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To our best knowledge, in the open literature, there is no analytical solution of 
thick-walled cylinder subjected to uniform pressures at two ends and different in-
ner- and outer- surface pressures that are constant circumferentially but vary line-
arly at different rates along the axis. We now present such a solution. After re-
peated trials, we have finally succeeded in finding a necessary new displacement 
function. Based on A. E. H. Love method, the stress, displacement and volume 
strain formulas are derived by using the new displacement function. The present 
results include the Lamé’s formulas as special cases. Furthermore, the results ob-
tained here can be applied to not only the thick-walled cylinders subjected to uni-
form pressures on the inner and outer surface of the thick-walled cylinder, respec-
tively, but also the cylinders subjected to uniform pressures at two ends and dif-
ferent inner- and outer-surface pressures that are constant circumferentially but 
vary linearly at different rates along the axis, respectively. Finally we give a nu-
merical example to compare our exact method with the approximate method. 

thick-walled cylinder, new displacement function, spatially axisymmetric, three-dimensional analytical solution 

1  Introduction 

Owing to the ever-increasing industrial demand for axisymmetric pressure vessels in chemistry, 
nuclear, fluid transmitting plants, power plants and military equipments, the attention of designers 
has been concentrated on the elastic-plastic analysis of thick-walled cylinders[1]. These elas-
tic-plastic analyses were performed mainly based on the Lamé’s formulas[2－5]. The Lamé’s for-
mulas are suitable to thick-walled cylinders subjected to uniformly distributed pressures on the 
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inner and outer surface of the thick-walled cylinder, respectively. However, it cannot be applied to 
thick-walled cylinders subjected to linearly distributed pressures on the inner and outer surface of 
the thick-walled cylinder, respectively. Lin[6] (1997) applied the Kantorovich method to the 
three-dimensional axial-symmetric stress analysis, and the Euler equations and boundary condi-
tions were derived for the thick-walled cylinder with finite length. Lin[7] (1999) developed a 
Kantorovich-type stress variation method of higher approximation for the finite thick-walled cyl-
inders under the axisymmetric load. Variation and integration of the stress expressions are con-
ducted and the Euler equation and the corresponding end conditions are established. Up to now, 
unfortunately, we have not seen the analytical solution to uniform pressures at two ends and dif-
ferent inner- and outer- surface pressures that are constant circumferentially but vary linearly at 
different rates along the axis in the open literatures. This article presents three-dimensional ana-
lytical solutions for the thick-walled cylinder mentioned above by making use of Love potential 
functions. It can be shown that the present analysis is very simple and clear. Numerical comparison 
is made with refs. [6,7].  

2  Basic equations for axisymmetric problems 

In the case of axisymmetric spatial problem without the effect of body forces, the stress compo-
nents, according to A. E. H. Love method, can be expressed in terms of a potential function φ as 
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where σ r, σθ , σ z, and τ rz are the stress components; G is the shear modulus and μ is the Poisson’s 
ratio. The potential function ϕ in eq. (1) satisfies the following bi-harmonic equation: 
 2 2 0,φ∇ ∇ =  (2) 

where 2∇  is the three-dimensional Laplace’s operator, which reads in the axisymmetric case as 
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the volume strain is  

 1 2 ,r z Eθ
μθ ε ε ε −

= + + = Θ  (4) 

where Θ  is the sum of the three normal stress components .r zθσ σ σΘ = + +  

3  Displacement function and stress components 

Consider a thick-walled cylinder with inner diameter 2r1, outer diameter 2r2 and length l subjected 
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to different inner- and outer-surface pressures that are constant circumferentially but vary linearly 
at different rates along the axis and uniform pressures at two ends as shown in Figure 1. 
 

 
 

Figure 1  The thick-walled cylinder subjected to different linearly varying pressures along the axis and uniform pressures at two 
ends. 

 
The boundary conditions corresponding to the thick-walled cylinder mentioned above are 
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where p1 and p2  are the inner- and outer- surface pressures at z = 0, respectively. *
1 /p l  and *

2 /p l  
are the rate of the linearly varying pressures on the inner- and outer-surface along the axis, re-
spectively. 

As the geometrical shape of the body is concerned, the condition of constraint and the external 
loads are all symmetrical with respect to any plane passing through the axis z, the stress, strain and 
displacement components will have the same symmetry. In the cylindrical coordinates, the stress, 
strain and displacement components will be functions of only two coordinates r and z. 

For the solution of the axisymmetric spatial problem, we take the following displacement func-
tion with 8 terms: 
 4 4 3 2 2 2 2 2

1 2 3 4 5 6 7 8ln ln ln ,A z A r A z A z r A z r A zr A r r A z rφ = + + + + + + +  (6) 
where A1, A2, A3, A4, A5, A6, A7 and A8 are unknown constants to be determined by the boundary 
conditions. Substitution of eq. (6) into eq. (1) yields: 
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Substitution of eq. (7) into eq. (5) gives 
 BA = f, (8)  
where 
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The solutions of eq. (8) are 
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(9)

 

Substitution of eq. (9) into eq. (6) yields the displacement function φ, and it is easy to find that the 
function φ satisfies eq. (2). 

Substitution of eq. (9) into eq. (7) yields 
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4  The special case when l → ∞  

When ,l → ∞  we can obtain the following expressions for A1, A2, A3, A4, A5, A6, A7 and A8 from  
eq. (9): 
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If q = 0, eq. (10) reduces to 
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These are the well-known Lamé’s formulas for the stresses in a hollow circular cylinder sub-
jected to uniform pressures. 

Take * *
1 2 0,p p= =  q = 0, eq. (10) reduces to the well-known Lamé’s formulas once again. 

5  Displacement components and volume strain 

The displacement components, according to A. E. H. Love method, can be expressed in terms of a 
potential function φ as 
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where u and w are the displacements in r- and z- directions, respectively.  
Substitution of eq. (6) and (9) into eq. (13) yields 
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The volume strain can be expressed in terms of the displacement function φ as 
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Substitution of eq. (6) and (9) into this equation yields 
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6  Example  

The dimensions of the thick-walled cylinder in our example are: outer diameter 4r1, thickness r1, 
length 10r1. The pressure on the inner surface is zero and on the outer surface is hydrostatic, 
varying from zero at the top (z = 10r1) to the maximum at the bottom (z = 0). We computed the 
circumferential stresses at a cross-section 3r1 from the bottom. The comparison of dimesionless 
circumferential stresses σθ /q computed by this paper and by refs. [6,7] as shown in Table 1. 
 
Table 1  Comparison of dimensionless circumferential stresses σθ /q 

r/r2 
 1 1.2 1.4 1.6 1.8 2.0 

Ref. [6] −1.2821 −1.5211 −1.6132 −1.5512 −1.3278 −0.9359 
Ref. [7] −1.7320 −1.6834 −1.5001 −1.3017 −1.2098 −1.3487 

This paper −1.8667 −1.5815 −1.4095 −1.2979 −1.2214 −1.1667 
 

7  Conclusions 

(1) The necessary new displacement function which satisfied the bi-harmonic equation and the 
corresponding boundary condition was successfully found. Based on the A. E. H. Love method, 
analytical solutions, for thick-walled cylinders subjected to linearly distributed pressures on the 
inner and outer surface along the axis and uniform pressures at two ends, were derived by using the 
new displacement function. The stress, displacement and volume strain formulas were obtained. 
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(2) Two special cases need to be pointed out: Letting ,l → ∞  we can get A1 = A2 = A4 = A5 = A7 = 
0, and the radial stress and circumferential stress formulas obtained in this paper reduce to the 
famous Lamé’s formulas; letting * *

1 2 0,p p= =  0,q =  we can also obtain the famous Lamé’s 
formulas from the results obtained in this paper. It is shown that the present results include the 
Lame formulas as special cases. Results obtained in this paper can be applied to not only the 
thick-walled cylinders subjected to uniform pressures on the inner and outer surface of the 
thick-walled cylinder, respectively, but also the cylinders subjected to uniform pressures at two 
ends and different inner- and outer-surface pressures that are constant circumferentially but vary 
linearly at different rates along the axis. 

(3) From Table 1, it can be seen that the dimensionless circumferential stresses σθ /q calculated 
by ref. [7] are more close to the analytical solutions than by ref. [6]. The results derived by our 
exact method are not only more accurate but also much simpler and faster. 
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