — 1)dc(k — 1|k — 1);

P.(klk —1) = A(k — 1)P(k — 1|k — 1)AY(k — 1) + Q(k — 1);

o (kk) = e (klk — 1) + Ko(k)[2(k) — C(k)ae(k|k — 1)]; (19)
Ke(k) = Pe(klk — 1)CT (k)[C(k) Pe(klk — 1)C™ (k) + R(k)]

Pe(klk) = [I = Ko(k)C (k)| Pe(k|k — 1),

~— —

where subscript “c” denotes the centralized algorithm, and z(k), C(k) and R(k) are computed by (7),
(8) and (11), respectively.

Proof.  From the problem formulation and formula (10), it can be easily shown that v(k) is white
Gaussian noise and is uncorrelated with system noise w(k). Therefore, to generate the optimal state
estimation, the traditional centralized fusion can be used.

4.2 The centralized fusion with transformed data

From Section 3, systems (1) and (2) could be rewritten as

{ w(k+1) = A(k)x(k) + w(k); (20)

z(k) = C(k)x(k) + v(k),

where z(k) € R™ is the system state, A(k) € R™*" is the state transition matrix, w(k) is zero-mean
white Gaussian process noises with covariance being Q(k) > 0, and the initial state meets E{x(0)} = zo
and cov{z(0)} = Py. z(k) € R™ is the measurement at time k, and C(k) € R™*" is the measurement
matrix, where m = ) ."; m;. Measurement noise v(k) is zero-mean white Gaussian distributed and is
uncorrelated with w(k) and z(0), and cov{v(k)} = R(k) = I.
The optimal state estimation of z(k) could be generated by use of the following theorem.

Theorem 2. Based on system (20), given the centralized fusion estimation . (k — 1|k — 1) and the
estimation error covariance P.(k — 1|k — 1) at time k — 1, the optimal estimation at time k can be
computed by

Tet(klk —1) = A(k = D)der(k — 1|k — 1);

Pu(klk —1) = A(k — 1)Pey(k — 1|k — DAT(k — 1) + Q(k — 1);

Ter (k) = Zer(kk — 1) + Koo (K)[2(k) — C(k)Zer (k|k — 1)]; (21)
Ker(k) = Pey(klk — 1)CT (k) [C (k) Pet (k] k — 1)CT (k) + R(k)] "

Pur(klk) = [ = Kot (K)C(R)] P (Kl — 1),

where subscript “ct” denotes the centralized algorithm with the transformed data, and where z(k), C(k)
and R(k) are computed by (14), (15) and (18), respectively.

Proof.  For the linear system (20), it is obvious that the system noise w(k) is zero-mean white Gaussian
distributed. The measurement noise o(k) is also zero-mean white Gaussian distributed, and is uncor-
related with w(k) and x(0). So, the optimal state fusion estimation can be generated by use of the
centralized fusion algorithm.

Theorem 3. The state estimation of the centralized fusion given in Theorem 2 with transformed data

is equivalent to the centralized fusion given in Theorem 1 with the original observations in the sense of
LMMSE.

Proof. From (19), we can rewrite P.(k|k) and P.(k|k — 1) by use of the information form of the Kalman
filter as follows:

P.(klk —1) = A(k — 1)P.(k — 1|k — DAY (k — 1) + Q(k — 1), (22)
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P (k|k) = P7Y(k|k — 1) + CT (k)R (k)C (k). (23)
Similarly, from (21), we have

Pu(klk —1) = A(k — 1)Pey(k — 1|k — AT (k- 1) + Q(k — 1), (24)
Pt (kk) = Pt (k[k — 1) + CT (k)R (k)C (k). (25)

Obviously, P.(0|0) = P.;(0|0) = Fy. Assume that P.(k — 1|k — 1) = P.(k — 1|k — 1), then due to (22)
and (24), we obtain

P.i(k|lk — 1) = P.(k|k — 1). (26)

So due to (23) and (25), in order to prove P.;(k|k) = P.(k|k), we just need to prove CT(k)R™1(k)C (k) =
CY (k)R (k)C(k).

In fact,

R™Y(k)C(k). (27)

Hence, we yield P.(k|k) = P.(k|k).
From Theorem 3, it can be seen that the state estimation based on system (20) and sytems (1) and
(2) is equivalent as far as the centralized fusion is concerned.

4.3 The optimal state estimation by distributed fusion

Rewriting z(k), C(k) and 9(k) in (17) to block form, we have

z2(k) = [2] (k), 25 (K), ..., 2 (R)]T, (28)
O(k) = [C?(k)a _g(k)v ) é%(k)]Tv (29)
T)(k') = [T);F(k’), 'DQT(k)a e aﬁ%(k')]Ta (30)

where z;(k) € R™:*1 C;(k) € R™>*™ and 9;(k) € R™*!, Then from (17), we have
(k) = Ci(k)a(k) + 0,(k), i=1,2,...,N. (31)

From formula (18), it can be easily obtained that ¥;(k) is uncorrelated across different sensors, which
is zero mean Gaussian distributed and is independent of system noise w(k) and the initial state x(0).
Therefore, based on (1) and (31), the optimal state estimation could be generated by use of the distributed
fusion algorithm.

Theorem 4. By use of the linear systems (1) and (31), the optimal state estimation can be generated
by use of the distributed fusion algorithm. For simplicity, we only give the one without feedback here,

N
Pyt (klk) = Pyt (k[k —1) + Z[P;il(klk) — Pyl (klk = 1)], (32)
N
Py (k|k)za(k|k) = Py (k|k — 1)3a(klk — 1) + Z[P{;}(Mk’)i’d,i(kw)
— P} (klk = 124, (klk — 1)], (33)

where the fused state prediction at time k is

Zq(klk —1) = A(k — Dig(k — 1|k — 1), (34)
Py(klk—1) = A(k — 1)Py(k — 1|k — DAT(k = 1) + Q(k — 1), (35)
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and the local state estimations &4 ;(k|k) and P ;(k|k) are computed by Kalman filter by use of

Za,i(k|k) = Zai(klk — 1) + Ka,i(k)[2:(k) — Ci(k)&q,:(k|k — 1)];
Pyi(klk) = [I — Kq,:(k)Ci (k)] Pas(k|k — 1);

Zai(klk —1) = A(k — Viai(k — 1k — 1);

Pyi(klk —1) = A(k — 1) Py (k — 1|k — 1)AT(k - 1)+ Q(k—1);
Kai(k) = Pai(k|k = 1)CF (k)[Ci(k) Pa,i (k|k — 1)CF (k) + Ri(k)] ™"
Ri(k) =

(36)

Proof.  Use the information form of Kalman filter, from (36), the update equations of sensor i at time

k can be rewritten as [36]

{wdz(klk)xdz(klkl)Jrsz(klk)CT(k)R (k)= (k) = Ci(k)a,i(klk — 1)];
Py (klk) = Py (klk = 1) + CF (k)R (k) Ci (k).

Multiplying the first equation by the second equation in (37), we have

Py (k[k)Ea.i(k|k) [dz(kl = 1)+ CH ()R (k) Ci (k))& a.i (K[ — 1) + Py} (k[k) Pa,i (k|k)

-G (k)R (k) [z (k) — ( ) ikl —1)]
= Py (klk— 1)Zq,(klk — Cr k)R, (k)zi (k).
Then

CH (k)R (k)zi(k) = Py} (k|k)2a:(klk) — Py} (klk — 1)&ai(klk — 1),

7

On the other hand, from (21), we have

et (k|k) = et (klk — 1) + Pet (k|k)CT (k)R (k) [2(k) — C(k)aee (k|k — 1)];
o (k[k) = P (klk = 1) + CT (k)R (k)C (k).

Since R(k) is a diagonal matrix, we can rewrite it as
R(k) = diag{R:(k), Ra(k), ..., Rn(k)},

where R;(k) = I, xm,-
Substituting (28), (29) and (41) into (40), we have

baa(k[E) = el = 1)+ Polhli) 3= CFOIRA W) () — )b~ 1)

P (kR) = P (kk — 1) + 3 CT ()RS ()G (k).

i=1

Multiplying the first equation by the second of (42), after reorganization, yields

Pt (k[k)2er (k|k) = Pyt (klk — Ve (k| — 1) + > CF (k)R (k) Zi (k).

i=1
Substituting (39) to (43), we have

N

(37)

LL(ER) e (K|k) = Pyt (k|E — 1) (k|k — 1) + Z [Py (k|k)&a,i(kk) — Py (k|k = 1)Za,:(k|k — 1)].(44)

i=1
From the second equation of (37), we have

H(k)Ci(k) = Py (k[k) — Py (k[k —1).
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Substituting (45) to the second equation of (42), we have
N
Poyt(klk) = Pt (kIk = 1)+ Y [Py (k|k) = Py (klk = 1)). (46)

i=1

Combined (44) and (46), we have

Pyt (k[k)&er (k[k) = Po' (k[k — 1)der (k[k — 1) + Z [P (Elk) 24, (K|k)
fP(;il(k|k71)xdi(k|kf )], (47)

o (k[k) = Py (klk = 1) + Z [Pg.i (Klk) — Py (klk — 1)].

Comparing (32)—(35) with (21) and (47), deductively, we have

Za(klk) = der (K|k);

Py(k|k) = Py(k|k); (48)
Fa(klk —1) = o (k]k — 1);

Py(k|k — 1) = Pey(k|k — 1)

According to the derivation process of Theorem 4, the distributed fusion algorithm is generated from
the centralized fusion. So, we have the following corollary directly.

Corollary 1. The state estimation by use of the distributed fusion algorithm with Theorem 4 is equiv-
alent to the estimation by use of the centralized fusion algorithm given by Theorem 2.

Theorem 5. The state estimation by use of the distributed fusion algorithm of Theorem 4 with the
transformed measurements of (31) is equivalent to the estimation by use of the centralized fusion algorithm
with the original measurements of (2) given in Theorem 1.

Proof.  From Theorem 3 and Corollary 1, we draw the conclusion.

From Theorem 5, we can see that by applying the linear transformation to the measurement equations
and then by use of the distributed fusion algorithm given in Theorem 4, we can get the optimal state
estimation, which is equivalent to the centralized fusion estimation based on the original observations
in estimation precision. While, the distributed algorithm with transformed data is more flexible and
applicable, and has much less computation complexity compared to the centralized fusion algorithm with
raw data. We will show this in the next subsection.

Remark 1. In Theorem 4, to generate the state estimation, the distributed fusion without feedback is
introduced. In fact, we should only change formula (36) to get the distributed fusion with feedback by
use of the following formulae:

= dqa(klk — 1) + Ko (k)[z (k) — Ci(k)da (k|k — 1)];
(I — Kg,1(k)C ()] Pai ([ — 1);
(klk — 1) = A(k — éa(k — 1]k - 1);

1) = A(k — 1)Pa(k — [k — DA™ (k — 1) + Q(k — 1);
Ka.(k) = Pai(klk — 1)CF (k) [Ci(k) P (klk — 1)CT (k) + Ri(k))~

For the distributed fusion algorithm with feedback, it can be shown that it is equivalent to the distributed
fusion without feedback in estimation precision, and is therefore globally optimal in the sense of LMMSE,
which has better robustness [3,13].
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Figure 1 (Color online) Architecture of the centralized fusion by use of the raw measurements.
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Figure 2 (Color online) Architecture of the centralized fusion by use of the transformed measurements.

4.4 The complexity analysis

The architectures of the centralized Kalman filtering fusion, the centralized fusion by use of the trans-
formed measurements, and the optimal distributed fusion algorithms are shown in Figures 1-3, respec-
tively. For the centralized fusion, the system parameters A(k), Q(k), Ci(k), R;;j(k) and the measurements
z;i(k) for sensors i = 1,2,..., N are sent to the remote fusion center directly. For the centralized fusion
with transform, the system parameters and the measurements are sent to the local processor first, and
after proper process (linear transform), the transformed data are sent to the remote fusion center. For
the distributed fusion, the transformed data are sent to the local estimators, and the local estimations
are sent to the remote fusion center. In the sequel, we will compare the computation and communication
complexity of the three algorithms.

First, let us compare the centralized fusion algorithms by use of the original system and the system
with transformed measurement equations.

It is known that to use the centralized fusion algorithm, besides the observations, it is necessary to send
the state transition matrix A(k), the measurement matrix C'(k), the covariance of the system noise Q(k)
and the covariance of measurement noise R(k) to the fusion center. Nothing changes of A(k) and Q(k)
after the transformation, neither does the dimension of C'(k). Let us check R(k). Before transformation,
the communication requirement to send the data of R(k) to the fusion center is m(m + 1)/2, where
m = Ziv=1 m;. However, as has been proven in (18), after the linear transformation, the measurement
noises covariance becomes an identity matrix. So there is no need to send R(k). This nice property
certainly help to reduce the transmission burden to the fusion center. Particularly, when m is very large,
the property will greatly reduce the communication demands and the computation complexity.

Next, let us compare the distributed fusion with the centralized fusion algorithm based on the system
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Figure 3 (Color online) Architecture of the distributed fusion.

with transformed form. The centralized fusion algorithm should transmit A(k), C(k), Q(k), zZ(k) to the
fusion center at each moment k, and the communication requirement is %nQ + %n + mn + m, where
m = Zivzl m;. For the distributed fusion however, the system model parameters and the local state
estimations should be transmitted to the fusion center, and the communication requirement is N (n?+3n).
It can be seen that when the state and the measurements dimensions are high, the centralized fusion
will occupy larger transmission bandwidth. As far as the computation complexity is concerned, it is well
known that the distributed fusion is more efficient compared to the centralized fusion algorithm, because
augmentation of measurements, measurement matrix, and measurement noises covariances are avoided.

Finally, let us compare the presented distributed algorithm with the distributed algorithm presented
in [3]. To make it clear, we list the distributed fusion formula (21) of paper [3] here by use of the same
notations as in this paper:

N
L (BIk)za(Kk) = Pyt (klk — 1)aa(klk — 1)+ CT (k) > R (k,ix) Ry (k)G (k)
[Pai (K[k)2a,i (k|k) — Pyl (k[k — 1)za,i(klk — 1)), (50)

where subscript “+” denotes the pseudo-inverse, and R~!(k,ix) denotes the i-th submatrix column of
RY(k).
While, in the current presented distributed fusion algorithm, from (33), we have

N
[ (klR)za(Klk) = Py (klk = 1)aa(klk = 1) + ) _[Pg} (klk)aai(klk)

Py (klk = 1)aqi(klk - 1)]. (51)

The two algorithms are both proven to be equivalent to the centralized fusion in estimation precision,
and therefore are both optimal in the sense of LMMSE. While, from (50), it can be seen that to generate
the state fusion estimation, besides the necessary quantities of the presented distributed algorithm, C;(k)
and R(k) are also required by the fusion center, which means it requires 5 m(m + 1) + mn more data
transmission at each moment compared to the presented distributed fusion algorithm. Moreover, com-
paring (51) with (50), it can be seen that the computation complexity of the current presented algorithm
is much less than [3], since there is an augmentation of C;(k), i.e., C(k), and the inverse of R(k) needed
to compute and to multiply in (50).
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To summarize, the centralized fusion with the transformed data reduced the communication burden
compared to the centralized fusion with raw data, and the distributed algorithm has even less computation
complexity compared to the centralized fusion algorithm when the transformed system is concerned.
While, as has been proven, the three algorithms are all globally optimal in the sense of LMMSE. Compared
to the distributed fusion algorithm presented in [3], the presented distributed algorithm has the same
estimation precision but less computation complexity and requires less communication bandwidth.

5 Numerical example

To illustrate the effectiveness of the proposed algorithms, a numerical example is provided in this section.
A target is observed by three sensors, which could be described by (1) and (2) with

1 T
Ak) = -0.95; 52
k) =1, (52)
T
=123 21-q, 53
Q(k) g | (53)

where T' = 1 s is the sampling rate, and ¢ = 0.01 is the disturbance parameter. Sensors 1 and 2 observe the
first dimension of position, and sensor 3 observes the second dimension of velocity, i.e., the measurement
matrices are

Ci(k) = [1 0], (54)
Ca(k) = [1 0], (55)
Cs(k) =0 1] (56)

The measurement noises covariances is given by

0.25  0.125 0.00125

R(k) = 0.125 0.25 0.00125 | . (57)
0.00125 0.00125 0.0025
The initial conditions are
10 1 4
To = , Po=1, 0 |- (58)
0.5 T 72

The Monte Carlo simulation results are shown in Figures 4-6, where “CF” denotes the centralized
fusion algorithm by using the original observations as shown in Theorem 1, “CTF” denotes centralized
fusion by use of the transformed data as shown in Theorem 2, “DF” denotes the distributed fusion
presented by [3] and “DTF” denotes the presented distributed fusion by use of the transformed data
given in Theorem 4.

In Figure 4, the measurements of sensors 1 through 3 are shown in red dotted line, where sensors 1
and 2 observe the position dimension, and sensor 3 observes the velocity. For comparison, we use blue
line to show the original signal of the corresponding dimensions. It can be seen that the measurements
are corrupted by noises.

Figure 5 is the state estimation errors of different algorithms. The red dotted line in Figure 5(a) and
(c¢) is the estimation errors of CTF, DT and DTF, respectively, and the estimation error of CT is shown
in each subfigures in blue real line for comparison. It can be seen that the estimation errors of CTF, DT,
and DTF are exactly the same as that of CT, which means the four algorithms are equivalent in state
fusion estimation.
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Figure 4 (Color online) First dimension of the original Figure 5 (Color online) State estimation errors.
signal and the measurements.
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Figure 6 (Color online) Trace of the covariances of the state estimation errors.

Figure 6 shows the trace of the covariances of the state estimation errors, it can be seen that they are
coincided, which further verify the conclusion drawn from Figure 5.

The simulation in this section shows that in state estimation precision, the presented distributed
fusion algorithm based on linear transform is equivalent to the centralized fusion with and without linear
transformation, and is also equivalent to the distributed fusion algorithm presented by [3]. In fact, the
MMSEs of each algorithms are 0.0192 in this simulation. As far as the running time is concerned, the
average time for 100 runs for each algorithms, namely, CF, CTF, DF and DTF are 0.0468,0.0156,0.0780
and 0.0624, respectively. It can be seen that the centralized fusion after transformation is faster than
the centralized fusion with raw data. The distributed fusion by use of the transformed data is more
efficient than the distributed fusion presented in [3]. However, the running time of the distributed fusion
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algorithms are longer than the centralized fusion algorithms. By our analysis, it may rely on the following
reasons: (1) The dimensions of states and measurements in this simulation are not large, the advantages
of the distributed fusion algorithms are not obvious. (2) The computing of the inverse of the state
estimation error covariances of the local estimations and the state prediction error covariances are really
time cost. By comparing the distributed or the centralized fusion with and without linear transform,
respectively, it can be seen that linear transformation is really an efficient way to reduce computation
complexity, let alone the communication or network transmission of data is concerned, which can show
even more advantages of linear transformation.

Briefly, the simulation results in this section illustrate the effectiveness of the presented algorithms.
When the dimensions of the measurements and the states are not high, the centralized fusion is fine.
While, when the dimensions of the measurements are high, the distributed fusion with transformed data
has potential advantages.

6 Conclusion

When the sensor noises are cross-correlated, a linear transformation is presented to decouple the noises
into cross-independent. Then, the centralized fusion and the distributed fusion with transformed data are
presented and proven to have the same optimality as the centralized fusion with the original observations,
while have lower computation complexity in computing and are more efficient in communication or data
transmission, which is very useful in networked environments. A numerical example is shown to verify
the effectiveness of the proposed algorithms.
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