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I. INTRODUCTION

The Dirac equations of curved spacetime had already been put forward and discussed
by the end of the 30’s, but all of them were in the econformal invariant form.
Because it was difficult to treat r-matrix, the Dirac equation for m =0 in form of
Cartan moving frame was not obtained until 1957, Furthermore, Brill and Cohen'
wrote out the Dirac equation for m > 0 for curved spacetime and got the plane-wave
solution in 1966. Recently, Soffel® obtained the Dirac equation in the Schwarzschild
metric and discussed the situations near the black hole by the method of numerical
solutions.

Since Hawking!? suggested the possibility that there may exist small black holes of
the order of 10~ cm, the problem has been discussed from various aspects. The pos-
sibility of the existence of gravitational quantum bound states seems quite likely.
Recently, the bound states of bosons (Klein-Gordon equation) in the neighbourhood of
a Kerr black hole have been discussed”. As all the stable elementary particles are
fermions, it is more proper to discuss the bound states of the fermions around small
black holes. It is also necessary to solve the Dirac equation for this purpose. Because
the Dirac equation has not been derived in the Kerr metric for the time being and it
i8 necessary to solve the equation in the Schwarzschild metric with Newton approxima-
tion to obtain the energy levels and wave funtions.

From [3], the radial Dirac equation in Schwarzschild spacetime is written as

follows:

%Q = ko) + e I(E — V(r)) + mlf(r) (14)
and

dfd(rr) =3 % 1(r) — (e 3(E — V(r)) — mlg(r), (1B)

where g(r) and f(r) forming R(r) = (?E"%) are the radial wave functions; e’ and
r

e* represent the components of the Schwarzschild metric gy and gy respectively; E and
m are the energy and mass of the Dirac particle; V(r) is a potential function (here
potential is caused by various fields except gravity). If only pure gravitational action
is considered, then V(r) = 0; k is the angular quantum number. Eq. (1) is solved
as follows.

To make the results of computation easy to see, the C. G. S System is used. Setting
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f(r) = ¢(r)e~*; g(r) = x(r)e™™,

where
\/mzc4 — B
a _—
ke

and

me?

p=ar, —=g¢, — =
heo
. {

we obtain

~A _v
e (¢ — o) — __kp(p + (e e, —c)Xx =0,

(2)
! , kX _v
e 2(X —X)+-—p——(e Ic,+c)e=0.
. . . . e 2KM
These are a set of differential equations with argument p, where ¢™'=e’=1———,
cir

K is a gravitation constant, ¢ the speed of light and M the mass of the black hole.

The equations cannot be solved strictly, so we solve them approximately in two

cases.
(1) Newtonian limit e-% =], e T+ Ii]:ia.
(2) The neighbourhood of black hole )
2(’;{" 1, o 1 2’:&‘“ 0,

that is %e”” £ ¢;. Eq. (2) turns to

A=
e ? (qu—X)—-’;—e”"(tp+X)+cx(¢+x)='0,

. . | (3)
e * (¢ —2)——Fe(e—X)—eale—X) =0
II. Tur SorutioN oF THE Dirac Equation N NewroNian Limit
Substituting the Newtonian limit into (2), we obtain

<p'—<p—ﬂ+[(1+K¥“>cl—c,]x-o, (44)

P c’p

and

x’—x+l:—)’£—[(1+K12"“)c,+c,]qo=o. (4B)

¢’p

We then substitute the power series ¢ = Z a,b**, X Z b,o’t into (4).
v=0

v=0
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Equating coefficients of the same power of p are given for coefficients of p™**~*

’

(‘l) + s — k)a» — Gy + - bv - (02 - c\)bv—l = O’ (5A)

UKM C1
c?

(v + s + k)bv - bv—l

oEMer g, — (61 + )8,y = 0. (5B)
C

From (5A) and (5B) we can easily obtain

KMo KMa

(v+s-——k+ﬂ cl>a,+[ v+ s+ kB +

‘/mcz \/ €3 — Cy
B=Npedr+E =" 0= e+ ¢’

In order to make the wave function finite, the series should be cut off in a,4, and
b,41. By (5A) or (56B)

,] b, =0, (6)

where

o, + b, =0 )

is obtained. From (6) and (7), it can be seen that the determinant of coefficients
must be equal to zero, if a solution of the equation is to be found. Then,

2(”+3)ﬂ+ﬁlKMacl KMo

y c* c?

O = 07 (8)

80 that the energy of particles is

Beane |17 \/1 + 4(;,,—%?7)2(%’3)2.
(o)

In view of weak gravitational field, the gravitational bound energy (9) can be
expanded, so that the bound energy would be

9

, KM )m?
E=E-mc)‘==-—(————-. 10
2(v + 8)?h? (10)

This is the energy spectrum of the gravitational bound state under the Newtonian
approximation. It is similar to the energy spectrum of the Schrodinger equation with
pure gravitational potential (see Appendix (A3)). From (10) it can be known that
the energy spectrum of small black hole bound state is in the neighbourhood of the
visible spectrum, and the radiant energy of spontaneous emission from small black hole
is high energy photons (X-ray and v-ray), so they are in two different spectra, and
there is no question of their mutual suppression. Of course, the number of photons of
the bound state is' very small, and it is almost impossible to see them, unless there

are groups of small black holes in some regions of space. As the coefficient of p*** equals
zero, it is easy to obtain
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5= i-‘/ 3 — (mc[fc’)z. (11)

To make sure that the wave function will be finite when p— 0, s should be positive.
Further discussion is as follows.

1. The Limitation of the Bound Particles Caused by Radius of the Black Hole

From (11), in order to make s a real number, it is necessary that k>Z—~— =KM -E;.

c? 2he (
Becauxsle-2—1::—21I'11 is the radius of black hole r,, and % is the 1. of the Compton wave
length of the particle,
r, < khs/x. 12)
Thus it follows that not all partleies can be in the quantum bound state, at least
not in the ground state, i.e. k = 1. For small black holes of the order of 10~"*cm, the
upper limit of the mass of the particles that can be in the ground state is the mass of

neutrons (E ~met, m< 2h>
. er,

Note. We do not mean that particles of large mass cannot form bound state, but
they cannot form quantum bound state.

2. Removed Degeneracy

Substituting (11) into (9), we can easily see that the energy spectrum is relevant
to k, that is, energy levels are split with the angular quantum number %. The
comparison of energy levels with the solution (A2) of the Schridinger equation shows
that degeneracy has been removed.

3. Comformity With the Schradinger Eq. (A2) of Pure Gravitational Potential
Under the Approximation of Low Speed and Weak Grawvtation

Substituting the Newtonian approximation in (1A), we obtain

d 1+
(3; + ) g(r)
f(r) = KM = : (13)
1 (E — mc? + + 2mcz) ‘
ke c’r
- . 2 ’ 2 ME 2
As in low speed and weak field, we have E — m¢? = E’ < mc? and —— o < mc’

Substituting (13) into (1B), making the necessary operation and taking care that the
difference between E and mc? should be a small quantity of the first order, we may
reduce Eq. (13) to

li(zgg) 2m( KME) E1+k) oo 14
r‘"drrdr“l—hzE-l“c2 ' r? g (14)

This is similar to Eq. (A2) in form, i.e. it has returned to the Schrodinger equation.
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1II. Tue NEeiGHBoUrHOOD OF THE Brack HoLr

2KM« k

Setting y = ¢ + 2, e =@ —1z, 1 — ~—— =4 and as — ¢*? K ¢, Eq. (3) then
cp P

may be reduced to

Ay + ciz=0
Y az } (15)

Az — ey = 0.

Obviously, the small black hole is similar to the large one in that the equation has
also a zero solution (y == z = 0), but it is different- from the large black hole because
besides this zero solution, it also has a non-zero solution caused by the quantum effect.
The non-zero solution is ’

(p=ﬂ_t_z_=_D—{sin{|fl (r—r;+r:lna(r-r,))]

2 2 c
+ cos[ }fi; (r—r,+r,lnae(r — "s))]}’
(16)
x=y~'-2_—?-=€—{sin[%l—(r—r,+r;lna(r——r,))]
_ COS[)—hEc—l (r—r,+ r, lna(r—r‘))]},
ST

- where D is a constant to be determined, and by definition above o ==
2KM _

02
spectra, that is, bound states do not exist.

ke

r,. From (16) we know that ¢ and x are not bound states, but continuous

APPENDIX
THE SCHRODINGER EQUATION OF PURE GRAVITATIONAL
POTENTIAL AND ITS SOLUTION

KMm

If the gravitational potential is V(r) = — , then the Schrodinger equation

must be
hZ
(- £ v+ 7)) o = ko (A1)
- 2m

The angular part of the wave function is the spherical harmonic function Y, and the
radial part of the equation is

ii(r2@)+[2—"1<E+———-KM’”)—___Z(Z+D]R=0. (A2)
rt dr dr h? r r?

In a similar way to the solution of the hydrogen atom, we can obtain the energy
levels as:

[ 3
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K*M?*m?
E, = — ———, A3
2h*n? (43)

The wave function is
R(r) = Ny e~"*(ar) Ll (ar), (A4)

2K Mm? { (n—1-— 1)
where g = ———— N, = —{d’ :
T 2nl(n+ DI’

the associated Laguerre polynomials.

1
2 *
} are normalized constants, L!' are

The radius of the ground state is

o i3
Gy = L RErRy(r)ridys= Bmi (A5)

We are much obliged to Prof. Fang Lizhi (J7jg)2) for his guidance and encour-
agement. ’
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